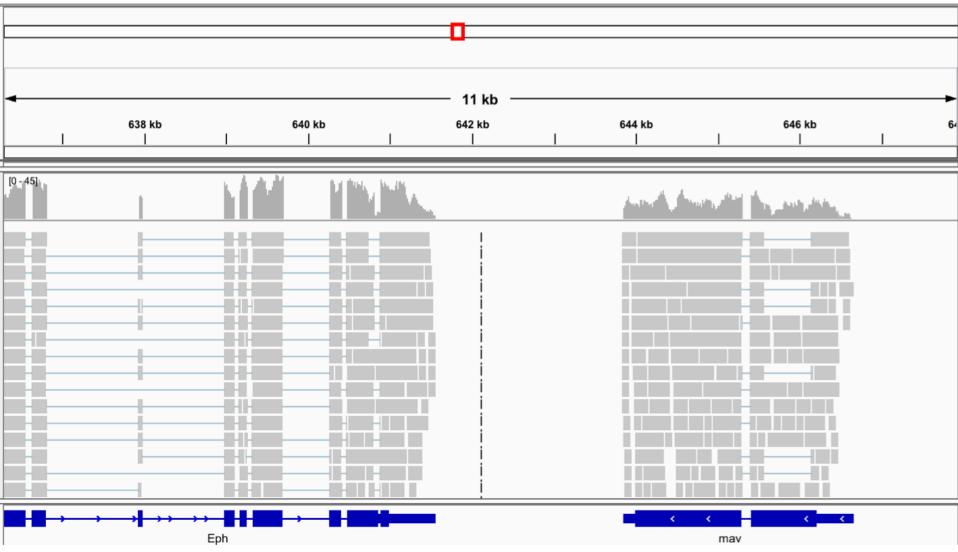
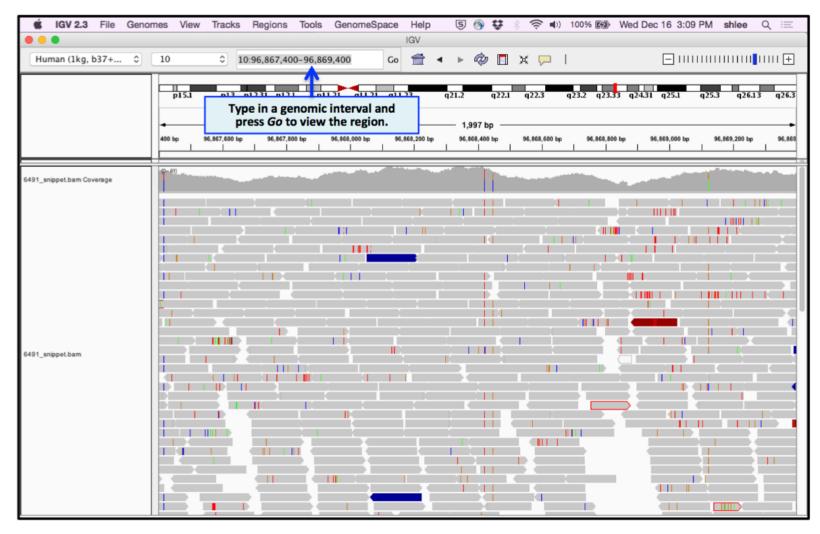
INTRODUCTION TO READ MAPPING

Dhivya Arasappan (With several slides borrowed from Dr. Jeff Barrick)


What does an alignment look like?

Ref=TAGATCAGATTCGATACCAGACCATGATCATACGATCCA

Read=AGACCATG


Found at offset 18! TAGATCAGATTCGATACCAGACCATGATCATACGATCCA

What does an alignment look like?

https://vlsci.github.io/lscc_docs/tutorials/rna_seq_dge_basic/rna_seq_basic_tutorial/

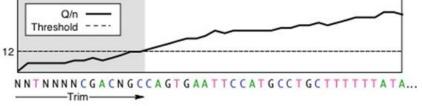
What is an alignment look like?

gatkforums.broadinstitute.org

Why is alignment a difficult problem?

- 100's of millions of reads
- Billions of bases to search through
- Approximate matching
- Looking for a tiny pattern (~100-120 bp read) in a large, often redundant sequence.

Basic steps of mapping reads


- Pre-mapping QC
- Build a reference sequence index.
- Map sequencing reads to the reference index.
- Convert results to SAM/BAM format and obtain mapping statistics.
- Post-mapping analysis.

What to know about your data before mapping?

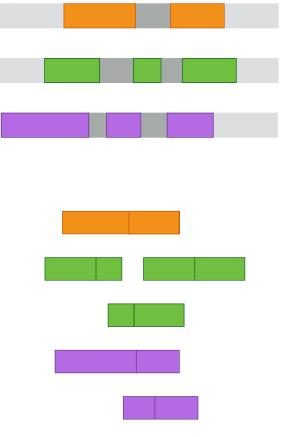
KNOW YOUR DATA!

- Paired end? Single end?
- Traditional RNA-Seq? 3' tag
- Insert size estimate?

PREPROCESSING

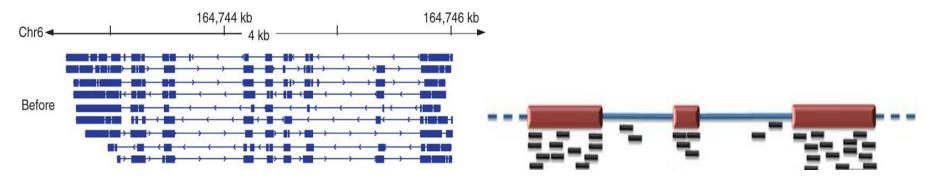
- Adaptor sequences trimmea:
- Primer sequences/barcodes removed?
- Poor quality regions trimmed?

What will your reads look like?


FASTQ FORMAT

@HWI-EAS216_91209:1:2:454:192#0/1
GTTGATGAATTTCTCCAGCGCGAATTTGTGGGCT
+HWI-EAS216_91209:1:2:454:192#0/1
B@BBBBBB@BBBBAAAA>@AABA?BBBBAAB??>A?

- Line 1: @read name
- Line 2: called base sequence
- Line 3: +read name (optional after +)
- Line 4: base quality scores


What does the reference look like?

- Genome: All the DNA of an individual, organized by chromosome, containing noncoding and coding regions.
- **Transcriptome**: All the gene isoforms. No non-coding sequences.

What to know about your reference before mapping?

Mapping to genome vs transcriptome?

- Is your reference the right version?
- Does your annotation match your reference?

What will your reference look like?

• FASTA Format

>gi|254160123|ref|NC_012967.1| Escherichia coli B str. REL606 agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtgtc tgatagcagcttctgaactggttacctgccgtgagtaaattaaaattttattgacttagg

acaacatccatgaaacgcattagcaccaccattaccaccatcaccattaccacaggt

• Using complex reference sequence names is a common problem during analysis. Might rename:

>REL606 agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtgtc tgatagcagcttctgaactggttacctgccgtgagtaaattaaaattttattgacttagg

What will your annotation look like?

• GFF3 Format

- seqname The name of the sequence.
- source The program that generated this feature.
- feature Examples: "CDS", "start_codon", "stop_codon", and "exon".
- start The starting position of the feature in the sequence.
- end The ending position of the feature (inclusive).
- score A score between 0 and 1000.
- strand Valid entries include '+', '-', or '.' (for don't know/don't care).
- Frame reading frame
- group ID and other information about the entry

Example:

Rel606 refseq cds 1450 1540 500 + . Gene_id=« test_gene »

• Make sure the GFF3 file matches your reference fasta file.

Where to get your references?

- Ensembl ftp
- UCSC
- Gencode

• Organism specific databases/websites.

UCSC Genome Bioinformatics

First Step : Reference Indexing

- **Indexing**: Think of the index of the book.
- Break reference into substrings of K length (Kmers) and index all locations of the Kmer.

ACG 6 ACT 3 CTT 4 TAC 2,7 TTA 1,6 TTT 5

Reference: TTACTTTACG

Read:CTTAAC

Find the prefix and extend the alignment

Indexing

· Many different ways to represent reference indexes

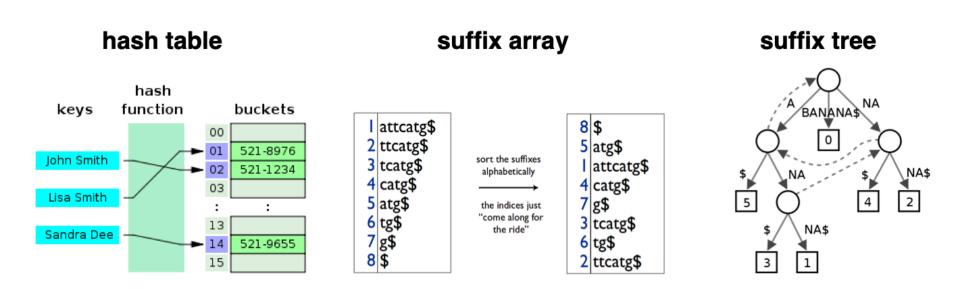
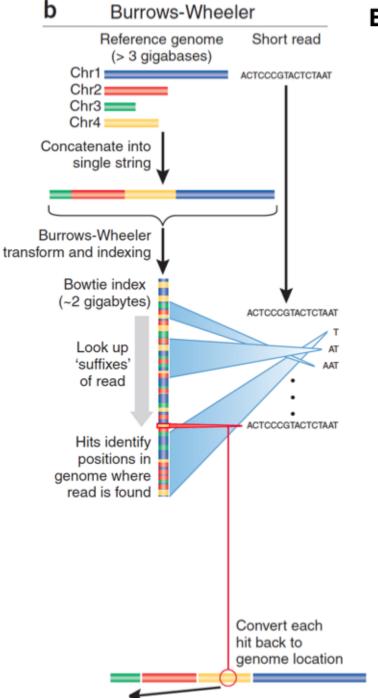


image from wikipedia

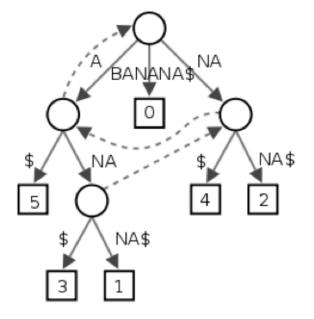
image from discuss.codechef.com


image from wikipedia

Types of Mappers

Class	Category	Package	Notes	Uses	
Read mapping					
Unspliced aligners ^a	Seed methods	Short-read mapping package (SHRiMP) ⁴¹	Smith-Waterman extension	Aligning reads to a reference transcriptome	
~		Stampy ³⁹	Probabilistic model		
	Burrows-Wheeler	Bowtie ⁴³			
	transform methods	BWA ⁴⁴	Incorporates quality scores		
Spliced aligners	Exon-first methods	MapSplice ⁵²	Works with multiple unspliced	Aligning reads to a reference genome. Allows for the identification of novel splice junctions	
		SpliceMap ⁵⁰	aligners		
		TopHat ⁵¹	Uses Bowtie alignments		
	Seed-extend methods	GSNAP ⁵³	Can use SNP databases		
		QPALMA ⁵⁴	Smith-Waterman for large gaps		

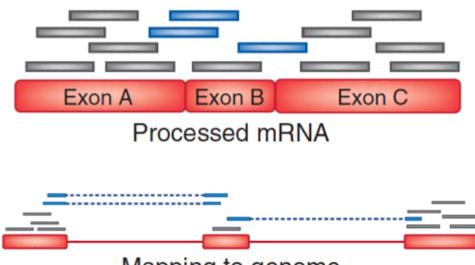
Figure : Garber et al, Nature Methods, 2011


	Unspliced Mapping		
	Exon A Pr	Exon B Exor	
	Ma	pping to genome	
Class	Category	Package	Notes
Read mapping	11948 - 19768	120084	
Unspliced aligners ^a	Seed methods	Short-read mapping package (SHRiMP) ⁴¹	Smith-Waterman extension
		Stampy ³⁹	Probabilistic model
	Burrows-Wheeler	Bowtie ⁴³	
	transform methods	BWA ⁴⁴	Incorporates quality scores
		Figure : Garber e	et al, Nature Methods, 2011

Burrows-Wheeler transform compresses sequence.

Input	SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES
Outpu	t TEXYDST.E.IXIXIXXSSMPPS.BE.S.EUSFXDIIOIIIT

Suffix tree enables fast lookup of subsequences.


http://en.wikipedia.org/wiki/Suffix_tree

Exact matches at all positions below a node.

Trapnell, C. & Salzberg, S. L. How to map billions of short reads onto genomes. *Nature Biotech.* 27, 455–457 (2009).

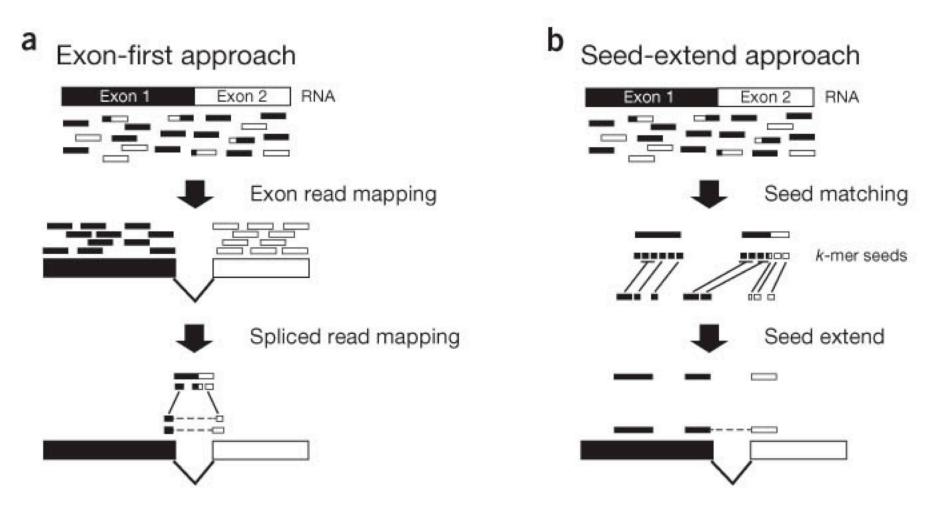
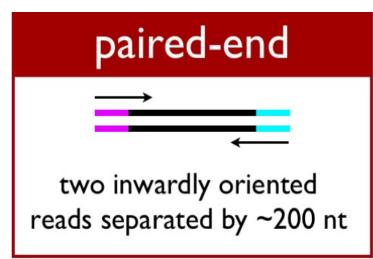
Spliced mapping

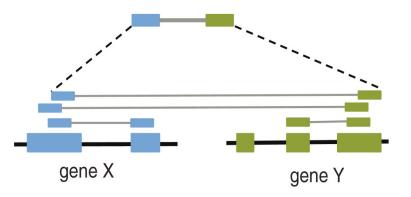
- Needed for quantifying and identifying splice variants from RNA Seq data.
- Tools:
 - HISAT2
 - STAR
 - Tophat
 - SpliceMap
 - MapSplice
 - -RUM

Mapping to genome

Trapnell, C. & Salzberg, S. L. How to map billions of short reads onto genomes. *Nature Biotech.* **27**, 455–457 (2009).

Spliced mapping

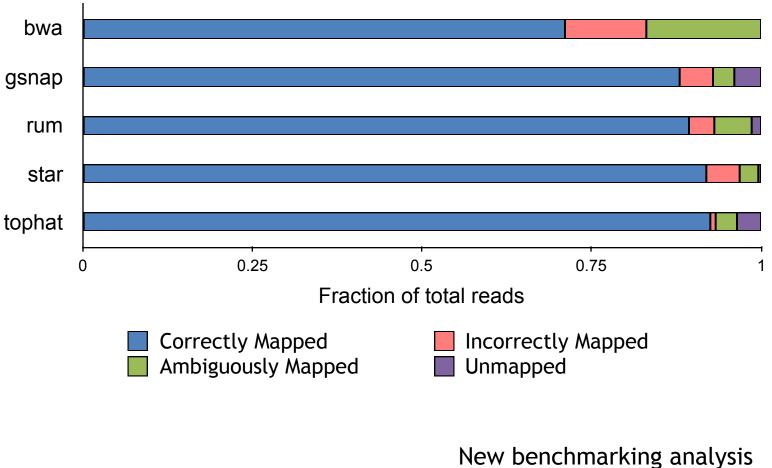




Figure : Garber et al, Nature Methods, 2011

Paired end mapping

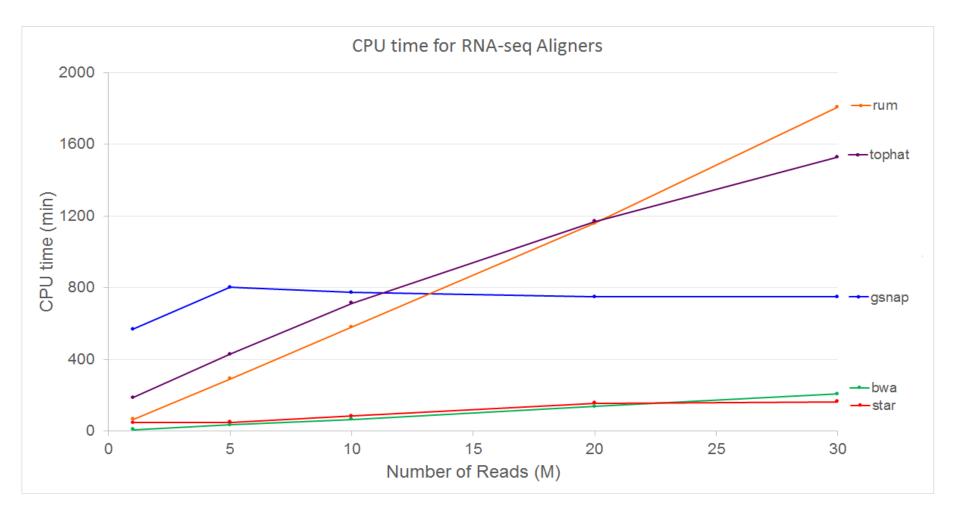
- Pairs map with expected insert size.
- One part of the pair, after mapping, is the anchor for the next read's mapping.

PAIRED END READ MAPPING IS VERY HELPFUL IN RNA SEQ!!


http://genomebiology.com/content/12/1/R6

Mapping Quality

- Mapping quality is the probability that a read is aligned to the wrong place.
 p= 10** (-q/10)
- BWA mapping quality calculated by considering:
 - Repeat structure of reference
 - Read alignment quality (mismatches etc)
 - Number of mappings
 - BWA will assign a mapping quality of 0 to reads that mapped equally well to multiple places


Mappers comparisons

Accuracy Performance of Aligners

performed by Raghav Shroff

Mappers comparison

New benchmarking analysis performed by **Raghav Shroff**

SAM file format

- Alignment results generated in Sequence Alignment/Map format
- Tab delimited, with fixed columns followed by user-extendable key:data values.
- Most mappers also output unmapped reads in SAM file.
- SAMTOOLS toolkit to manipulate, parse SAM files.

SAM File Format

SAM fixed fields:

http://samtools.sourceforge.net/

Col	Field	Type	${ m Regexp}/{ m Range}$	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	Int	$[0,2^{16}-1]$	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	\mathbf{Int}	$[0, 2^{29}-1]$	1-based leftmost mapping POSition
5	MAPQ	\mathbf{Int}	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next segment
8	PNEXT	Int	$[0, 2^{29}-1]$	Position of the mate/next segment
9	TLEN	Int	$[-2^{29}+1, 2^{29}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

SRR030257.264529 99 NC_012967 1521 29 34M2S = 1564 79 CTGGCCATTATCTCGGTGGTAGGACATGGCATGCCC AAAAAA;AA;AAAAAA??A%.;?&'3735',()0*, XT:A:M NM:i:3 SM:i:29 AM:i:29 XM:i:3 XO:i:0 XG:i:0 MD:Z:23T0G4T4

CIGAR score

Ref CTGGCCATTATCTC--GGTGGTAGGACATGGCATGCCC! Read aaATGTCGCGGTG.TAGGAggatcc!

2S5M2I4M1D4M6S

	Op	BAM	Description	
	М	0	alignment match (can be a sequence match or mismatch)	
	I	1	insertion to the reference	
	D	2	deletion from the reference	
*	Ν	3	skipped region from the reference	
	S	4	soft clipping (clipped sequences present in SEQ)	
*	Н	5	hard clipping (clipped sequences NOT present in SEQ)	
*	Р	6	padding (silent deletion from padded reference)	
*	=	7	sequence match *Rarer / newer	
*	X	8	sequence mismatch	

CIGAR = "Concise Idiosyncratic Gapped Alignment Report"

BAM format

• SAM files are converted to BAM format through SAMTOOLS command:

• samtools view -b -S samfile > bamfile

- BAM file is binary format.
- BAM file is compressed.
- BAM files are usually what you need for post mapping analysis and visualization.

TAKEAWAYS

- Unspliced mapper-
 - Most suited for mapping to transcriptome
 - Example: BWA
- Spliced mapper-
 - Most suited for mapping to genome
 - Example: Hisat2, Star
- Mapping output
 - SAM File: tab-delimited file
 - Filter SAM file, Assess mapping stats

SAM FILE FLAGS EXPLAINED

QNAME SRR035022.2621862 FLAG 163

The QNAME is the query name. For the FLAG of 163 we transform this into a binary string: 10100011. So accordingly to the flag table:

Flag	Description		
0x0001	the read is paired in sequencing, no matter whether it is mapped in a pair		
0x0002	the read is mapped in a proper pair (depends on the protocol, normally inferred during alignment) ¹		
0x0004	the query sequence itself is unmapped		
0x0008	the mate is unmapped ¹		
0x0010	strand of the query (0 for forward; 1 for reverse strand)		
0x0020	strand of the mate 1		
0x0040	the read is the first read in a pair 1,2		
0x0080	the read is the second read in a pair 1,2		
0x0100	the alignment is not primary (a read having split hits may have multiple primary alignment records)		
0x0200	the read fails platform/vendor quality checks		
0x0400	the read is either a PCR duplicate or an optical duplicate		

- 1 the read is paired in sequencing, no matter whether it is mapped in a pair
- 1 the read is mapped in a proper pair
- 0 not unmapped

- 0 mate is not unmapped
- 0 forward strand
- 1 mate strand is negative
- 0 the read is not the first read in a pair
- 1 the read is the second read in a pair