Tuxedo Pipeline for Novel
Transcript Discovery



What is a gene? What is a transcript?

A gene can have multiple transcripts!
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 We want to identify all these transcripts,
whether annotated or not.



Back to the big picture...
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TUXEDO PIPELINE Q
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The pipeline is
sequential.

Output of one
step becomes
input of next step.

Figure from:
Trapnell et al, Nature
protocols, 2012.



Of course, Tuxedo Pipeline can be run without
looking for novel events

* NO NOVEL JUNCTIONS: Simple differential gene expression
analysis against a set of known transcripts.

— User provides a gff/gtf file containing annotated features. Quantify
only the annotated features and id DEGs.

* NOVEL JUNCTIONS ALSO: In addition to known transcripts,
novel transcripts should be explored.

— User provides a gff/gtf file containing annotated features. But you
also allow the search for novel variants as well. Both annotated and

novel variants are quantified and DEGs are identified.

 ONLY NOVEL/DE NOVO JUNCTIONS: No gff/gtf file is provided.
Using just the read data and the genome reference, construct
de novo transcripts, quantify them and id DEGs.




What do we get at the end of running this pipeline?

A view of how the transcriptome is different between
condition C1 and condition C2

* Both in terms of annotated genes and transcripts.
* And novel genes and transcripts

Differential gene expression and so much more...
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STEP 1: TOPHAT

What does Tophat do?

Tophat maps your data to your reference in a
transcriptome-aware manner, that will also identify
junctions. We've already looked at how you can turn
on and off its ability to identify novel junctions.

--no-novel-juncs Only look for reads across junctions indicated in the
supplied GFF file.

-G <GTF/GFF3 file> Supply TopHat with a set of gene model annotations
and/or known transcripts, as a GTF 2.2 or GFF3
formatted file.




STEP 2: CUFFLINKS

e What does cufflinks do?

— TRANSCRIPT ASSEMBLY (also referred to as
transcriptome reconstruction)

— Let’s see first what that entails.



Why transcript assembly?

Transcript assembly = assembly of mapped reads
into transcriptional units.

Why?
* Define a precise map of all transcripts expressed
in a sample.

* How does our transcriptome look in comparison
to the known transcriptome?

* Look for novel transcripts between conditions/
samples.

* Look for differences in expression for these novel
transcripts between conditions/samples.



Why is transcript assembly hard?

Difficult to tell which read came from which
transcript

Many Short reads, many transcripts!

* Transcripts are expressed in different amounts.
So, coverage of reads can be vastly different.

* Reads can come from mature mRNA (exons only)
and precursor RNA (containing partial introns).



Table 1 | Selected list of RNA-seq analysis programs
Class Category Package Notes Uses Input
Read mapping

Unspliced Seed methods Short-read mapping package Smith-Waterman extension Aligning reads to a Reads and reference
aligners? (SHRiMP)*1 reference transcriptome transcriptome
Stampy3? Probabilistic model
Burrows-Wheeler Bowtie*?
transform methods BWA%44 Incorporates quality scores
Spliced aligners  Exon-first methods MapSplice3? Works with multiple unspliced Aligning reads to a Reads and reference
SpliceMap®° aligners reference genome. Allows genome
TopHat®? Uses Bowtie alignments for the id_ent]'ﬁcat}'on of
novel splice junctions
Seed-extend methods GSNAP33 Can use SNP databases
QPALMAS4 Smith-Waterman for large gaps
Transcriptome reconstruction
Genome-guided  Exon identification G.Mor.Se Assembles exons Identifying novel transcripts Alignments to
reconstruction Genome-guided Scripture?® Reports all isoforms using a known reference reference genome
assembly Cufflinks?® Reports a minimal set of isoforms 9¢"°™€
Genome- Genome-independent Velvet®?! Reports all isoforms Identifying novel genes and Reads
independent assembly TransABySS56 transcript isoforms without
reconstruction a known reference genome
Expression quantification
Expression Gene quantification Alexa-seq*’ Quantifies using differentially Quantifying gene expression Reads and transcript
quantification included exons models

Enhanced read analysis of  Quantifies using union of exons
gene expression (ERANGE)??

Normalization by expected Quantifies using unique reads
uniquely mappable area

(NEUMA)®&2
Isoform quantification  Cufflinks?? Maximum likelihood estimation of Quantifying transcript Read alignments to
MISO33 relative isoform expression isoform expression levels isoforms

RNA-seq by expectaion
maximization (RSEM)&?

Differential Cuffdiff2? Uses isoform levels in analysis Identifying differentially = Read alignments
expression DegSeq’? Uses a normal distribution expressed genes or and transcript
EdgeR77 transcript isoforms models
Differential Expression H .
analysis of count data Flgu re:
(DESeq)”® Garber et al, Nature Methods, 2011

Myrna’® Cloud-based permutation method



Most commonly used, if you have a genome.

Less resource-intensive We’ll call this graph based approach

(" N

Transcriptome reconstruction

Genome-guided  Exon identification Assembles exons Identifying novel transcripts

reconstruction  Genome-guid Scripture®® Reports all isoforms using a known reference
\ assembly Cufflinks* Reports a minimal set of isoforms 2 0° y.
Genome- Genome-independent  Velvet®? Reports all isoforms Identifying novel genes and
independent assembly TransABySS6 transcript isoforms without
reconstructid a known reference genome

If you don’t have a genome.
If you believe your sample has major rearrangements

More CPU and RAM intensive

Figure :
Garber et al, Nature Methods, 2011



Genome guided transcript assesmbly

Different assembly methods
* Exon Identification Method

— First ID putative exons by looking for coverage islands.
— Older method, were meant for shorter read lengths.
— G.MorSe

* Graph Based approach

— Directly uses mappings of spliced reads to reconstruct
transcriptome.

— Uses graph topology.
— Cufflinks (part of tuxedo suite), scripture



Number of S. pombe genes ™

How do these tools compare?

Figure:
Grabherr et al, Nature Biotech, 2011
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Base-level accuracy

Confirmed junctions

(%)’ (%)’ (%)’ (%)’
TopHat + Cufflinks 83.9 75.8 68.9 63.0
GSNAP + Cufflinks 79.4 71.2 65.7 58.4
GSNAP + Cufflinks (subsample?) 80.3 72.7 60.2 66.3
TopHat + Scripture 703 67.9 60.8 62.5

'Base level accuracy and percentage of confirmed junctions with different combinations of mapper and assembler on the sample ps94 males compared to the

orthology annotation and the EST annotation (2based on 48 M reads).

doi:10.1371/journal.pone.0046415.t001

Figure:
Palmieri et al,
PLOS One, 2012



How does Cufflinks do transcript assembly

Graph based approach!
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RABT

* Reference annotation based transcript assembly (RABT)

— Uses existing annotation to guide assembly of
transcripts.
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After assembly

e Calculates abundance for these assembled
transcripts.

* Normalized using FPKM (Fragments Per
Kilobase of Exon Per Million) (variation of
RPKM)

— RPKM normalizes for transcript length variations
and sequencing depth.

— RPKM= (No.of Mapped reads*1079)/ (length of
transcript *total no.of reads)

— FPKM just exchanges reads with fragments.



General syntax for cufflinks command

cufflinks [options] <accepted hits.bam>

Some of the important options:
-p/--num-threads
-G/--GTF  (quantify only annotated transcripts)
-g/--GTF-guide (both annotated and novel transcripts)
-b/--frag-bias-correct
-u/--multi-read-correct



General syntax for cufflinks command

-b/--frag-bias-correct

When quantifying abundance, corrects for sequence-specific
bias at the ends of reads by ‘learning’ from the data.

-u/--multi-read-correct

By default, if a read maps to 2 genes it will count as 50% (half
a read) towards each gene.

With this flag, it handles this question in a more fine-tuned
manner.



Let’s look at some results from a
cufflinks transcript assembly

* |nput:
— Tophat mapped results (bam files)
— Transcriptome annotation (genes.gtf)

e Let’s SWITCH TO THE WIKI for instructions on
looking at these results...



STEP 3: CUFFMERGE

* Cuffmerge is used to merge all the transcripts
that cufflinks assembled into one file.

-Replicate 1
Cufflinks assemblies Replicate 2
for condition A )
Replicate 3 == s——— I
Replicate 1 E—
Cufflinks assemblies Replicate 2 —— —
for condition B .
Replicate 3 - I
Merged assembly B - I

from Cuffmerge

FlyBase reference -1 i
annotation -1l - -




STEP 3: CUFFMERGE

Input: All cufflinks assembly files (in gtf format)
Input: Optionally: Annotated genes (in gff/gtf format)

Compares your assembled transcripts to a reference
annotation.

Output: merged.gtf

— Your very own gtf file, containing all the transcripts found in
your samples (both novel and otherwise).

SWITCH TO THE WIKI for instructions on viewing these
results



STEP 4: CUFFQUANT

Optional but recommended step

Computes gene and isoform expression quantification
values and stores them in a structure that can be used
by cuffdiff or cuffnorm.

Input: result from cuffmerge
Output: abundances files

SWITCH TO THE WIKI for instructions on viewing these
commands and results



STEP 5: CUFFDIFF

Calculates differential expression!

Input:
— Our newly created merged.gtf file or a gtf file we downloaded (genes.gtf)
— Our newly created cuffquant abundances file

— Our newly created merged.gtf file or a gtf file we downloaded (genes.gtf)
— Mapped bam files

Counts the number of fragments(reads) generated by each isoform to
obtain isoform-level expression.

Calculates difference in isoform-level expression among conditions.

If the chance of seeing this difference is small enough under the chosen
statistical model, it is deemed signficantly differentially expressed.



Other differential expression tools vs cuffdiff

Others Cuffdiff

Raw count method for assigning counts | Isoform deconvolution method for

to genes assigning counts to genes

Count the reads mapping to exons of Count the reads that map to each
each gene/normalization factor = isoform of the gene/normalization
expression for gene factor = expression for gene

If all isoforms of the gene are up/down, | If all isoforms of the gene are up/down,
works fine works fine

If some isoforms of the gene are up and | If some isoforms of the gene are up and
some are down, inaccurate results some are down, works fine




STEP 5: CUFFDIFF

Figure from: Differential analysis of gene regulation at transcript resolution with rNA-
seq, Trapnell et al, Nature Biotechnology, 2013
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STEP 5: CUFFDIFF

 SWITCH TO THE WIKI for instructions on
viewing these results



Limitations of the Tuxedo Pipeline

e A Reference is needed.

* Not quick.

— For a human dataset with say, 60 million reads,
each step can take 12-24 hours on lonestar and on
stampede, probably 6-12 hours.

— Some steps (cufflinks, cuffdiff) can run out of
memory on large jobs.



DESeq/edgeR output vs Tuxedo pipeline output

* Yesterday we generated differential expressed
genes too. So, why the big fuss?

— They were all from annotated genes. So, they all has
flybase ids.

— Now our output has genes with ids ‘CUFF...” - they are
novel.

— In addition to differential gene expression, we also
have results for differential regulation.

— We also have results telling us where our novel
transcripts are with respect to the annotated ones.



If You Don’t Have A Genome

Transcriptome reconstruction

Genome-guided  Exon identification G.Mor.Se Assembles exons Identifying novel transcripts

reconstruction  Genome-quided Scripture?® Reports all isoforms using a known reference
assembly Cufflinks®? Reports a minimal set of isoforms  9°"0°

Genome- Genome-independent  Velvet®! Reports all isoforms [dentifying novel genes and

independent assembly TransABySS® transcript isoforms without

reconstruction a known reference genome

e Trinity for assembly

— Wrapper script to parallelize some parts of trinity:
https://wikis.utexas.edu/display/bioiteam/assemble trinity

— assemble_trinity -a <your_allocation> -| <R1_reads.fg> -r <R2_reads.fg> -0
<output_directory>

 Annotate using trinotate or Blast2GO

 Map reads to the assembled transcriptome and simply quantify transcripts by
parsing the SAM file:

— cut —f 3 samfile|sort|uniq -c
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Figure 1 Changes in fragment count for a gene does not necessarily equal a change in expression. (a) Simple read-counting schemes sum the fragments
incident on a gene’s exons. The exon-union model counts reads falling on any of a gene’s exons, whereas the exon-intersection model counts only reads

on constitutive exons. (b) Both of the exon-union and exon-intersection counting schemes may incorrectly estimate a change in expression in genes with
multiple isoforms. The true expression is estimated by the sum of the length-normalized isoform read counts. The discrepancy between a change in the union
or intersection count and a change in gene expression is driven by a change in the abundance of the isoforms with respect to one another. In the top row,

the gene generates the same number of reads in conditions A and B, but in condition B, all of the reads come from the shorter of the two isoforms, and thus
the true expression for the gene is higher in condition B. The intersection count scheme underestimates the true change in gene expression, and the union
scheme fails to detect the change entirely. In the middle row, the intersection count fails to detect a change driven by a shift in the dominant isoform for the
gene. The union scheme detects a shift in the wrong direction. In the bottom row, the gene’s expression is constant, but the isoforms undergo a complete

Figure from: Differential analysis of gene regulation at transcript
resolution with rNA-seq, Trapnell et al, Nature Biotechnology, 2013



