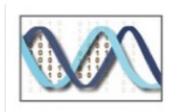
Introduction to NGS and RNA-Seq


Dhivya Arasappan

(With some slides borrowed from Scott Hunicke-Smith and Jeff Barrick)

Some background

- Research scientistbioinformatician at CCBB.
 - RNA-Seq
 - Genome Assembly
 - Exome data analysis
 - Benchmarking of tools

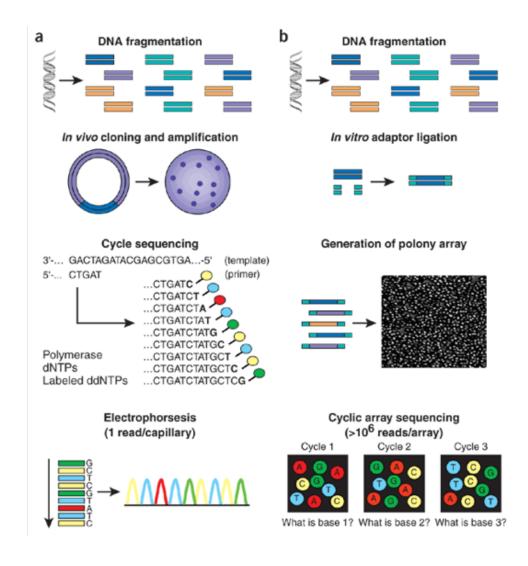
- Training
 - Grad students, post-docs.
 - Undergraduate- FRI

Goals of the Class

- When considering an RNA-Seq experiment
 - What kind of options are available for library prep?
- When you have an RNA-Seq dataset
 - What kind of options are available for analysis?
- Hands-on experience running typical RNA-Seq workflows on TACC
 - Some unix, R, TACC skills
- Learn the terminology

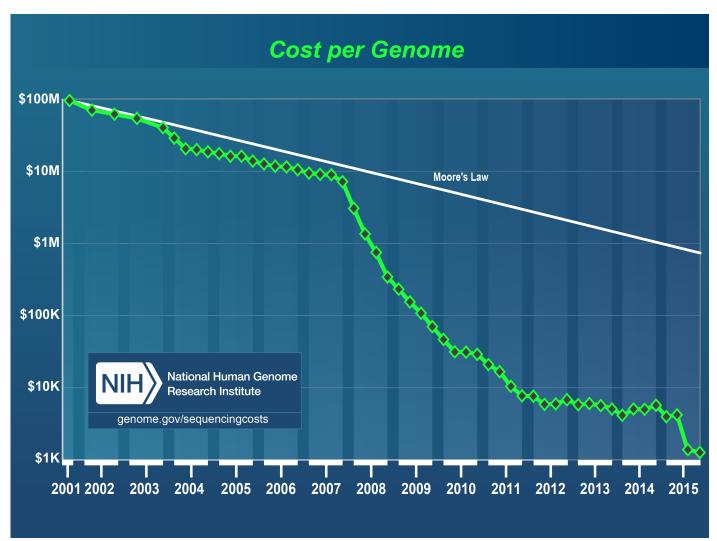
Setting General Expectations

- Lots of background and basics to provide comfort with terminology and key concepts.
- Exposure to commands and typically used analysis tools using an example RNA-Seq dataset.
 - No one 'best' or 'standard' tool.

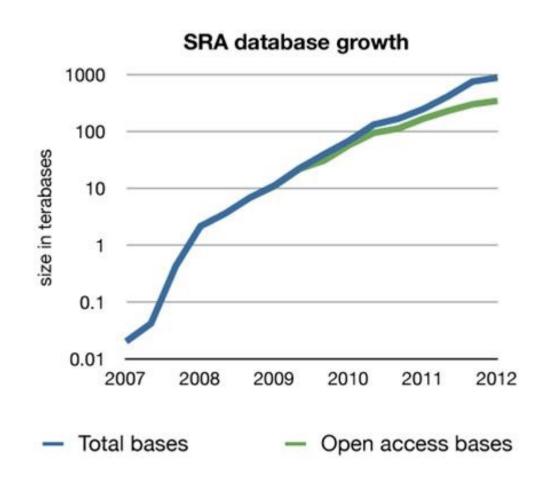

 A starting point for you to design your RNA-Seq study or analyze your dataset.

Resources

- BioIteam Wiki- Bookmark it!
 https://wikis.utexas.edu/display/bioiteam
- Summer School course materials: https:// wikis.utexas.edu/display/bioiteam/Introduction+to +RNA+Seq+Course+2017
- Byte Club: Meets Third Wednesday of every month
- https://wikis.utexas.edu/display/bioiteam/Byte+Club
- CCBB Bioinformatics consultants

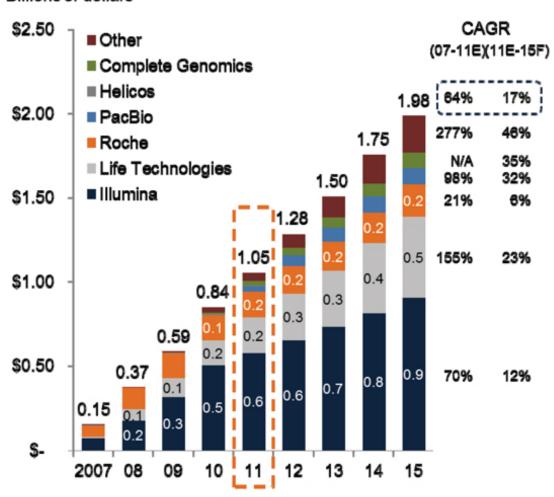

What is Next Generation(or) Second Generation Sequencing?

- Massively parallel sequencing
- The template DNA is attached to a cluster.
- Billions of clusters sequenced in parallel.
- 3-10 billion independent DNA fragments sequenced in one run.

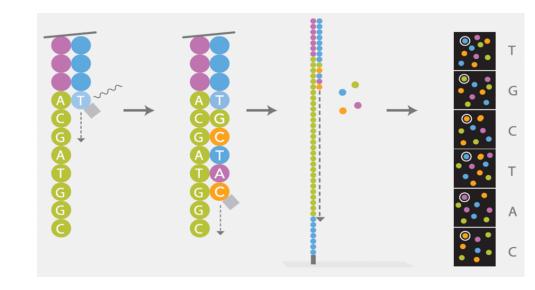

So, what's so great about second generation sequencing?

- + Sequence lots more, faster!
- + More cost effective.

So, what's NOT so great about second generation sequencing?


- Data deluge
- Bioinformaticians and computational biologists to the rescue!

Who are the players?


WW NGS market by competitor (2007-15F)*

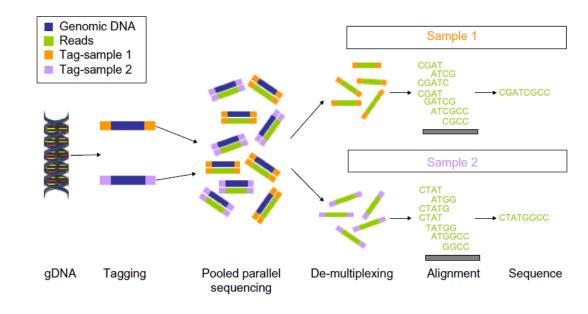
Billions of dollars

How does the sequencer work?

- Library prep
- Cluster generation/ amplification
- Sequencing by synthesis
- Done in parallel for billions clusters at once.
- Let's watch the official Illumina video.

http://www.cegat.de/

Different Types of Illumina Sequencers



Illumina Specifications Table

		HiSeq X Ten*	Hi Seq 2500		NextSeq 500		MiSeq	
			HT v4	HT v3	Rapid	High	Mid	
	Total output	1.8 Tb	1 Tb	600 Gb	180 Gb	129 Gb	39 Gb	15 Gb
	Run time	3 days	6 days	11 days	40 hrs	29 hrs	26 hrs	~65 hrs
	Output/day	600 Gb	167 Gb	55 Gb	~110 gb	~100 Gb	~36 Gb	~5.5 Gb
	Read length	2 X 150	2 X 125	2 X 100	2 X 150	2 X 150	2 X 150	2 X 300
	# of single reads	6B	4B	3B	600M	400M	130M	25M
l	nstrument price	\$1M*	\$740K	\$740K	\$740K	\$250K	\$250K	\$125K
F	Run price	~\$12k	~\$29k	~\$26k	~\$8k	\$4k	?	~\$1.4k
\$/Gb		\$7	\$29	\$43	\$44	\$33	?	\$93

Multiplexing

- Sample specific Indexes/ Barcodes are attached to the DNA template.
- 6-8bp indexes/barcodes
- Data off the sequencer must first be demultiplexed to identify which reads belong to which sample.

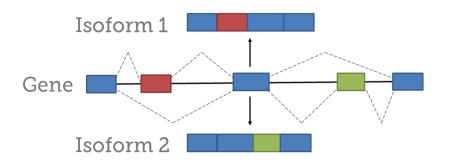
What are the Limations/Challenges?

- Amplification can cause problems.
 - Clusters are made by using PCR amplification.

- Reads are short
 - difficult to align, assemble.
 - too short to span long repeat regions.
 - Difficult to detect large structura variations like inversions.

Third generation sequencing

- Next, next generation sequencing?
- Single molecule sequencing- takes care of all above mentioned issues
- Much longer reads (1-100kb)
- Many issues- high error rate and expensive
- Two categories:
 - Sequencing by synthesis (pacbio)
 - WATCH DNA as it is sequenced in realtime
 - ZMW technology lets smallest amount of light to be detected.
 - Direct sequencing
 - Oxford nanopore
 - Hydrogen ion changes ph in well. Change in ph indicates base has been incorporated.



What is RNA-Seq?

Examine the state of the transcriptome.

- Genes expression patterns vary in:
 - Tissue types
 - Cell types
 - Development stages
 - Disease conditions
 - Time points

- RNA-Seq measures these expression variations using highthroughput sequencing technologies.
- Additionally, RNA-Seq allows detection of novel isoforms of genes.

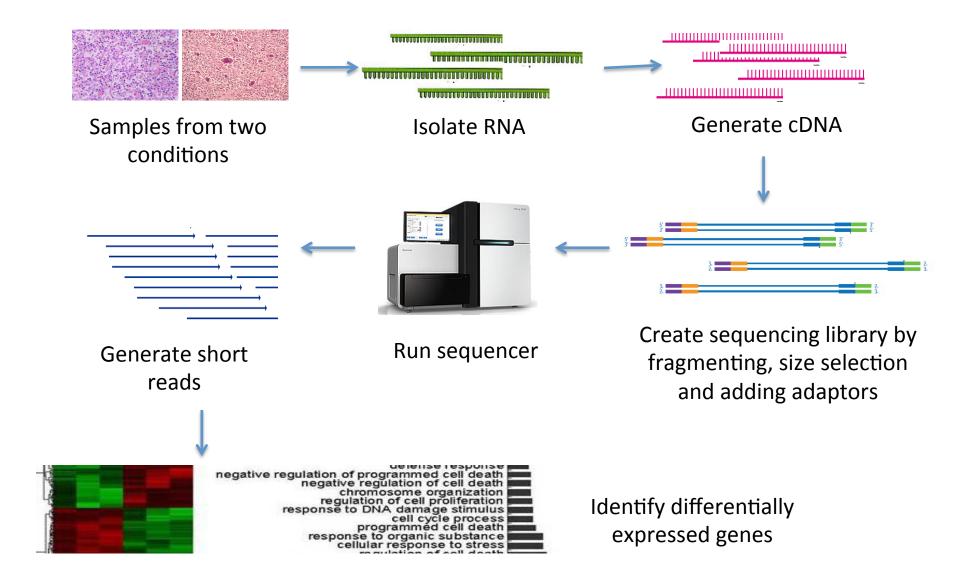
Other Uses of RNA-Seq

- Assembling and annotating a transcriptome
- Characterization of alternative splicing patterns
- Gene fusion detection
- Small RNA profiling
- Targeted approaches using RNA-Seq
- Direct RNA sequencing

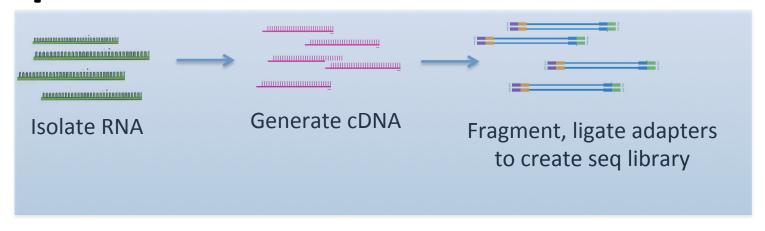
Advantages of RNA-Seq

Technology	Tiling microarray	RNA-Seq
Technology specifications		
Principle	Hybridization	High-throughput sequencing
Resolution	From several to 100 bp	Single base
Throughput	High	High
Reliance on genomic sequence	Yes	In some cases
Background noise	High	Low
Application		
Simultaneously map transcribed regions and gene expression	Yes	Yes
Dynamic range to quantify gene expression level	Up to a few-hundredfold	>8,000-fold
Ability to distinguish different isoforms	Limited	Yes
Ability to distinguish allelic expression	Limited	Yes
Practical issues		
Required amount of RNA	High	Low
Cost for mapping transcriptomes of large genomes	High	Relatively low

RNA-Seq: a revolutionary tool for transcriptomics


Zhong Wang, Mark Gerstein, and Michael Snyder

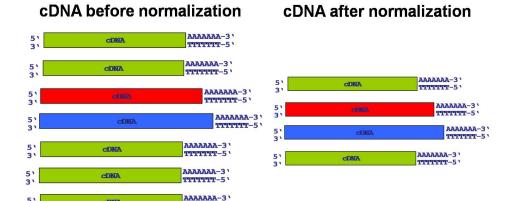
Nat Rev Genet. 2009 January; 10(1): 57–63. doi:10.1038/nrg2484.


What are your questions?

- This determines how you set up your experiment and how you analyze the data.
- What are you looking for?
 - Annotating a transcriptome?
 - Differential expression?
 - Novel transcripts/isoforms, junctions?
 - Differential gene expression?
 - Differential exon level counts?
 - Differential regulation?
 - Small RNA?

RNA-Seq... at it's Most Basic Form

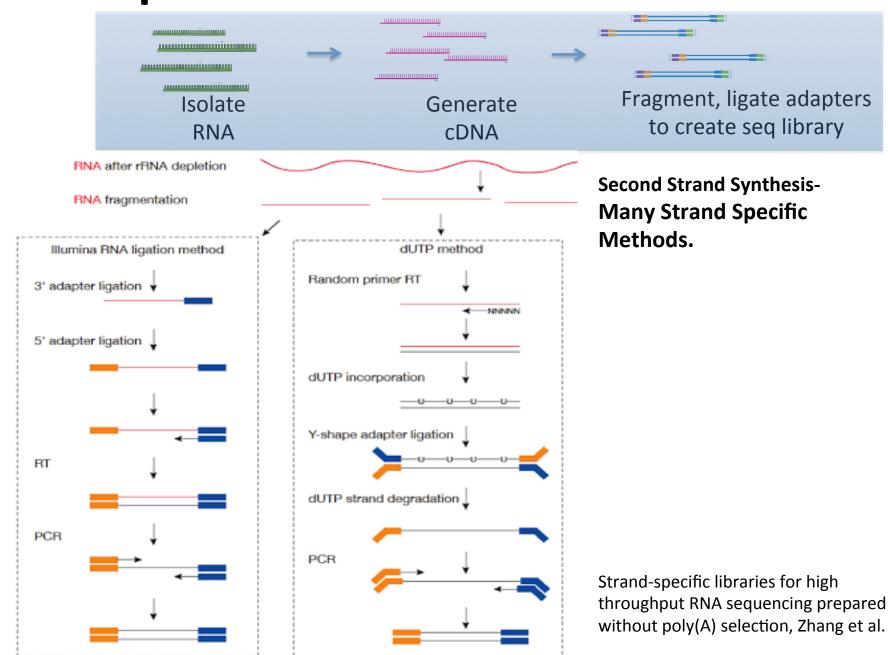
RNA-Seq Libraries... with More Details


B. Normalized library

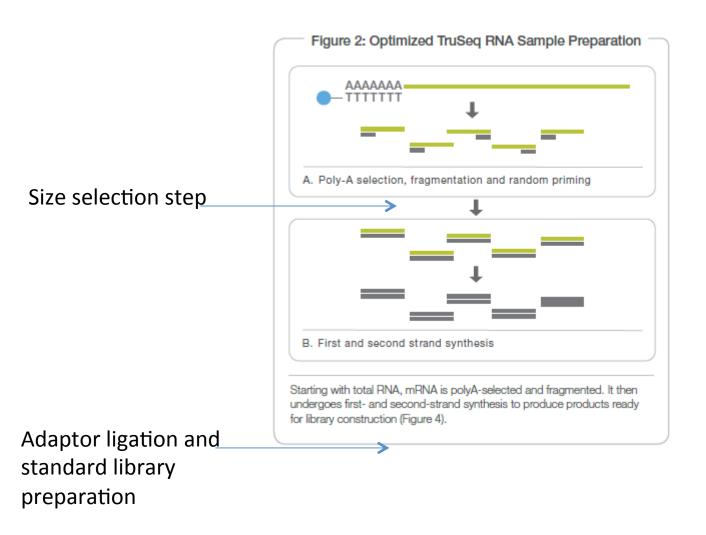
A. rRNA Depletion

Image from :www.genxpro.info

प्रमुख्यम्बर्गम् -5 \



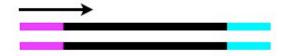
C. Size selection


Reserved for miRNA, siRNA profiling

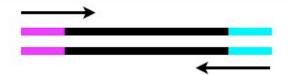
Ribominus kit

RNA-Seq Libraries... with More Details

RNA Illumina Tru-Seq library prep



RNA-Seq... at it's Most Basic Form


Types of Illumina Fragment Libraries

independent reads

paired-end

two inwardly oriented reads separated by ~200 nt

mate-paired

two outwardly oriented reads separated by ~3000 nt

		,
Biological replicates	Not necessary but can be useful	Essential
Coverage across the transcript	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not as important; however the only reads that can be used are those that are uniquely mappable.
Depth of sequencing	High enough to maximize coverage of rare transcripts and transcriptional isoforms	High enough to infer accurrate statistics
Role of sequencing depth	Obtain reads that overlap along the length of the transcript	Get enough counts of each transcript such that statistical inferences can be made
DSN	Useful for removing abundant transcripts so that more reads come from rarer transcripts	Not recommended since it can skew counts
Stranded library prep	Important for de Novo transcript assembly and identifying true anti-sense trancripts	Not generally required especially if there is a reference genome
Long reads (>80 bp)	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not generally required especially if there is a reference genome
Paired-end reads	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not important Actually important!
		From RNA-seqlopedia

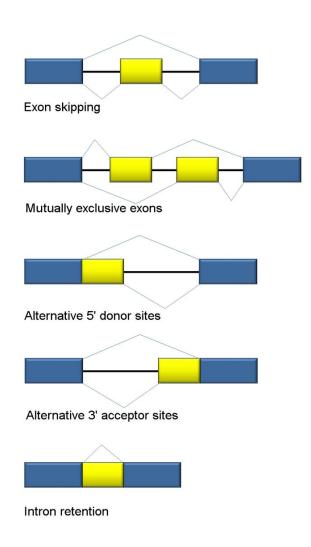
Differential Gene Expression

Criteria

Annotation

Comparing Stranded RNA-Seq Library Protocols




Figure 2. Key criteria for evaluation of strand-specific RNAseq libraries

Four categories of quality assessment. Double stranded genome (black parallel lines), with Gene ORF orientation (thick blue arrow) and UTRs (thin blue line), along with mapped reads (short black arrows – reads mapped to sense strand; red – reads mapped to antisense strand). (a) Complexity. (b) Strand Specificity. (c) Evenness of coverage. (d) Comparison to known transcript structure..

Comprehensive comparative analysis of strand-specific RNA sequencing methods, Levin et al, 2010

Why is RNA-Seq Difficult?

- Biases may mean what we are seeing is not reflective of true state of the transcriptome.
- Ugh, splicing!
- Gene level, exon level?
- Multimapping, partial mapping,, not mapping.
- Normalization issues
 - some datasets are larger than others, some genes are larger than others

From Wikipedia- alternative splicing

Illumina Fastq file

FASTQ Format

```
@HWI-EAS216_91209:1:2:454:192#0/1
GTTGATGAATTTCTCCAGCGCGAATTTGTGGGCT
+HWI-EAS216_91209:1:2:454:192#0/1
B@BBBBBBBBBBBBAAAA>@AABA?BBBAAB??>A?
```

Line 1: @read name

Line 2: called base sequence

Line 3: +read name (optional after +)

Line 4: base quality scores

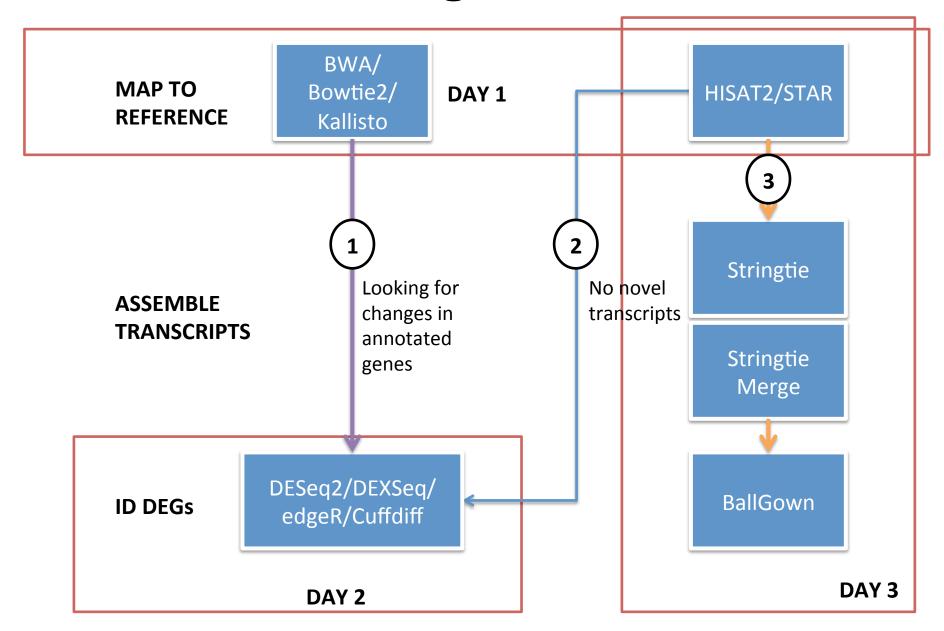
Illumina Base Quality Scores

http://www.asciitable.com/

Probability of Error = $10^{-Q/10}$

(This is a **Phred** score, also used for other types of qualities.)

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%


Quality scores are ASCII encoded in fastq files. Different platforms/older sequencing data can have different encoding! Illumina HiSeq 2500 produces Sanger encoded data.

Phred +33 =ASCII

How do we analyze RNA-Seq data?

- **STEP 1**: EVALUATE AND MANIPULATE RAW DATA
- **STEP 2**: MAP TO REFERENCE, ASSESS RESULTS
- **STEP 3**: ASSEMBLE TRANSCRIPTS
- STEP 4: QUANTIFY TRANSCRIPTS
- STEP 5: TEST FOR DIFFERENTIAL EXPRESSION
- STEP 6: VISUALIZE AND PERFORM OTHER DOWNSTREAM ANALYSIS

The Big Picture

Class	Category	Package	Notes	Uses	Input
Read mapping	- 1500 - 1500				
Unspliced aligners ^a	Seed methods	Short-read mapping package (SHRiMP) ⁴¹	Smith-Waterman extension	Aligning reads to a reference transcriptome	Reads and reference transcriptome
		Stampy ³⁹	Probabilistic model		
	Burrows-Wheeler	Bowtie ⁴³			
	transform methods	BWA ⁴⁴	Incorporates quality scores		
Spliced aligners	Exon-first methods	MapSplice ⁵²	Works with multiple unspliced	Aligning reads to a reference genome. Allows	Reads and reference genome
		SpliceMap ⁵⁰	aligners		
		TopHat ⁵¹	Uses Bowtie alignments	for the identification of	
	Seed-extend methods	GSNAP ⁵³	Can use SNP databases	novel splice junctions	
		QPALMA ⁵⁴	Smith-Waterman for large gaps		
Transcriptome re	econstruction				
Genome-guided	Exon identification	G.Mor.Se	Assembles exons	Identifying novel transcripts using a known reference	Alignments to reference genome
reconstruction	Genome-guided	Scripture ²⁸	Reports all isoforms		
eř.	assembly	Cufflinks ²⁹	Reports a minimal set of isoforms	genome	
Genome-	Genome-independent assembly	Velvet ⁶¹	Reports all isoforms	Identifying novel genes and	Reads
independent reconstruction		TransABySS ⁵⁶		transcript isoforms without a known reference genome	
Expression quan	tification				
Expression quantification	Gene quantification	Alexa-seq ⁴⁷	Quantifies using differentially included exons	Quantifying gene expression	Reads and transcript models
		Enhanced read analysis of gene expression (ERANGE) ²⁰	Quantifies using union of exons		
		Normalization by expected uniquely mappable area (NEUMA) ⁸²	Quantifies using unique reads		
	Isoform quantification	Cufflinks ²⁹	Maximum likelihood estimation of	Quantifying transcript isoform expression levels	Read alignments to isoforms
		MISO ³³	relative isoform expression		
		RNA-seq by expectaion maximization (RSEM) ⁶⁹			
Differential		Cuffdiff ²⁹	Uses isoform levels in analysis	Identifying differentially expressed genes or	Read alignments and transcript
expression		DegSeq ⁷⁹	Uses a normal distribution		
		EdgeR ⁷⁷		transcript isoforms	models
		Differential Expression analysis of count data		Figure:	
		(DESeq) ⁷⁸	Claud based serve total	Garber et al, Nature	Methods, 2011
		Myrna ⁷⁵	Cloud-based permutation method		

Differential Adaptor

RNA ligation²⁹

3' and 5' adaptors ligated sequentially to RNA with cleanup

ligation gel size selection 5' adaptor ligation gel size selection

Illumina RNA ligation

- 3' pre-adenylated adaptors and
- 5' adaptors ligated sequentially to RNA without cleanup
- (S. Luo & G. Schroth, pers. comm.)

SMART (Switching Mechanism at 5' end of RNA Template)30

Non-template 'C's on 5' end of cDNA

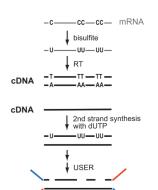
SMART – RNA ligation (Hybrid)

Adaptor ligated on 3' end of RNA and non-template 'C's on 5' end of cDNA; template switching, PCR

NNSR (Not Not So Random priming)³²

1st and 2nd strand cDNA synthesis with adaptors on ends of the primers

3' pre-adenylated ligation no gel size selection ligation ♦ no gel size selection cDNA ccc switch ligation, gel size selection 1st strand cDNA synthesis template switch 1st strand cDNA 2nd strand cDNA


Differential Marking

Bisulfite^{15,16}

Convert 'C's to 'U's in RNA

dUTP 2nd strand¹³

2nd strand synthesis with dUTP, remove 'U's after adaptor ligation and size selection

Levin et al.

Page 10

Figure 1. Methods for strand-specific RNA-Seq

Salient details for seven protocols for strand-specific RNA-Seq, differential adaptor methods (a) and differential marking methods (b). mRNA is shown in grey, and cDNA in black. For differential adaptor methods, 5' adaptors are shown in blue, and 3' adaptors in red.

Appendix