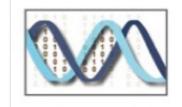
Introduction to NGS and RNA-Seq


Dhivya Arasappan

(With some slides borrowed from Scott Hunicke-Smith and Jeff Barrick)

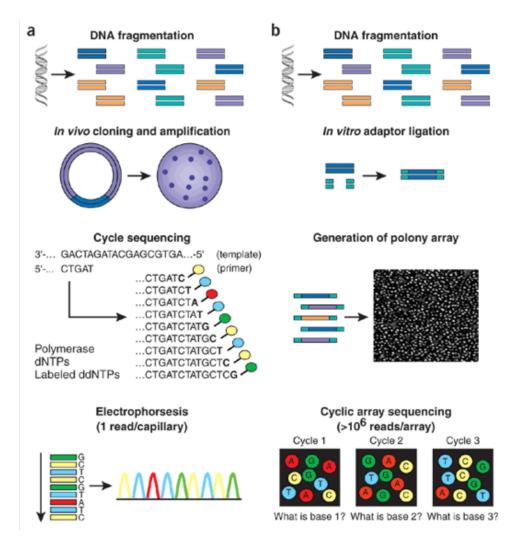
Some background

- Research scientistbioinformatician at CCBB.
 - RNA-Seq
 - Genome Assembly
 - Exome data analysis
 - Benchmarking of tools

- Training
 - Grad students, post-docs.
 - Undergraduate- FRI

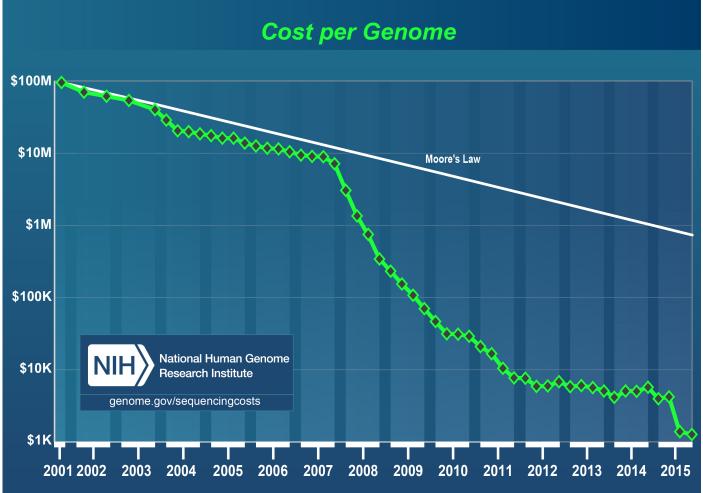
ССВВ

Center for Computtional Biology and Bioinformatics

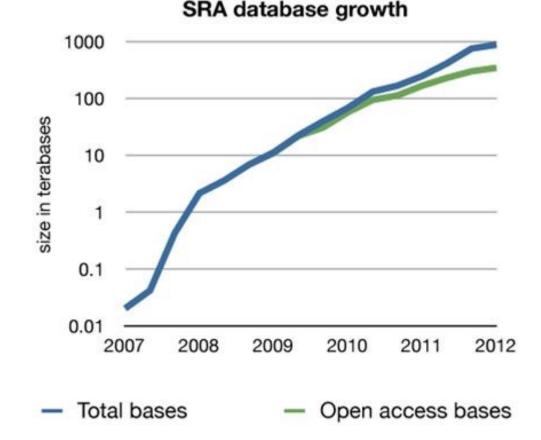


Setting General Expectations

- Lots of background and basics to provide comfort with terminology and key concepts.
- Exposure to commands and typically used analysis tools using an example RNA-Seq dataset.
 - No one 'best' or 'standard' tool.
- A starting point for you to design your RNA-Seq study or analyze your dataset.
- Slides for lectures, wiki for tutorials.

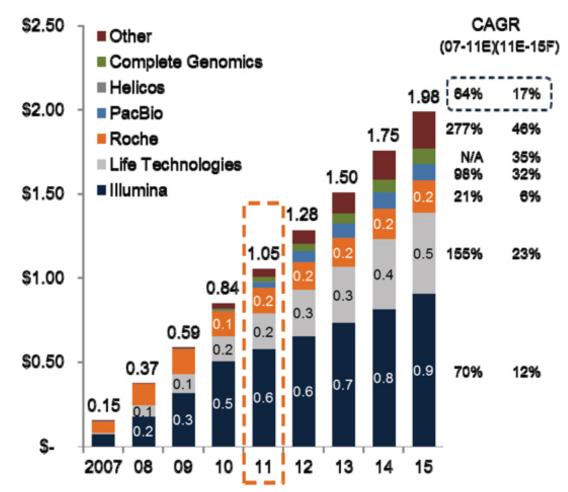

What is Next Generation(or) Second Generation Sequencing?

- Massively parallel sequencing
- The template DNA is attached to a cluster.
- Billions of clusters sequenced in parallel.
- 3-10 billion independent DNA fragments sequenced in one run.

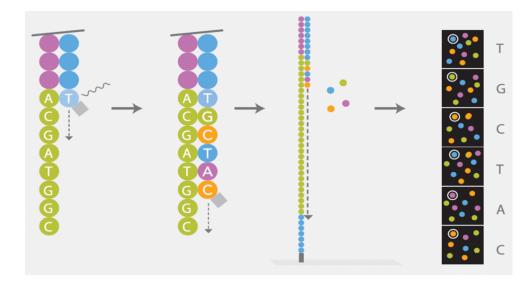

So, what's so great about second generation sequencing?

- + Sequence lots more, faster!
- + More cost effective.

So, what's NOT so great about second generation sequencing?

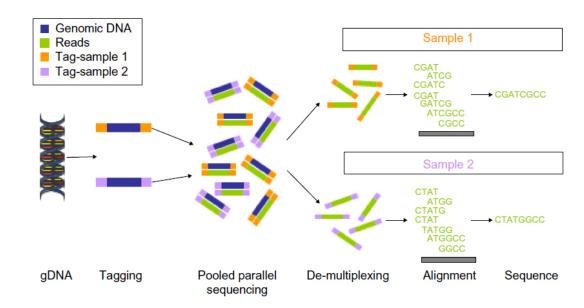

- Data deluge
- Bioinformaticians and computational biologists to the rescue!

Who are the players?


WWNGS market by competitor (2007-15F)*

Billions of dollars

How does the sequencer work?


- Library prep
- Cluster generation/
 amplification
- Sequencing by synthesis
- Done in parallel for billions clusters at once.
- Let's watch the official Illumina video.

http://www.cegat.de/

Multiplexing

- Sample specific Indexes/ Barcodes are attached to the DNA template.
- 6-8bp indexes/barcodes
- Data off the sequencer must first be demultiplexed to identify which reads belong to which sample.

https://doi.org/10.2147/BLCTT.S51503

Different Types of Illumina Sequencers

Illumina Specifications Table

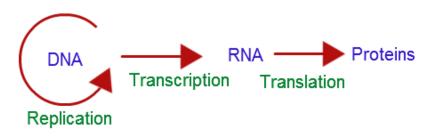
	HiSeq X Ten*	Hi Seq 2500		NextSeq 500		MiSeq	
		HT v4	HT v3	Rapid	High	Mid	
Total output	1.8 Tb	1 Tb	600 Gb	180 Gb	129 Gb	39 Gb	15 Gb
Run time	3 days	6 days	11 days	40 hrs	29 hrs	26 hrs	~65 hrs
Output/day	600 Gb	167 Gb	55 Gb	~110 gb	~100 Gb	~36 Gb	~5.5 Gb
Read length	2 X 150	2 X 125	2 X 100	2 X 150	2 X 150	2 X 150	2 X 300
# of single reads	6B	4B	3B	600M	400M	130M	25M
Instrument price	\$1M*	\$740K	\$740K	\$740K	\$250K	\$250K	\$125K
Run price	~\$12k	~\$29k	~\$26k	~\$8k	\$4k	?	~\$1.4k
\$/Gb	\$7	\$29	\$43	\$44	\$33	?	\$93

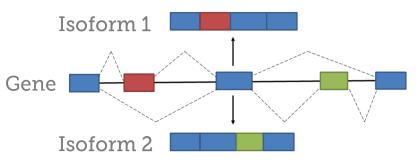
allseq.com/knowledgebank/sequencing-platforms/illumina

What are the Limations/Challenges?

- Amplification can cause problems.
 - Clusters are made by using PCR amplification.
- Reads are short
 - difficult to align, assemble.
 - too short to span long repeat regions.
 - Difficult to detect large structura variations like inversions.

Third generation sequencing


- Next, next generation sequencing?
- Single molecule sequencing- takes care of all above mentioned issues
- Much longer reads (1-100kb)
- Many issues- high error rate and expensive
- Two categories:
 - · Sequencing by synthesis (pacbio)
 - WATCH DNA as it is sequenced in realtime
 - ZMW technology lets smallest amount of light to be detected.
 - Direct sequencing
 - Oxford nanopore
 - Hydrogen ion changes ph in well. Change in ph indicates base has been incorporated.



by *life* technologies[™]

What is RNA-Seq?

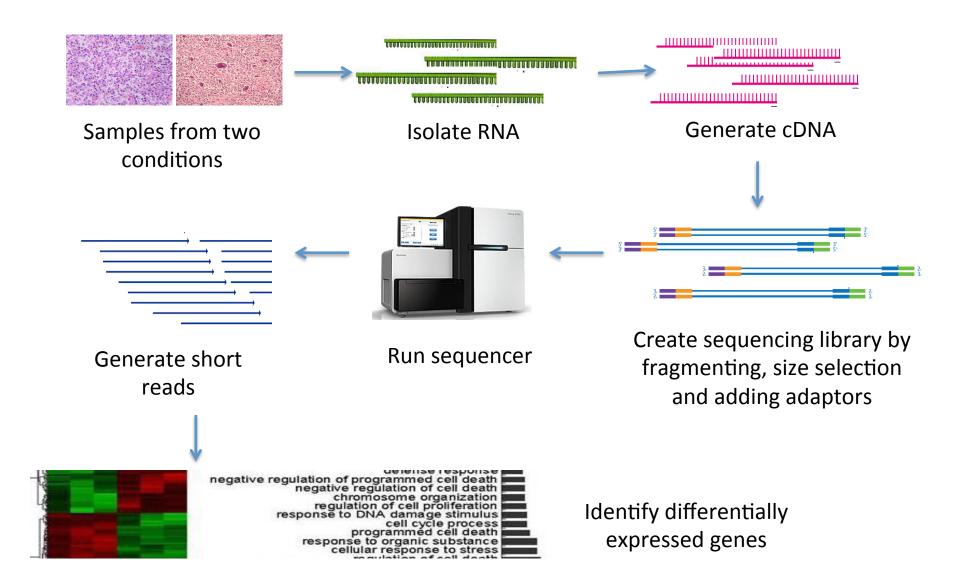
- Genes expression patterns vary in:
 - Tissue types
 - Cell types
 - Development stages
 - Disease conditions
 - Time points

- RNA-Seq measures these expression variations using highthroughput sequencing technologies.
- Additionally, RNA-Seq allows detection of novel transcripts.

Advantages of RNA-Seq

Technology	Tiling microarray	RNA-Seq
Technology specifications		
Principle	Hybridization	High-throughput sequencing
Resolution	From several to 100 bp	Single base
Throughput	High	High
Reliance on genomic sequence	Yes	In some cases
Background noise	High	Low
Application		
Simultaneously map transcribed regions and gene expression	Yes	Yes
Dynamic range to quantify gene expression level	Up to a few-hundredfold	>8,000-fold
Ability to distinguish different isoforms	Limited	Yes
Ability to distinguish allelic expression	Limited	Yes
Practical issues		
Required amount of RNA	High	Low
Cost for mapping transcriptomes of large genomes	High	Relatively low

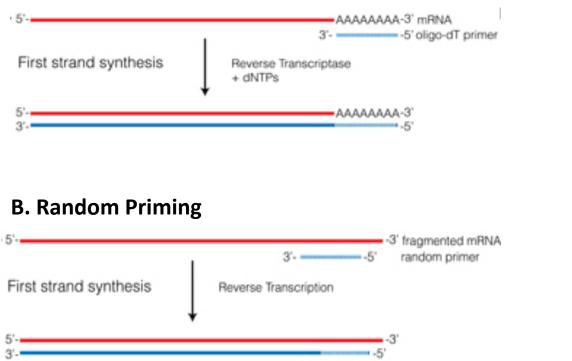
RNA-Seq: a revolutionary tool for transcriptomics


Zhong Wang, Mark Gerstein, and Michael Snyder

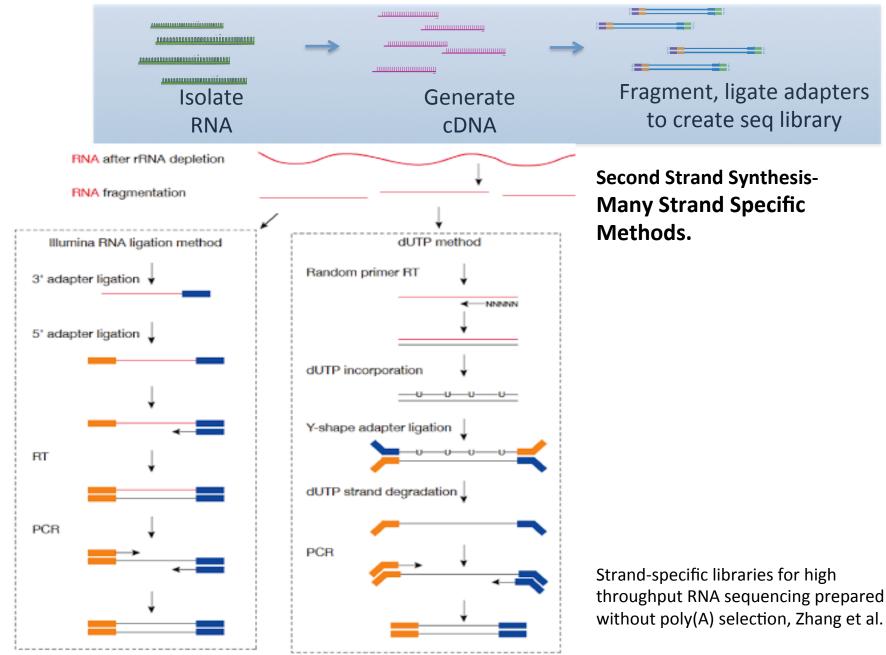
Nat Rev Genet. 2009 January ; 10(1): 57–63. doi:10.1038/nrg2484.

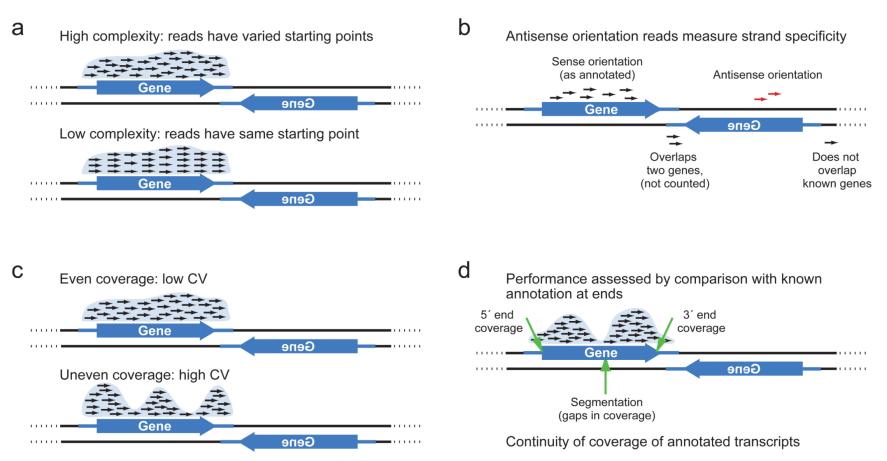
What are your questions ?

- This determines how you analyze the data.
- What are you looking for?
 - Novel transcripts, junctions?
 - Differential Gene expression?
 - Differential exon level counts?
 - Differential regulation?
 - Differential splicing?


RNA-Seq... at it's Most Basic Form

RNA-Seq Libraries... with More Details


A. Poly A Priming


C. rRNA Depletion

RNA-Seq Libraries... with More Details

Comparing Stranded RNA-Seq Library Protocols

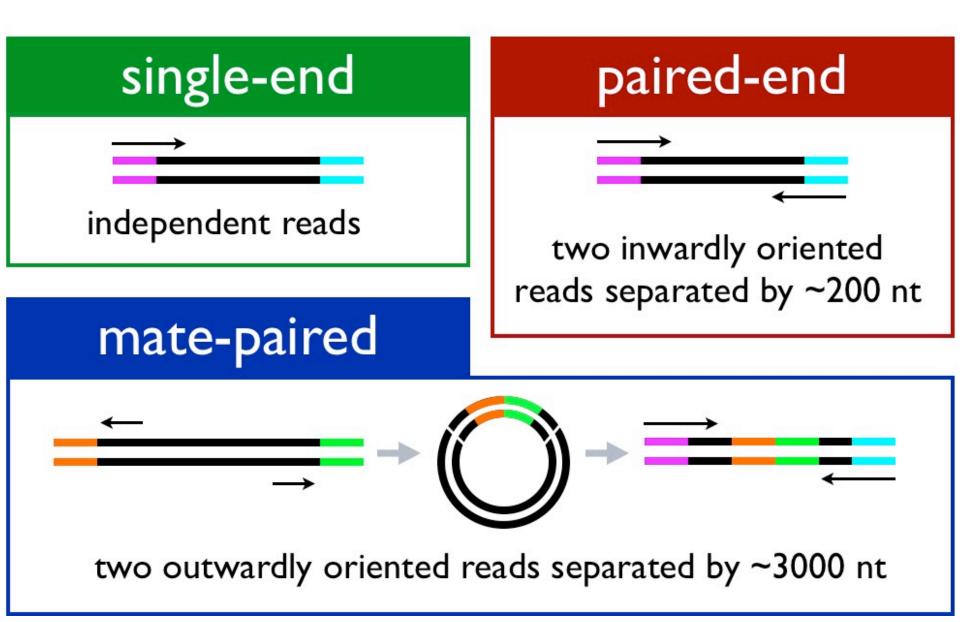
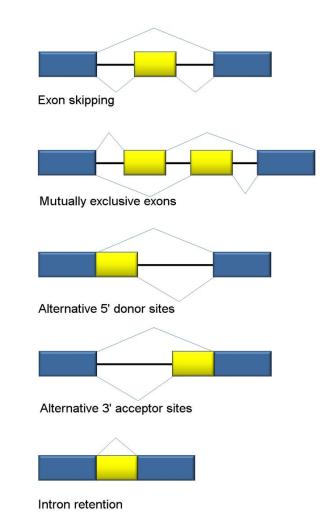


Figure 2. Key criteria for evaluation of strand-specific RNAseq libraries

Four categories of quality assessment. Double stranded genome (black parallel lines), with Gene ORF orientation (thick blue arrow) and UTRs (thin blue line), along with mapped reads (short black arrows – reads mapped to sense strand; red – reads mapped to antisense strand). (a) Complexity. (b) Strand Specificity. (c) Evenness of coverage. (d) Comparison to known transcript structure..


Comprehensive comparative analysis of strand-specific RNA sequencing methods, Levin et al, 2010

Types of Illumina Fragment Libraries

Why is RNA-Seq Difficult?

- Biases may mean what we are seeing is not reflective of true state of the transcriptome.
- Ugh, splicing!
- Gene level, exon level?
- Multimapping, partial mapping,, not mapping.
- Normalization issues
 - some datasets are larger than others, some genes are larger than others

Illumina Fastq file

FASTQ Format

@HWI-EAS216_91209:1:2:454:192#0/1
GTTGATGAATTTCTCCAGCGCGAATTTGTGGGCT
+HWI-EAS216_91209:1:2:454:192#0/1
B@BBBBBB@BBBBBAAA>@AABA?BBBBAAB??>A?

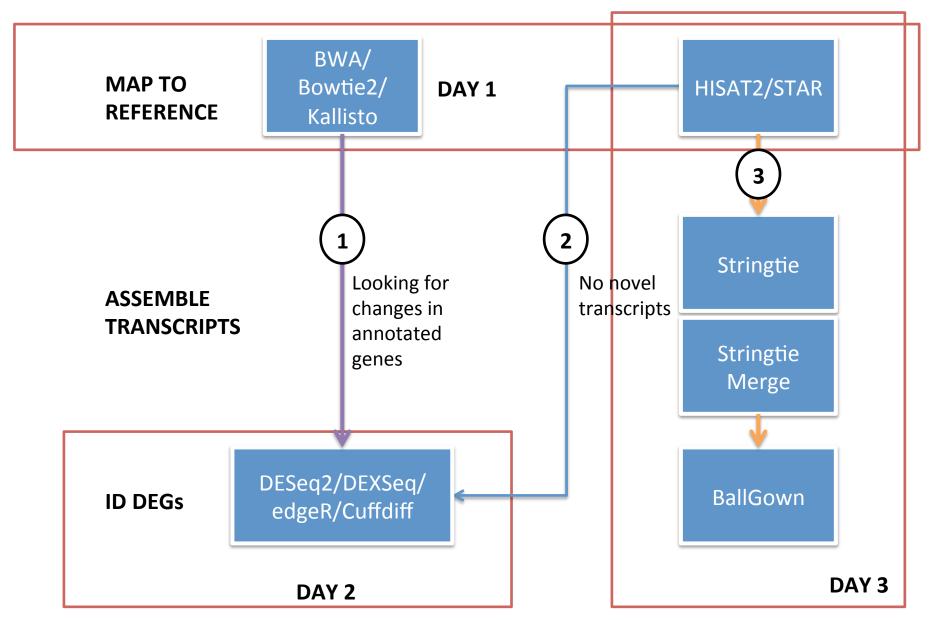
- Line 1: @read name
- Line 2: called base sequence
- Line 3: +read name (optional after +)
- Line 4: base quality scores

Illumina Base Quality Scores

	http://www.asciitable.com/					
Quality character	!"#\$%&'()*+,/0123456789:;<=>?@ABCDEFGHI					
ASCII Value	33	43	53	63	73	
Base Quality (Q)	0	10	20	30	40	

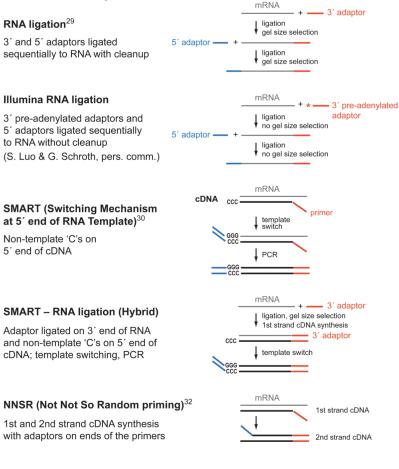
Probability of Error = $10^{-Q/10}$

(This is a **Phred** score, also used for other types of qualities.)


Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%

Quality scores are ASCII encoded in fastq files. Different platforms/older sequencing data can have different encoding! Illumina HiSeq 2500 produces Sanger encoded data. Phred +33 =ASCII

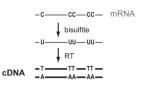
How do we analyze RNA-Seq data?

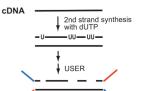

- EVALUATE QUALITY AND MANIPULATE RAW DATA
- ALIGN READS
- ASSEMBLE TRANSCRIPTS
- QUANTIFY TRANSCRIPTS
- TEST FOR DIFFERENTIAL EXPRESSION
- VISUALIZE
- DOWNSTREAM ANALYSIS

The Big Picture

Class	Category	Package	Notes	Uses	Input
Read mapping					
Unspliced aligners ^a	Seed methods	Short-read mapping package (SHRiMP) ⁴¹	Smith-Waterman extension	Aligning reads to a reference transcriptome	Reads and reference transcriptome
		Stampy ³⁹	Probabilistic model		
	Burrows-Wheeler transform methods	Bowtie ⁴³			
		BWA ⁴⁴	Incorporates quality scores		
Spliced aligners	Exon-first methods	MapSplice ⁵²	Works with multiple unspliced	Aligning reads to a	Reads and reference genome
		SpliceMap ⁵⁰	aligners	reference genome. Allows for the identification of	
		TopHat ⁵¹	Uses Bowtie alignments		
	Seed-extend methods	GSNAP ⁵³	Can use SNP databases	novel splice junctions	
		QPALMA ⁵⁴	Smith-Waterman for large gaps		
Transcriptome re	econstruction				
Genome-guided reconstruction	Exon identification	G.Mor.Se	Assembles exons	Identifying novel transcripts	Alignments to reference genome
	Genome-guided	Scripture ²⁸	Reports all isoforms	using a known reference	
	assembly	Cufflinks ²⁹	Reports a minimal set of isoforms	genome	
Genome-	Genome-independent	Velvet ⁶¹	Reports all isoforms	Identifying novel genes and	Reads
independent assembly reconstruction		TransABySS ⁵⁶		transcript isoforms without a known reference genome	
Expression quan	tification				
Expression quantification	Gene quantification	Alexa-seq ⁴⁷	Quantifies using differentially included exons	Quantifying gene expression	Reads and transcript models
		Enhanced read analysis of gene expression (ERANGE) ²⁰	Quantifies using union of exons		
		Normalization by expected uniquely mappable area (NEUMA) ⁸²	Quantifies using unique reads		
	Isoform quantification	Cufflinks ²⁹	Maximum likelihood estimation of	Quantifying transcript isoform expression levels	Read alignments to isoforms
		MISO ³³	relative isoform expression		
		RNA-seq by expectaion maximization (RSEM) ⁶⁹			
Differential		Cuffdiff ²⁹	Uses isoform levels in analysis	Identifying differentially expressed genes or transcript isoforms	Read alignments and transcript models
expression		DegSeq ⁷⁹	Uses a normal distribution		
		EdgeR ⁷⁷			
		Differential Expression analysis of count data (DESeq) ⁷⁸		Figure:	
				Garber et al, Nature	Nathada 2011

a Differential Adaptor


b Differential Marking


Bisulfite^{15,16}

Convert 'C's to 'U's in RNA

dUTP 2nd strand¹³

2nd strand synthesis with dUTP, remove 'U's after adaptor ligation and size selection

Appendix

Page 10

Figure 1. Methods for strand-specific RNA-Seq

Salient details for seven protocols for strand-specific RNA-Seq, differential adaptor methods (a) and differential marking methods (b). mRNA is shown in grey, and cDNA in black. For differential adaptor methods, 5' adaptors are shown in blue, and 3' adaptors in red.