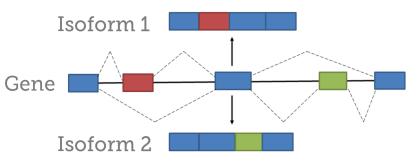

Introduction to RNA-Seq


Dhivya Arasappan Research Scientist, CCBB

(With some slides borrowed from Scott Hunicke-Smith and Jeff Barrick)

The Purpose of RNA-Seq

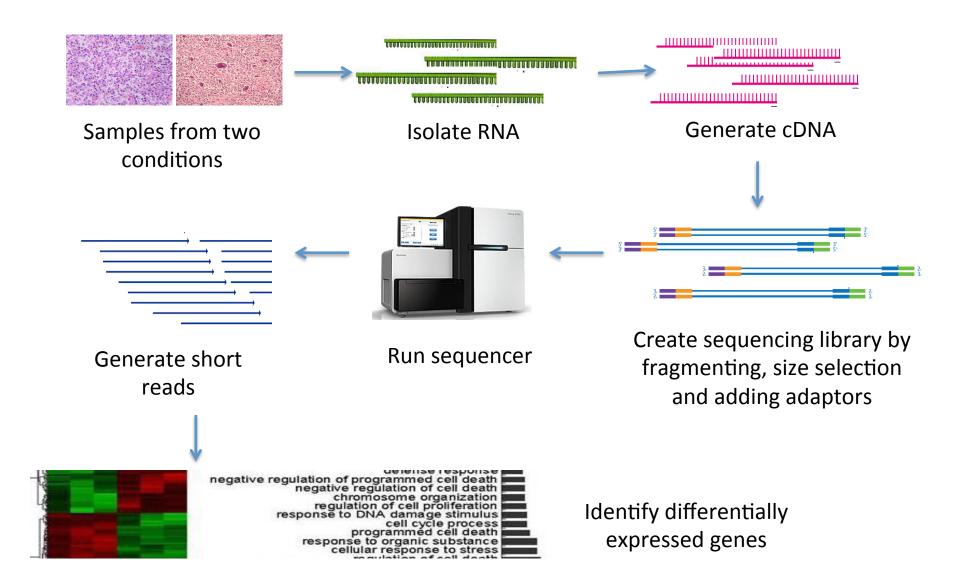
- Genes expression patterns vary in:
 - Tissue types
 - Cell types
 - Development stages
 - Disease conditions
 - Time points

- RNA-Seq measures these expression variations using highthroughput sequencing technologies.
- Additionally, RNA-Seq allows detection of novel transcripts.

Advantages of RNA-Seq

Technology	Tiling microarray	RNA-Seq	
Technology specifications			
Principle	Hybridization	High-throughput sequencing	
Resolution	From several to 100 bp	Single base	
Throughput	High	High	
Reliance on genomic sequence	Yes	In some cases	
Background noise	High	Low	
Application			
Simultaneously map transcribed regions and gene expression	Yes	Yes	
Dynamic range to quantify gene expression level	Up to a few-hundredfold	>8,000-fold	
Ability to distinguish different isoforms	Limited	Yes	
Ability to distinguish allelic expression	Limited	Yes	
Practical issues			
Required amount of RNA	High	Low	
Cost for mapping transcriptomes of large genomes	High	Relatively low	

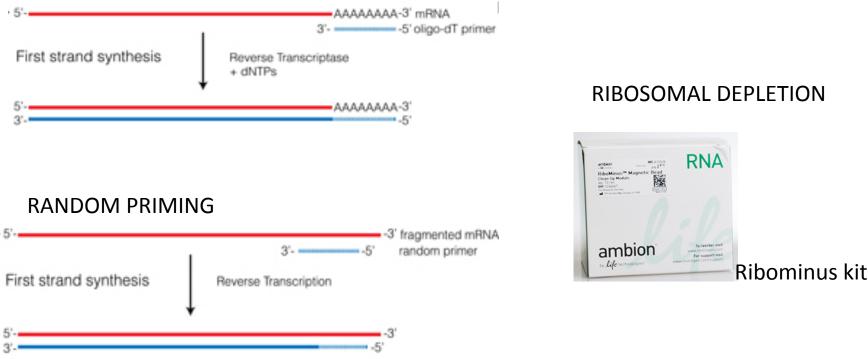
RNA-Seq: a revolutionary tool for transcriptomics

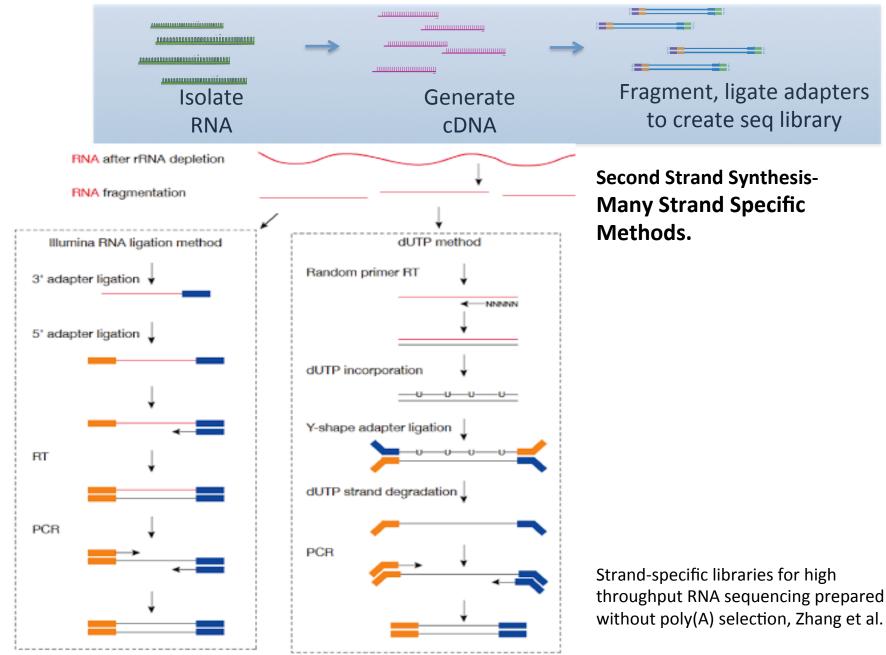

Zhong Wang, Mark Gerstein, and Michael Snyder

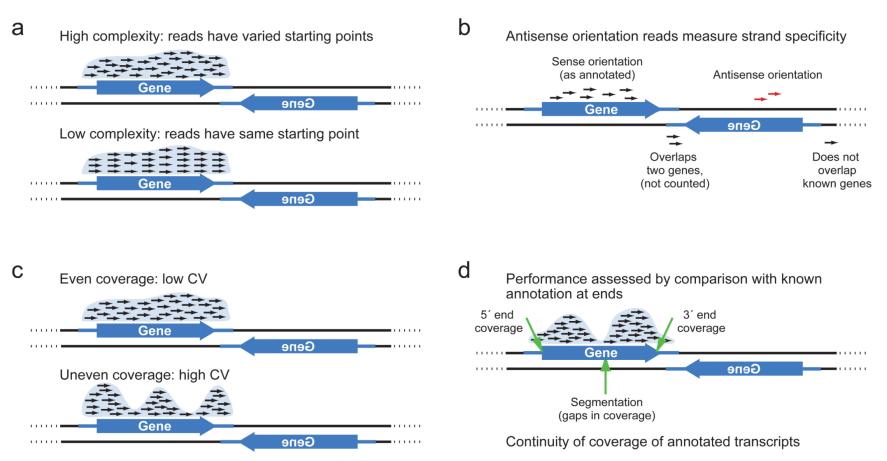
Nat Rev Genet. 2009 January ; 10(1): 57–63. doi:10.1038/nrg2484.

What are your questions ?

- This determines how you analyze the data.
- What are you looking for?
 - Novel transcripts, junctions?
 - Differential Gene expression?
 - Differential exon level counts?
 - Differential regulation?
 - Differential splicing?


RNA-Seq... at it's Most Basic Form


RNA-Seq Libraries... with More Details


POLYA ENRICHMENT

RNA-Seq Libraries... with More Details

Comparing Stranded RNA-Seq Library Protocols

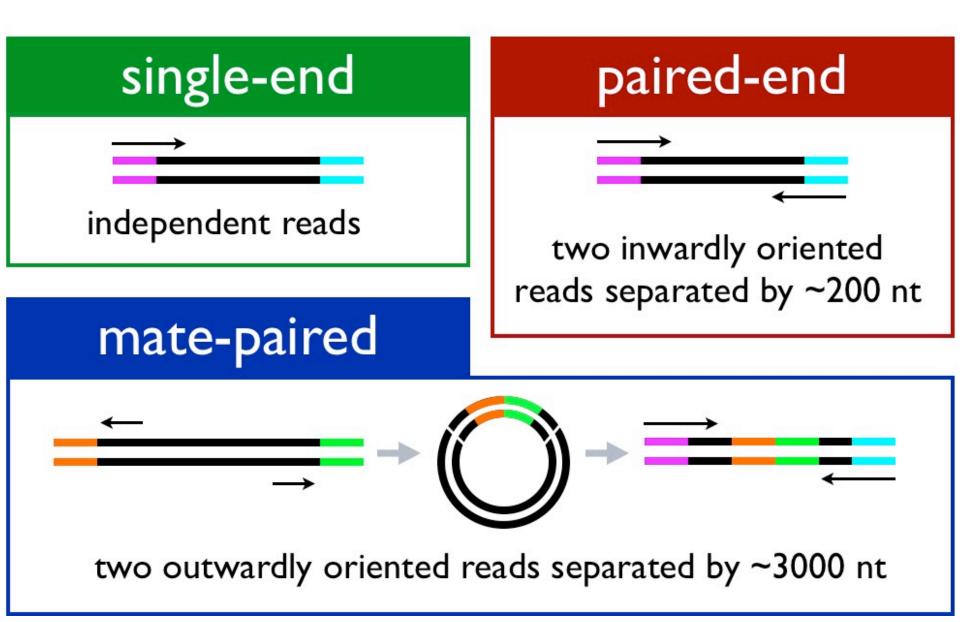
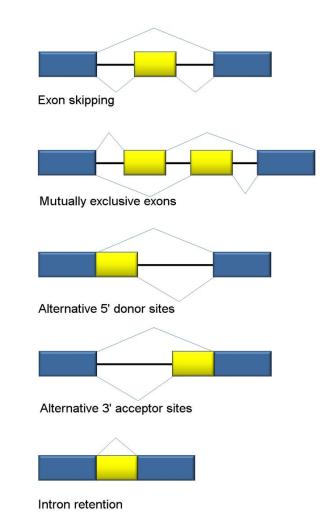


Figure 2. Key criteria for evaluation of strand-specific RNAseq libraries

Four categories of quality assessment. Double stranded genome (black parallel lines), with Gene ORF orientation (thick blue arrow) and UTRs (thin blue line), along with mapped reads (short black arrows – reads mapped to sense strand; red – reads mapped to antisense strand). (a) Complexity. (b) Strand Specificity. (c) Evenness of coverage. (d) Comparison to known transcript structure..


Comprehensive comparative analysis of strand-specific RNA sequencing methods, Levin et al, 2010

Types of Illumina Fragment Libraries

Why is RNA-Seq Difficult?

- Biases may mean what we are seeing is not reflective of true state of the transcriptome.
- Ugh, splicing!
- Gene level, exon level?
- Multimapping, partial mapping,, not mapping.
- Normalization issues
 - some datasets are larger than others, some genes are larger than others

Illumina Fastq file

FASTQ Format

@HWI-EAS216_91209:1:2:454:192#0/1
GTTGATGAATTTCTCCAGCGCGAATTTGTGGGCT
+HWI-EAS216_91209:1:2:454:192#0/1
B@BBBBBB@BBBBBAAA>@AABA?BBBBAAB??>A?

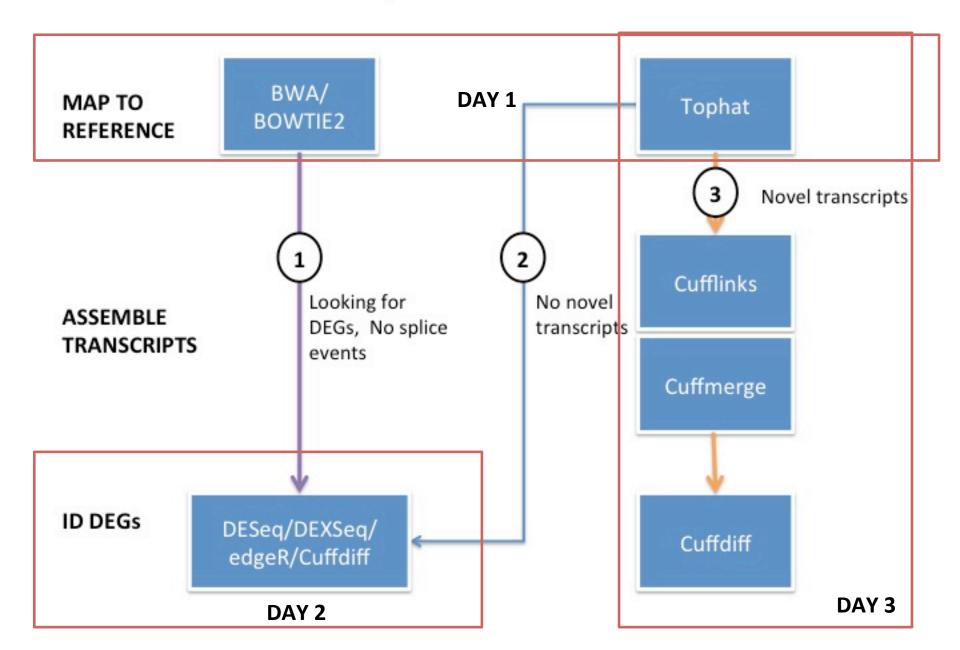
- Line 1: @read name
- Line 2: called base sequence
- Line 3: +read name (optional after +)
- Line 4: base quality scores

Illumina Base Quality Scores

	http://www.asciitable.com/ !"#\$%&'()*+,/0123456789:;<=>?@ABCDEFGHI				
Quality character					
ASCII Value	33	43	53	63	73
Base Quality (Q)	0	10	20	30	40

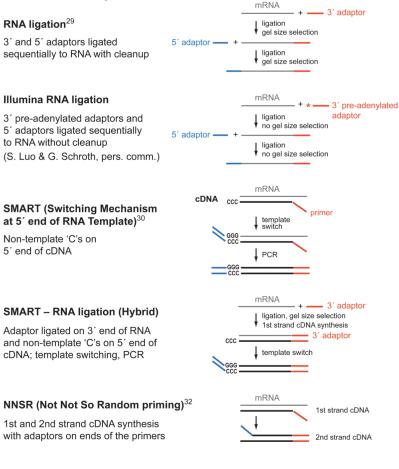
Probability of Error = $10^{-Q/10}$

(This is a **Phred** score, also used for other types of qualities.)


Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%

Quality scores are ASCII encoded in fastq files. Different platforms/older sequencing data can have different encoding! Illumina HiSeq 2500 produces Sanger encoded data. Phred +33 =ASCII

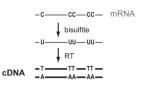
How do we analyze RNA-Seq data?

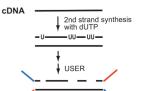

- ALIGN READS
- ASSEMBLE TRANSCRIPTS
- QUANTIFY TRANSCRIPTS
- TEST FOR DIFFERENTIAL EXPRESSION
- VISUALIZE
- DOWNSTREAM ANALYSIS

RNA-SEQ ANALYSIS PIPELINES

Class	Category	Package	Notes	Uses	Input
Read mapping					-
Unspliced Seed me aligners ^a Burrows	Seed methods	Short-read mapping package (SHRiMP) ⁴¹	Smith-Waterman extension	Aligning reads to a reference transcriptome	Reads and reference transcriptome
		Stampy ³⁹	Probabilistic model		
	Burrows-Wheeler	Bowtie ⁴³			
	transform methods	BWA ⁴⁴	Incorporates quality scores		
	Exon-first methods	MapSplice ⁵²	Works with multiple unspliced	Aligning reads to a reference genome. Allows for the identification of novel splice junctions	Reads and reference genome
		SpliceMap ⁵⁰	aligners		
		TopHat ⁵¹	Uses Bowtie alignments		
	Seed-extend methods	GSNAP ⁵³	Can use SNP databases		
		QPALMA ⁵⁴	Smith-Waterman for large gaps		
Transcriptome re	econstruction				
Genome-guided	Exon identification	G.Mor.Se	Assembles exons	Identifying novel transcripts using a known reference	Alignments to reference genome
reconstruction	Genome-guided	Scripture ²⁸	Reports all isoforms		
	assembly	Cufflinks ²⁹	Reports a minimal set of isoforms	genome	
Genome-	Genome-independent	Velvet ⁶¹	Reports all isoforms	Identifying novel genes and	Reads
independent reconstruction	assembly	TransABySS ⁵⁶	transcript isoforms witho a known reference genon		
Expression quan	tification				
quantification	gene expression Normalization	Alexa-seq ⁴⁷	Quantifies using differentially included exons	Quantifying gene expression	Reads and transcript models
		Enhanced read analysis of gene expression (ERANGE) ²⁰	Quantifies using union of exons		
		Normalization by expected uniquely mappable area (NEUMA) ⁸²	Quantifies using unique reads		
	M. RM	Cufflinks ²⁹	Maximum likelihood estimation of relative isoform expression	Quantifying transcript isoform expression levels	Read alignments to isoforms
		MISO ³³			
		RNA-seq by expectaion maximization (RSEM) ⁶⁹			
Differential	Cuffdiff ²⁹	Uses isoform levels in analysis	Identifying differentially	Read alignments	
expression		DegSeq ⁷⁹	Uses a normal distribution	expressed genes or	and transcript models
		EdgeR ⁷⁷		transcript isoforms	
		Differential Expression analysis of count data (DESeq) ⁷⁸		Figure:	
				Carbaratal Nature	re Methods, 2011

a Differential Adaptor


b Differential Marking


Bisulfite^{15,16}

Convert 'C's to 'U's in RNA

dUTP 2nd strand¹³

2nd strand synthesis with dUTP, remove 'U's after adaptor ligation and size selection

Appendix

Page 10

Figure 1. Methods for strand-specific RNA-Seq

Salient details for seven protocols for strand-specific RNA-Seq, differential adaptor methods (a) and differential marking methods (b). mRNA is shown in grey, and cDNA in black. For differential adaptor methods, 5' adaptors are shown in blue, and 3' adaptors in red.