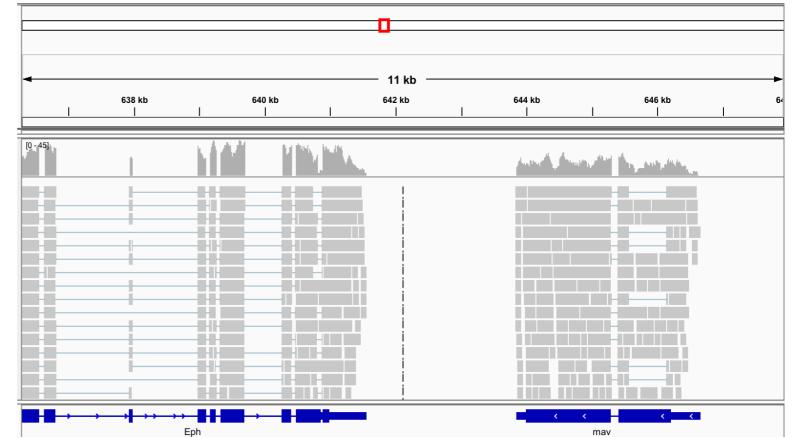
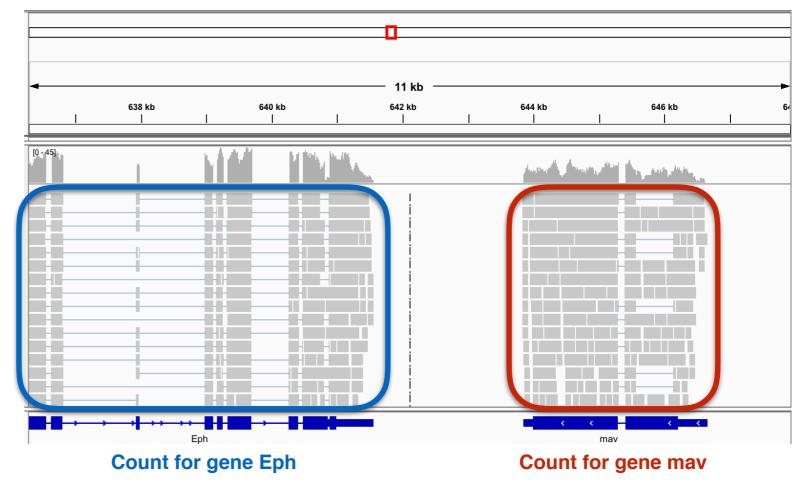
Expression Quantification and Differential Expression Analysis

How do we analyze RNA-Seq data?

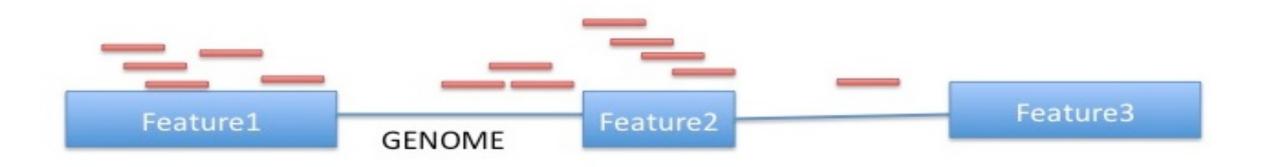

- **STEP 1**: EVALUATE AND MANIPULATE RAW DATA
- **STEP 2**: MAP TO REFERENCE, ASSESS RESULTS

Optional


- **STEP 3**: ASSEMBLE TRANSCRIPTS
- **STEP 4**: QUANTIFY EXPRESSION
- **STEP 5**: TEST FOR DIFFERENTIAL EXPRESSION
- **STEP 6**: VISUALIZE AND PERFORM OTHER DOWNSTREAM ANALYSIS

 Quantify expression=gene counting=transcript counting

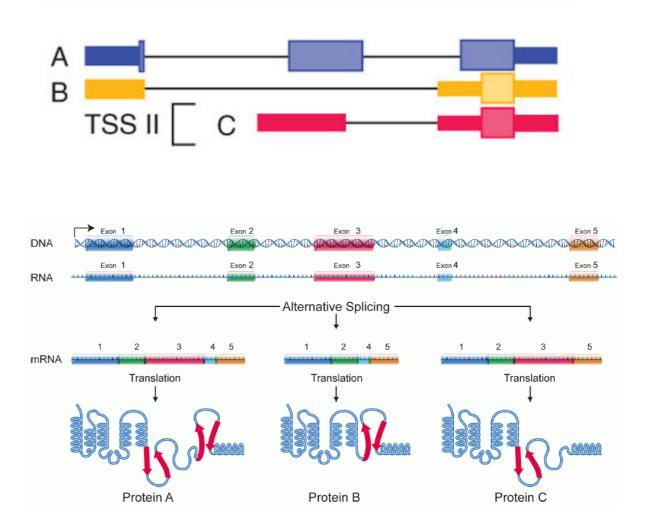
- Mapping tells us where every read came from.
- How do we go from that to gene expression?
 - What genes are expressed?
 - What is the expression level for each gene/gene isoform?



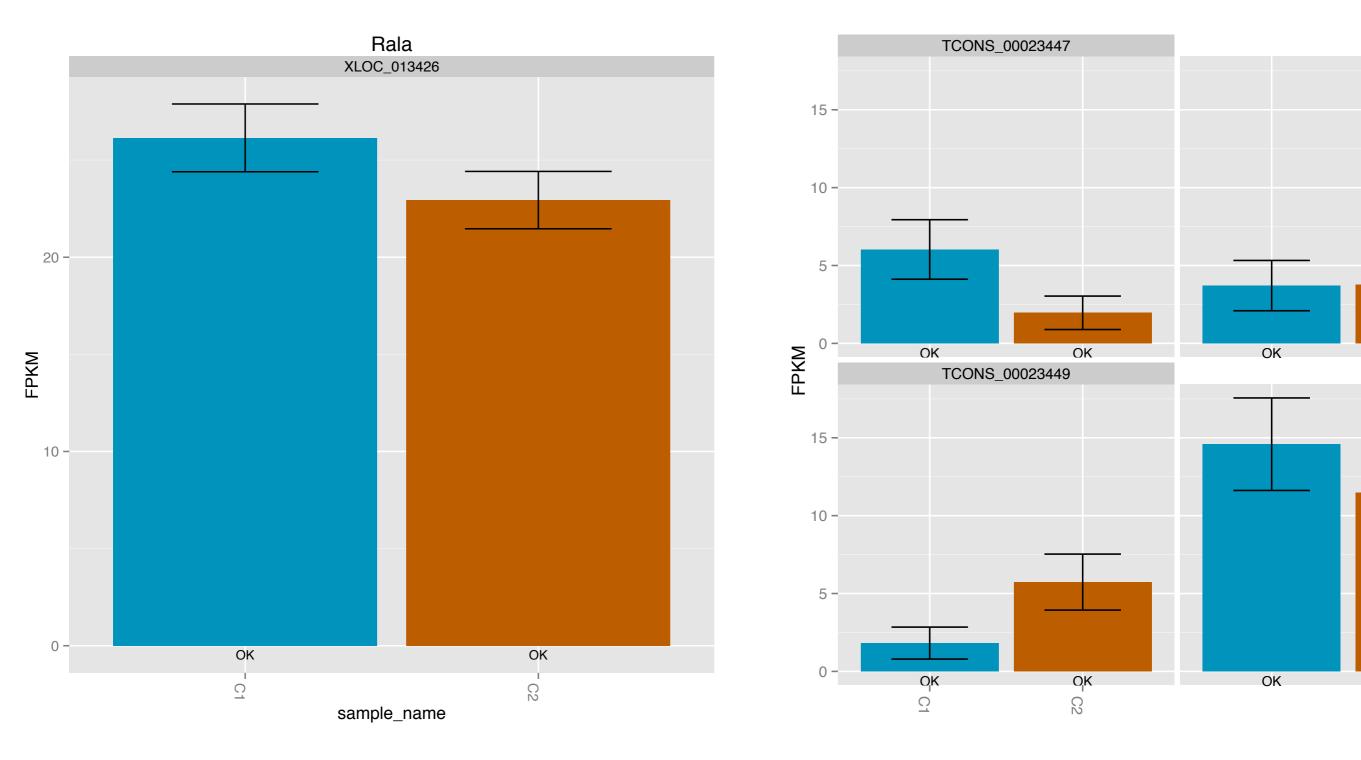

- What is gene expression?
 - A gene is expressed when it's corresponding DNA sequence is transcribed into mRNA (for translation into protein).
- What is gene expression level?
 - The amount of mRNA detected in a sample.

Read depth= mRNA amount= expression level of gene

- Bedtools
 - Bedtools multicov : Takes a feature file (GFF/GTF) and counts how many reads in the mapped output file (BAM) overlap the features.
 - Remember that the chromosome names in your gff file should match the chromosome names in the reference fasta file used in the mapping step.


HTSeq –

Gives you fine grained control over how to count genes, especially when a read overlaps more than one gene/feature.


- Quantifying a gene is simpler than quantifying its different isoforms/ transcripts.
- Tools: kallisto, stringtie, and cufflinks

What is a gene? What is a transcript?

A gene can have multiple transcripts!

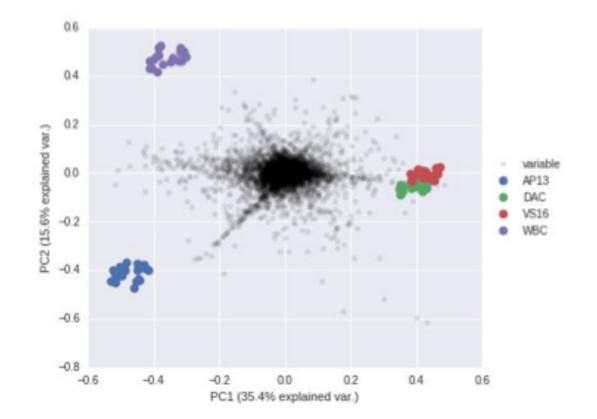
Why quantifying all transcripts of the gene may be important?

STEP 4.5- Remove Low Count Genes

• Input: Gene Expression Matrix

				10.00				and some	1000			222023
Ensembl	Gene.Name	T1	T2	T3	T4	T5	WT1	WT2	WT3	WT4	WT5	WT
ENSMUSG0000000134	Tfe3	312	295	333	258	392	257	344	223	423	277	38
ENSMUSG0000000142	Axin2	165	171	138	166	203	170	172	119	203	147	17
ENSMUSG0000000148	Brat1	213	196	207	224	350	204	268	143	300	177	28
ENSMUSG0000000149	Gna12	684	684	613	545	900	496	672	426	1023	583	79
ENSMUSG000000154	Sic22a18	3	2	3	2	2	3	3	2	1	1	
ENSMUSG0000000157	Itgb2I	0	0	0	0	0	0	0	0	0	0	
ENSMUSG0000000159	lgsf5	0	0	0	0	0	0	0	0	0	0	
ENSMUSG000000167	Pih1d2	15	19	6	10	9	5	5	5	7	6	
ENSMUSG0000000168	Dlat	899	777	967	756	1116	777	1047	614	1155	894	112
ENSMUSG0000000171	Sdhd	1055	1003	1047	914	1430	939	1192	766	1390	916	141
ENSMUSG000000182	Fgf23	1	0	3	1	0	2	0	2	2	0	
ENSMUSG000000183	Fgf6	0	0	0	0	0	0	0	1	0	0	
ENSMUSG0000000184	Ccnd2	1961	1978	1804	1779	2090	1655	2148	1585	2504	1895	227
ENSMUSG0000000194	Gpr107	784	733	667	615	889	654	818	483	1034	627	101
ENSMUSG0000000197	Nalch	1120	1009	1047	917	1356	1129	1202	758	1625	1127	104

Image from babelomics

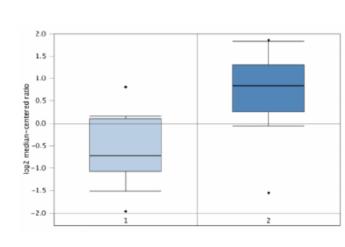

- Output: Gene expression matrix with fewer number of rows
 - Filter out zero count genes
 - Filter out genes with low mean expression
 - Filter out genes with low variance in expression

STEP 4.5- Perform global visualizations

• Input: Gene Expression Matrix

ne		¥										
Ensembl	Gene.Name	п	T2	Т3	Т4	T5	WT1	WT2	WT3	WT4	WT5	WT
ENSMUSG0000000134	Tfe3	312	295	333	258	392	257	344	223	423	277	38
ENSMUSG0000000142	Axin2	165	171	138	166	203	170	172	119	203	147	17
ENSMUSG0000000148	Brat1	213	196	207	224	350	204	268	143	300	177	28
ENSMUSG0000000149	Gna12	684	684	613	545	900	496	672	426	1023	583	79
ENSMUSG0000000154	Slc22a18	3	2	3	2	2	3	3	2	1	1	
ENSMUSG0000000157	Itgb2I	0	0	0	0	0	0	0	0	0	0	
ENSMUSG0000000159	lgsf5	0	0	0	0	0	0	0	0	0	0	
ENSMUSG0000000167	Pih1d2	15	19	6	10	9	5	5	5	7	6	
ENSMUSG0000000168	Dlat	899	777	967	756	1116	777	1047	614	1155	894	112
ENSMUSG0000000171	Sdhd	1055	1003	1047	914	1430	939	1192	766	1390	916	141
ENSMUSG000000182	Fgf23	1	0	3	1	0	2	0	2	2	0	
ENSMUSG000000183	Fgf6	0	0	0	0	0	0	0	1	0	0	
ENSMUSG0000000184	Ccnd2	1961	1978	1804	1779	2090	1655	2148	1585	2504	1895	227
ENSMUSG0000000194	Gpr107	784	733	667	615	889	654	818	483	1034	627	101
ENSMUSG0000000197	Nalch	1120	1009	1047	917	1356	1129	1202	758	1625	1127	104

 PCA of the top 20% genes to find the biggest sources of variation in the data

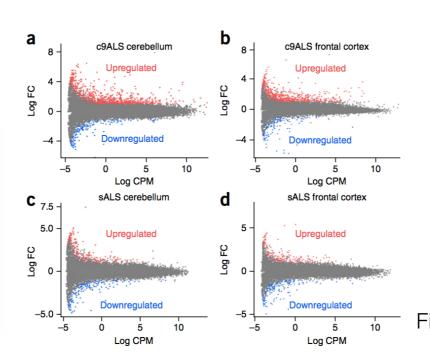


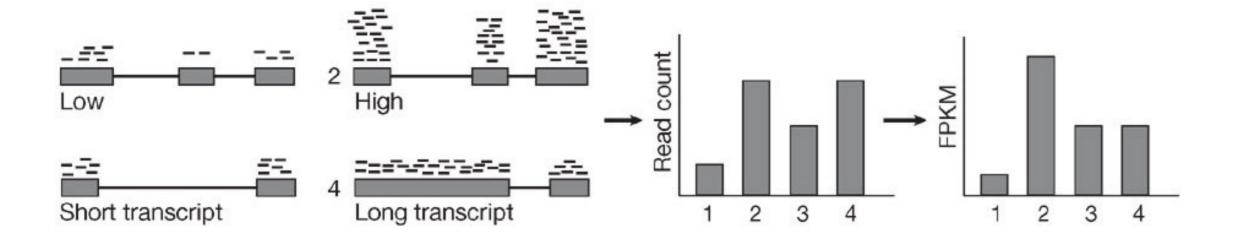
• Input: Gene Expression Matrix

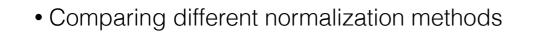
		-										
Ensembl	Gene.Name	T1	T2	T3	T4	T5	WT1	WT2	WT3	WT4	WT5	WT
ENSMUSG0000000134	Tfe3	312	295	333	258	392	257	344	223	423	277	389
ENSMUSG0000000142	Axin2	165	171	138	166	203	170	172	119	203	147	178
ENSMUSG0000000148	Brat1	213	196	207	224	350	204	268	143	300	177	288
ENSMUSG0000000149	Gna12	684	684	613	545	900	496	672	426	1023	583	797
ENSMUSG0000000154	Slc22a18	3	2	3	2	2	3	3	2	1	1	-
ENSMUSG0000000157	Itgb2I	0	0	0	0	0	0	0	0	0	0	(
ENSMUSG0000000159	lgsf5	0	0	0	0	0	0	0	0	0	0	(
ENSMUSG0000000167	Pih1d2	15	19	6	10	9	5	5	5	7	6	6
ENSMUSG0000000168	Diat	899	777	967	756	1116	777	1047	614	1155	894	1120
ENSMUSG0000000171	Sdhd	1055	1003	1047	914	1430	939	1192	766	1390	916	1412
ENSMUSG0000000182	Fgf23	1	0	3	1	0	2	0	2	2	0	(
ENSMUSG0000000183	Fgf6	0	0	0	0	0	0	0	1	0	0	(
ENSMUSG0000000184	Ccnd2	1961	1978	1804	1779	2090	1655	2148	1585	2504	1895	2274
ENSMUSG0000000194	Gpr107	784	733	667	615	889	654	818	483	1034	627	1015
ENSMUSG0000000197	Nalch	1120	1009	1047	917	1356	1129	1202	758	1625	1127	104

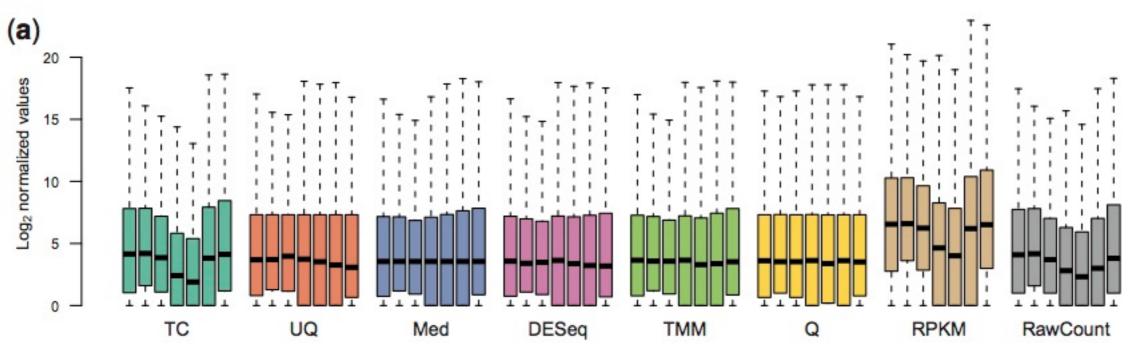
Image from babelomics

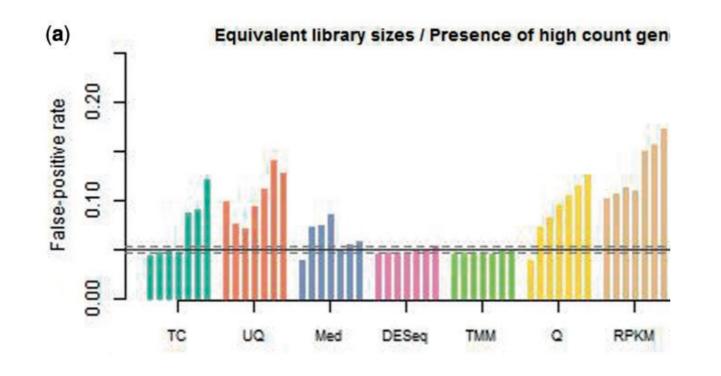
• Outputs like:




Figure: doi:10.1038/nn.4065


- Testing for differential expression involves these steps:
 - Normalization of gene counts
 - Represent the gene counts by a distribution that defines the relation between mean and variance (dispersion).
 - Perform a statistical test for each gene to compare the distributions between conditions.
 - Null hypothesis: For gene x, there is no difference in distributions between conditions.
 - Alternate hypothesis: For gene x, there is a difference in distributions between conditions.
 - Provide fold change, P-value information, false discovery rate for each gene.


• After mapping and quantifying the genes for each sample:


factors (DESeg2 R package)

 compare gene counts across samples/conditions. 	Gene	Read Count
But first, normalize!	ABAR1	1200
 Normalization evens out the technical variations so that any variation you see between samples is "hopefully" due to real biological reasons. 	ATXN1	1345
Normalize for read depth differences	ATXN2	2
Normalize for gene/transcript length differences	BRAT2	0
 RPKM = Reads Per Kilobase of transcript per Million mapped reads 	GABA	24
 RPK= No.of Mapped reads/ length of transcript in kb (transcript length/1000) 	GABRA2	456
 RPKM = RPK/total no.of reads in million (total no of reads/ 1000000) 	GABRA4	45345
 Other normalization methods: upper quartile, median read count and more complicated scaling 		

From: Dillies A et al, A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis, doi:10.1093/bib/bbs046.

- Even before normalization, you may want to filter out genes with low counts.
- Remove genes with less than 1 count in most samples.

ne	5	Sampl	е									
ie		ŧ										
Ensembl	Gene.Name	T1	T2	Т3	T4	T5	WT1	WT2	WT3	WT4	WT5	WT
ENSMUSG0000000134	Tfe3	312	295	333	258	392	257	344	223	423	277	38
ENSMUSG0000000142	Axin2	165	171	138	166	203	170	172	119	203	147	17
ENSMUSG0000000148	Brat1	213	196	207	224	350	204	268	143	300	177	28
ENSMUSG0000000149	Gna12	684	684	613	545	900	496	672	426	1023	583	79
ENSMUSG0000000154	Slc22a18	3	2	3	2	2	3	3	2	1	1	
ENSMUSG0000000157	Itgb2I	0	0	0	0	0	0	0	0	0	0	(
ENSMUSG0000000159	lgsf5	0	0	0	0	0	0	0	0	0	0	(
ENSMUSG0000000167	Pih1d2	15	19	6	10	9	5	5	5	7	6	1
ENSMUSG0000000168	Diat	899	777	967	756	1116	777	1047	614	1155	894	112
ENSMUSG0000000171	Sdhd	1055	1003	1047	914	1430	939	1192	766	1390	916	1412
ENSMUSG0000000182	Fgf23	1	0	3	1	0	2	0	2	2	0	(
ENSMUSG0000000183	Fgf6	0	0	0	0	0	0	0	1	0	0	
ENSMUSG0000000184	Ccnd2	1961	1978	1804	1779	2090	1655	2148	1585	2504	1895	227
ENSMUSG0000000194	Gpr107	784	733	667	615	889	654	818	483	1034	627	101
ENSMUSG0000000197	Nalch	1120	1009	1047	917	1356	1129	1202	758	1625	1127	104

 Remove genes with very low variance across samples.

 Methods differ in how they normalize, what statistical test they use etc.

	DESeq2	edgeR	DEXSeq	Cuffdiff
Normalization	Median scaling size factor	ТММ	Median scaling size factor	FPKM , but also has provisions for others
Distribution	Negative binomial	Negative binomial	Negative binomial	Negative binomial
DE Test	Negative binomial test	Fisher exact test	Modified T test	T test
Advantages	Straightforward, fast, DESeq2 allows for complicated study designs, with multiple factors	Straightforward, fast, good with small number of replicates.	Good for identifying exon-usage changes	Good for identifying isoform-level changes, splicing changes, promotor changes. Not as straightforward, somewhat of a black box

Gene

- Output from differential expression testing is usually a table with the following values for every gene:
 - Log2 Fold change: Ratio of expression in condition1/ expression in condition 2
 - P value: Probability of finding a difference in means equal to or higher than observed when null hypothesis is true
- Corrected P value/FDR: Multiple testing corrected Pvalue

Ensembl	Gene.Name
ENSMUSG0000000134	Tfe3
ENSMUSG0000000142	Axin2
ENSMUSG0000000148	Brat1
ENSMUSG0000000149	Gna12
ENSMUSG0000000154	Slc22a18
ENSMUSG0000000157	Itgb2I
ENSMUSG0000000159	lgsf5
ENSMUSG0000000167	Pih1d2
ENSMUSG0000000168	Diat
ENSMUSG0000000171	Sdhd
ENSMUSG0000000182	Fgf23
ENSMUSG0000000183	Fgf6
ENSMUSG0000000184	Ccnd2
ENSMUSG0000000194	Gpr107
ENSMUSG0000000197	Nalch

S