Introduction to NGS and RNA-Seq

Dhivya Arasappan

(With some slides borrowed from Scott Hunicke-Smith and Jeff Barrick)

Some background

- Research scientistbioinformatician at CBRS.
 - RNA-Seq
 - Genome Assembly
 - Exome data analysis
 - Benchmarking of tools

Center for Biomedical Research Support

Enabling Cutting-Edge Research that Changes the World THE UNIVERSITY OF TEXAS AT AUSTIN

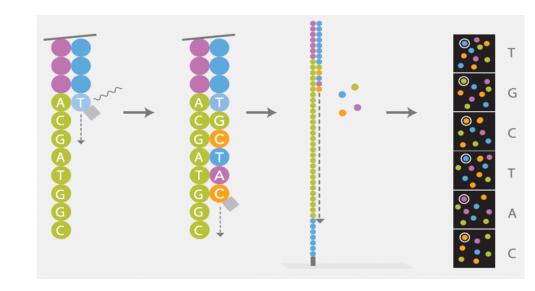
102 E 24th Street - C4500 • Austin, TX 78712 • Tel (512) 471-5261 biomedsupport.utexas.edu

- Assistant Professor of Practice
 - Training grad students, post-docs.
 - Undergraduate- FRI

Goals of the Class

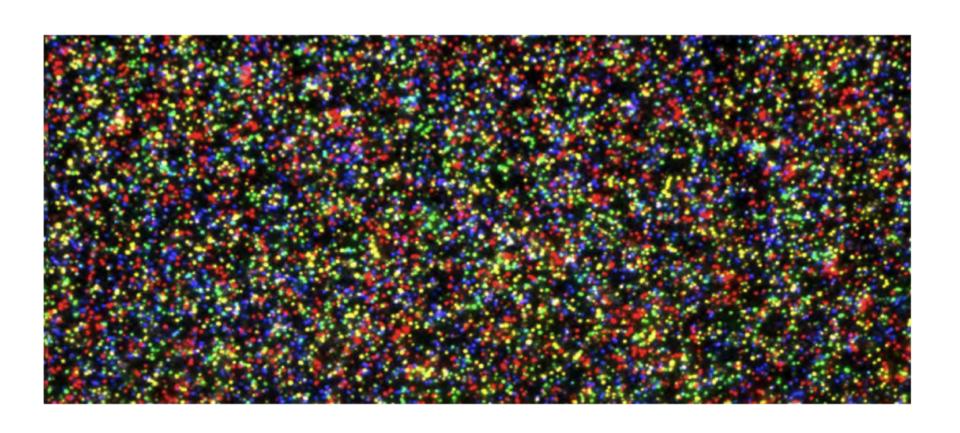
- When considering an RNA-Seq experiment
 - What kind of options are available for library prep?
- When you have an RNA-Seq dataset
 - What kind of options are available for analysis?
- Hands-on experience running typical RNA-Seq workflows on TACC
 - Some unix, R, TACC skills
- Learn the terminology
- Brief introductions to 3' targeted RNA-Seq (tag-seq) and Single Cell RNA-Seq.

Setting General Expectations

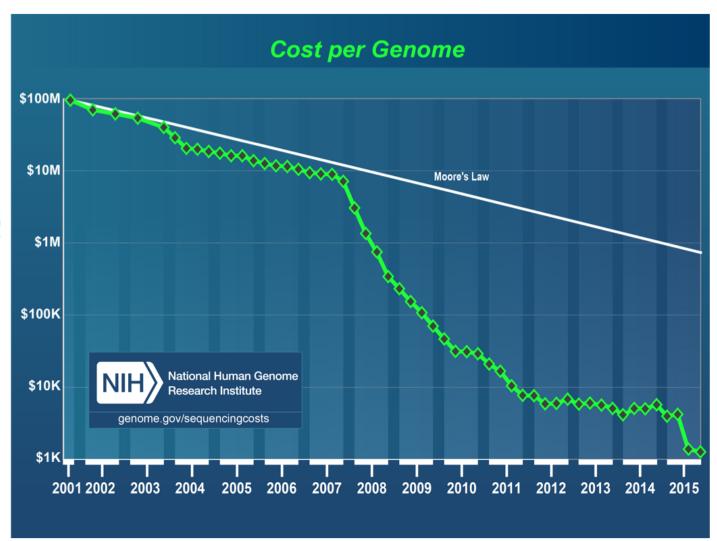

- Lots of background and basics to provide comfort with terminology and key concepts.
- Exposure to commands and typically used analysis tools using an example RNA-Seq dataset.
 - No one 'best' or 'standard' tool.
- A starting point for you to design your RNA-Seq study or analyze your dataset.

Resources

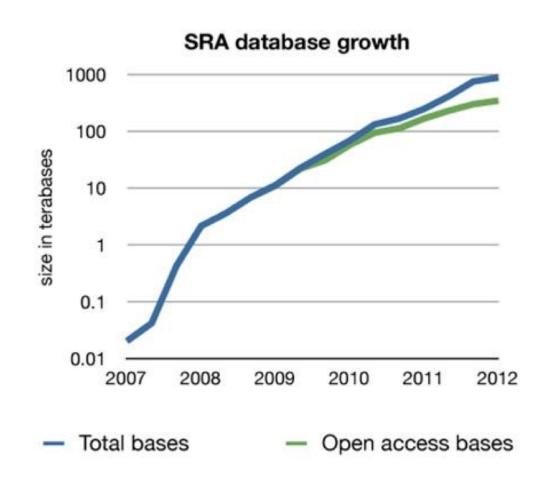
- BioIteam Wiki- Bookmark it! <u>https://wikis.utexas.edu/display/bioiteam</u>
- Summer School course materials: https://wikis.utexas.edu/display/bioiteam/
 Introduction+to+RNA+Seq+Course
- Byte Club: Meets Third Wednesday of every month
- https://wikis.utexas.edu/display/bioiteam/ Byte+Club
- CBRS Bioinformatics consultants


Second Generation Sequencing (or) Next Generation Sequencing

- Library prep
- Cluster generation/ amplification
- Sequencing by synthesis
- Done in parallel for billions clusters at once.

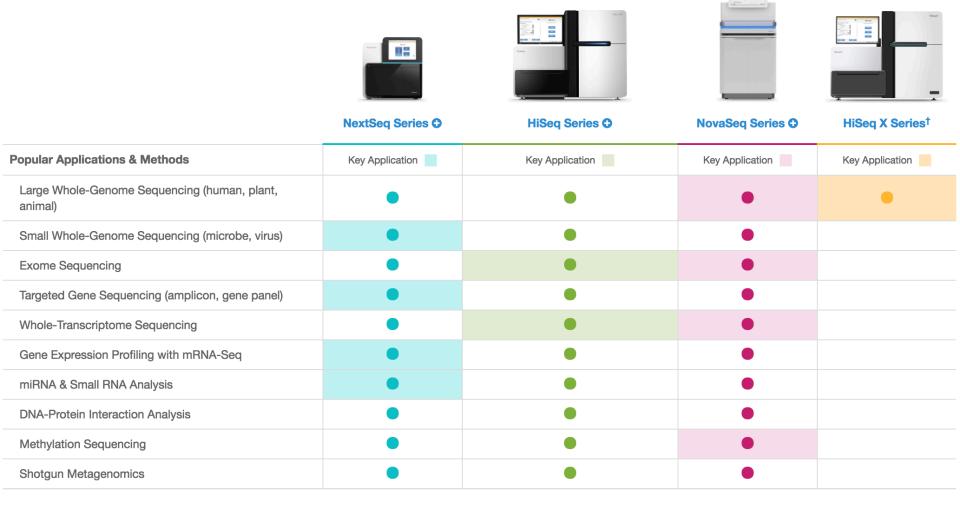

http://www.cegat.de/

How do next generation sequencers work?!


So, what's so great about second generation sequencing?

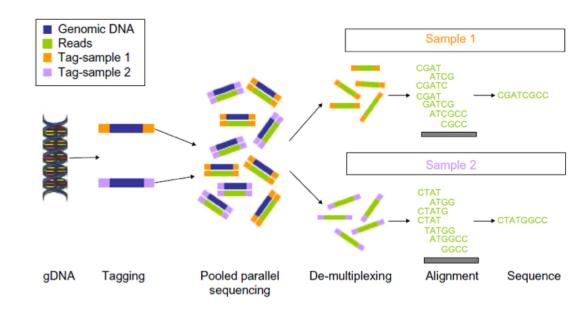
- + Sequence lots more, faster!
- + More cost effective.

So, what's NOT so great about second generation sequencing?


- Data deluge
- Bioinformaticians and computational biologists to the rescue!

Illumina Sequencing Platforms

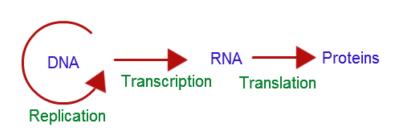
				a . ++
	NextSeq System	HiSeq System	NovaSeq Series ^{††}	
	NextSeq 500*	HiSeq 4000*	NovaSeq 5000 [*]	NovaSeq 6000*
Output Range	20–120 Gb	125–1500 Gb	167-2000 Gb	167-6000 Gb
Run Time	11–29 hr	<1–3.5 days	TBA	19—40 hr
Reads per Run	130–400 million	2.5–5 billion	1.4–6.6 billion	1.4–20 billion
Max Read Length	2 × 150 bp	2 × 150 bp	2 × 150 bp	2 × 150 bp
Samples per Run [†]	1	6–12	4—16	4-48
Relative Price per Sample [†]	Higher Cost	Mid Cost	Lower Cost	Lower Cost
Relative Instrument Price [†]	Lower Cost	Mid Cost	Higher Cost	Higher Cost
Downloads	Spec Sheet	Spec Sheet	Spec Sheet	Spec Sheet


Illumina Sequencing Platforms

enseqlopedia.com

Multiplexing

- Sample specific Indexes/ Barcodes are attached to the DNA template.
- 6-8bp indexes/barcodes
- Data off the sequencer must first be demultiplexed to identify which reads belong to which sample.

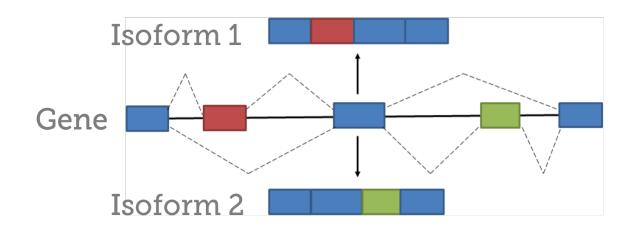

What are the Limations/Challenges?

- Amplification can cause problems.
 - Clusters are made by using PCR amplification.
- Reads are short
 - difficult to align, assemble.
 - too short to span long repeat regions.
 - Difficult to detect large structural variations like inversions.



What is RNA-Seq?

• Examine the state of the transcriptome.


- Genes expression patterns vary in:
 - Tissue types
 - Cell types
 - Development stages
 - Disease conditions
 - Time points

 RNA-Seq measures these expression variations using high-throughput sequencing technologies.

What is RNA-Seq?

- RNA-Seq measures these expression variations
 - At gene level
 - At isoform level

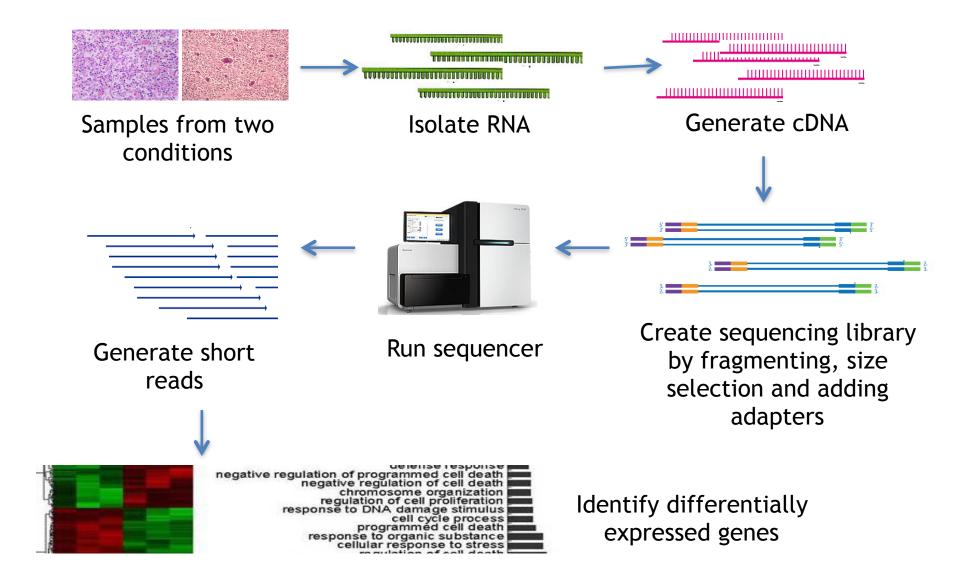
Other Uses of RNA-Seq

- Assembling and annotating a transcriptome
- Characterization of alternative splicing patterns
- Gene fusion detection
- Small RNA profiling
- Targeted approaches using RNA-Seq

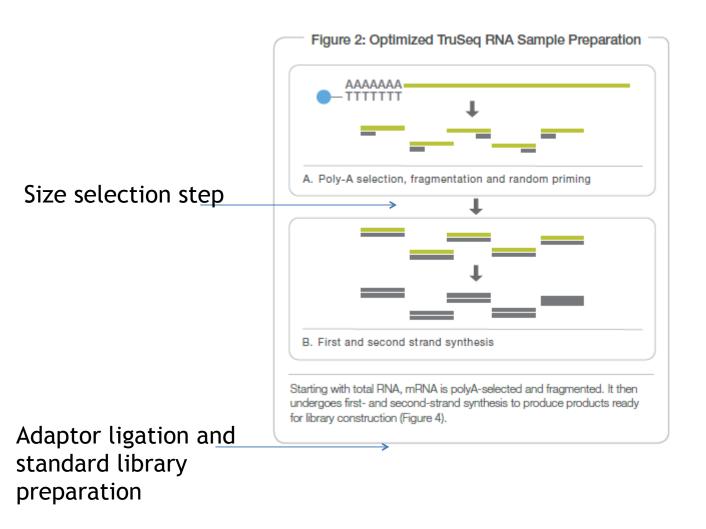
Advantages of RNA-Seq

Technology	Tiling microarray	RNA-Seq
Technology specifications		
Principle	Hybridization	High-throughput sequencing
Resolution	From several to 100 bp	Single base
Throughput	High	High
Reliance on genomic sequence	Yes	In some cases
Background noise	High	Low
Application		
Simultaneously map transcribed regions and gene expression	Yes	Yes
Dynamic range to quantify gene expression level	Up to a few-hundredfold	>8,000-fold
Ability to distinguish different isoforms	Limited	Yes
Ability to distinguish allelic expression	Limited	Yes
Practical issues		
Required amount of RNA	High	Low
Cost for mapping transcriptomes of large genomes	High	Relatively low

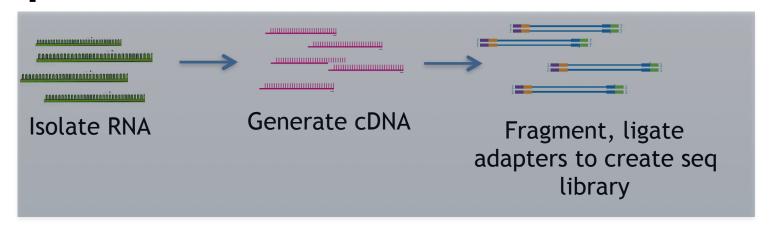
RNA-Seq: a revolutionary tool for transcriptomics


Zhong Wang, Mark Gerstein, and Michael Snyder

Nat Rev Genet. 2009 January; 10(1): 57-63. doi:10.1038/nrg2484.


What are your questions?

- This determines how you set up your experiment and how you analyze the data.
- What are you looking for?
 - Annotating a transcriptome?
 - Differential expression?
 - Novel transcripts/isoforms, junctions?
 - Differential gene expression?
 - Differential exon level counts?
 - Differential regulation?
 - Small RNA?


RNA-Seq... at it's Most Basic Form

RNA Illumina Tru-Seq library prep

RNA-Seq Libraries... with More Details

B. Normalized library

A. rRNA Depletion

Ribominus kit

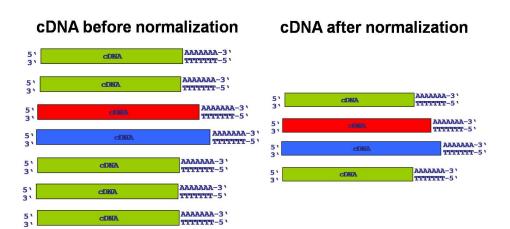
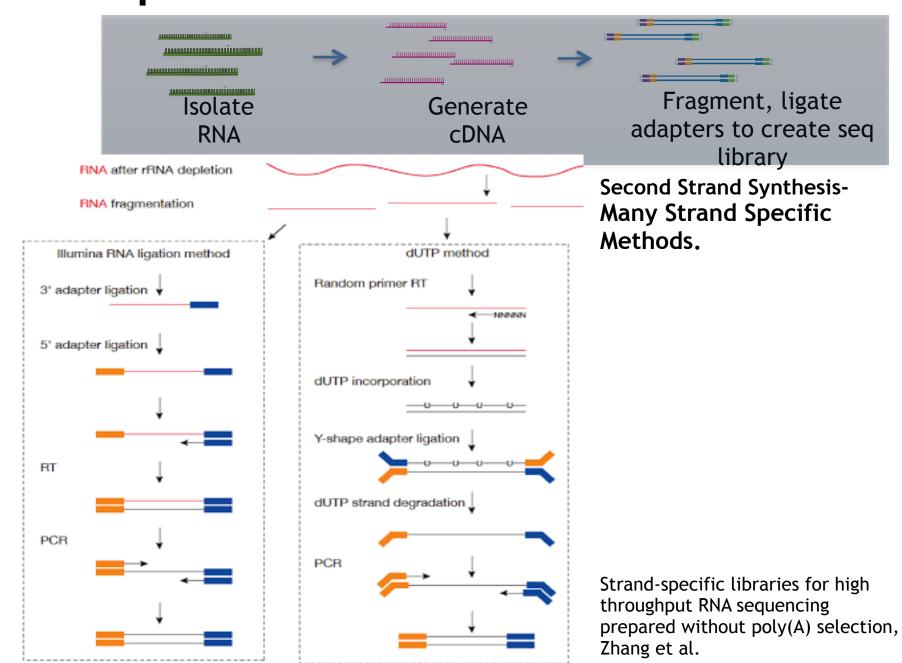
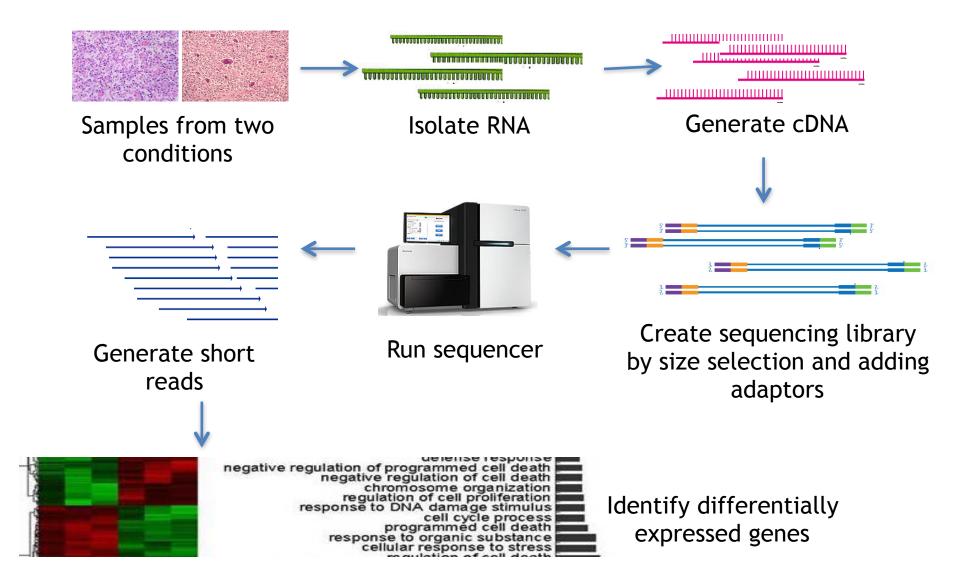



Image from :www.genxpro.info


C. Size selection

Reserved for miRNA, siRNA profiling

RNA-Seq Libraries... with More Details

RNA-Seq... at it's Most Basic Form

What is an adapter?

Adapter:

- Allows the template DNA to attach to the flowcell/ cluster
- Has primer sequences to start synthesis off of.
- Has barcodes/indexes for multiplexing

- Universal Adapter
- DNA Fragment of Interest
- Indexed Adapter
- 6 Base Index Region

Types of Illumina Fragment Libraries

independent reads

paired-end

two inwardly oriented reads separated by ~200 nt

mate-paired

two outwardly oriented reads separated by ~3000 nt

What is Depth of Coverage?

Read 1: CGGATTACGTGGACCATG (read length of 18)

Read 2: ATTACGTGGACCATGAATTGCTGACA

Read 3: ACCATGAATTGCTGACATTCGTCA

Read 4: TGAATTGCTGACATTCGTCAT

Depth: 1112222222233334433333333333322222221

Number of reads 'covering' each position in the genome/ transcriptome.

coverage = (read count * read length) / total genome size

· Example:

• read count: 1000000

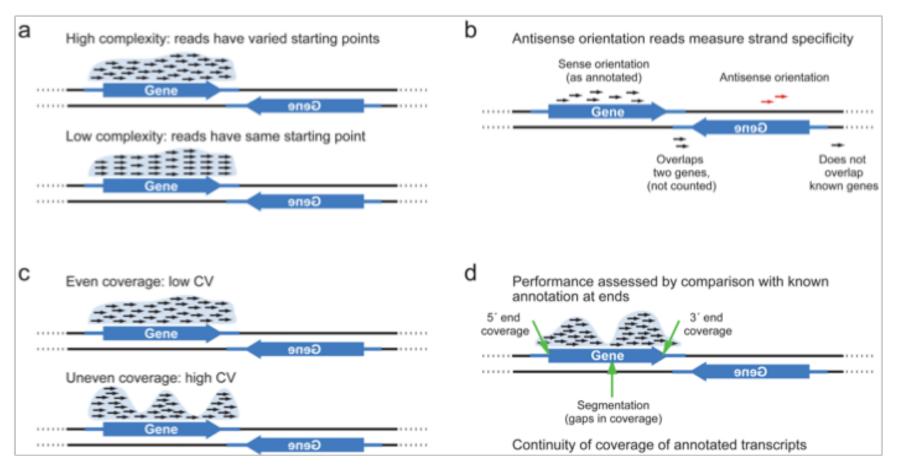
• read length: 2x150bp = 300bp

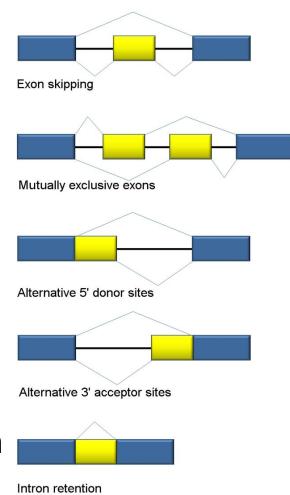
• genome size: 2MB = 2000000bp

· Coverage= (1000000*300)/2000000= 150x coverage

Criteria	Annotation	Differential Gene Expression
Biological replicates	Not necessary but can be useful	Essential
Coverage across the transcript	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not as important; however the only reads that can be used are those that are uniquely mappable.
Depth of sequencing	High enough to maximize coverage of rare transcripts and transcriptional isoforms	High enough to infer accurrate statistics
Role of sequencing depth	Obtain reads that overlap along the length of the transcript	Get enough counts of each transcript such that statistical inferences can be made
DSN	Useful for removing abundant transcripts so that more reads come from rarer transcripts	Not recommended since it can skew counts
Stranded library prep	Important for de Novo transcript assembly and identifying true anti-sense trancripts	Not generally required especially if there is a reference genome Actually important!
Long reads (>80 bp)	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not generally required especially if there is a reference genome
Paired-end reads	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not important Actually important!
		From RNA-seqlopedia

Comparing Stranded RNA-Seq Library Protocols




Figure 2. Key criteria for evaluation of strand-specific RNAseq libraries

Four categories of quality assessment. Double stranded genome (black parallel lines), with Gene ORF orientation (thick blue arrow) and UTRs (thin blue line), along with mapped reads (short black arrows – reads mapped to sense strand; red – reads mapped to antisense strand). (a) Complexity. (b) Strand Specificity. (c) Evenness of coverage. (d) Comparison to known transcript structure..

Comprehensive comparative analysis of strand-specific RNA sequencing methods. Levin et al. 2010

Why is RNA-Seq Difficult?

- Biases may mean what we are seeing is not reflective of true state of the transcriptome.
- Ugh, splicing!
- Gene level, exon level?
- Multimapping, partial mapping,, not mapping.
- Normalization issues
 - some datasets are larger than others, some genes are larger than others

From Wikipedia- alternative splicing

Illumina Fastq file

FASTQ Format

```
@HWI-EAS216_91209:1:2:454:192#0/1
GTTGATGAATTTCTCCAGCGCGAATTTGTGGGCT
+HWI-EAS216_91209:1:2:454:192#0/1
B@BBBBBBBBBBBBAAAA>@AABA?BBBBAAB??>A?
```

Line 1: @read name

Line 2: called base sequence

Line 3: +read name (optional after +)

Line 4: base quality scores

Illumina Base Quality Scores

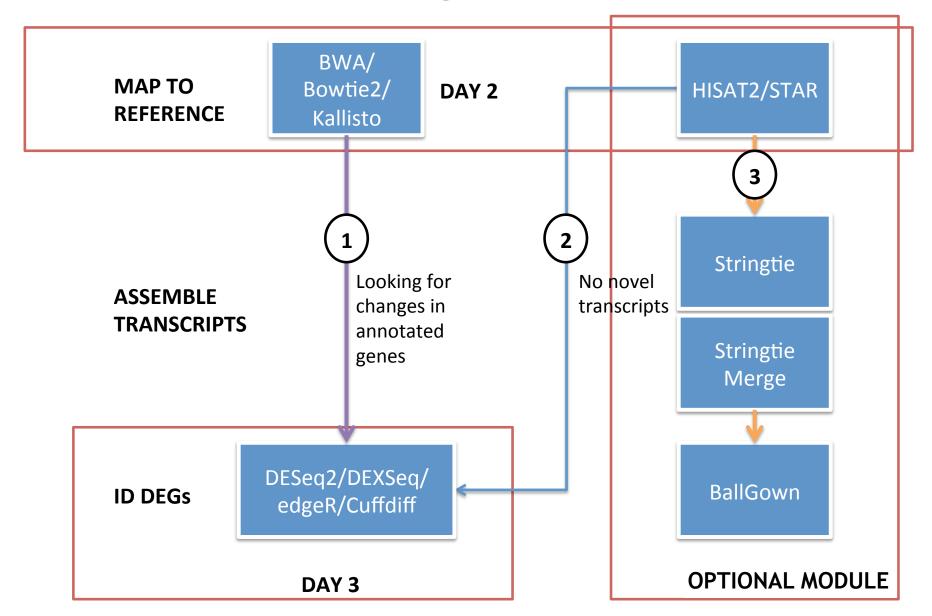
h" p://www.asciitable.com/2

Quality character	!"#\$%&'()*+,/0123456789:;<=>?@ABCDEFGHI!				
		I	I	I	!
ASCII Value	33	43	53	63	73!
Base Quality (Q)	0	10	20	30	40!

Probability of Error = $10^{-Q/10}$

(This is a **Phred** score, also used for other types of qualities.)

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%

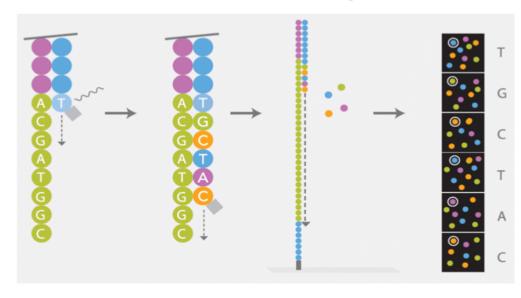

Quality scores are ASCII encoded in fastq files. Different platforms/older sequencing data can have different encoding! Illumina HiSeq 2500 produces Sanger encoded data.

Phred +33 =ASCII

How do we analyze RNA-Seq data?

- STEP 1: EVALUATE AND MANIPULATE RAW DATA
- **STEP 2**: MAP TO REFERENCE, ASSESS RESULTS
- STEP 3: ASSEMBLE TRANSCRIPTS
- STEP 4: QUANTIFY TRANSCRIPTS
- STEP 5: TEST FOR DIFFERENTIAL EXPRESSION
- STEP 6: VISUALIZE AND PERFORM OTHER DOWNSTREAM ANALYSIS

The Big Picture



APPENDIX

How do next generation sequencers work?!

- Attach a short DNA template on a chip. !
- Flood with polymerase, fluorescent labeled nucleobases.!
- When a complementary base is generated, take a picture of the fluorescence.!
- Do this for millions/billions of templates at the same time.!

Sequencers simply observe DNA Replication!

http://www.cegat.de/!

Class	Category	Package	Notes	Uses	Input
Read mapping	-20075 si-166	or minerally			-
Unspliced aligners ^a	Seed methods	Short-read mapping package (SHRiMP) ⁴¹	Smith-Waterman extension	Aligning reads to a reference transcriptome	Reads and reference transcriptome
		Stampy ³⁹	Probabilistic model		
	Burrows-Wheeler transform methods	Bowtie ⁴³			
		BWA ⁴⁴	Incorporates quality scores		
Spliced aligners	Exon-first methods	MapSplice ⁵²	Works with multiple unspliced	Aligning reads to a	Reads and reference genome
		SpliceMap ⁵⁰	aligners	reference genome. Allows	
		TopHat ⁵¹	Uses Bowtie alignments	for the identification of	
	Seed-extend methods	GSNAP ⁵³	Can use SNP databases	novel splice junctions	
		QPALMA ⁵⁴	Smith-Waterman for large gaps		
Transcriptome re	econstruction				
Genome-guided	Exon identification	G.Mor.Se	Assembles exons	Identifying novel transcripts	Alignments to reference genome
reconstruction	Genome-guided assembly	Scripture ²⁸	Reports all isoforms	using a known reference	
eř.		Cufflinks ²⁹	Reports a minimal set of isoforms	genome	
Genome-	Genome-independent	Velvet ⁶¹	Reports all isoforms	Identifying novel genes and	Reads
independent reconstruction	assembly	TransABySS ⁵⁶		transcript isoforms without a known reference genome	
Expression quan	tification				
Expression quantification	E 9 N	Alexa-seq ⁴⁷	Quantifies using differentially included exons	Quantifying gene expression	Reads and transcript models
		Enhanced read analysis of gene expression (ERANGE) ²⁰	Quantifies using union of exons		
		Normalization by expected uniquely mappable area (NEUMA) ⁸²	Quantifies using unique reads		
	Isoform quantification	Cufflinks ²⁹	Maximum likelihood estimation of		Read alignments to isoforms
		MISO ³³	relative isoform expression isoform		
		RNA-seq by expectaion maximization (RSEM) ⁶⁹			
Differential		Cuffdiff ²⁹	Uses isoform levels in analysis	Identifying differentially	Read alignments and transcript models
expression		DegSeq ⁷⁹	Uses a normal distribution expressed genes or		
		EdgeR ⁷⁷		transcript isoforms	
		Differential Expression analysis of count data (DESeq) ⁷⁸		Figure: Garber et al, Natu	re Methods
		Myrna ⁷⁵	Cloud-based permutation method	2011	ic methods,

Differential Adaptor + - 3" adaptor ligation RNA ligation²⁹ gel size selection 3' and 5' adaptors ligated 5' adaptor --sequentially to RNA with cleanup ligation gel size selection Illumina RNA ligation - 3' pre-adenylated | ligation 3' pre-adenylated adaptors and no gel size selection 5' adaptors ligated sequentially to RNA without cleanup no gel size selection (S. Luo & G. Schroth, pers. comm.) cDNA SMART (Switching Mechanism at 5' end of RNA Template)30 Non-template 'C's on 5' end of cDNA SMART – RNA ligation (Hybrid) ligation, gel size selection Adaptor ligated on 3' end of RNA and non-template 'C's on 5' end of cDNA; template switching, PCR template switch NNSR (Not Not So Random priming)32 1st strand cDNA 1st and 2nd strand cDNA synthesis with adaptors on ends of the primers 2nd strand cDNA **Differential Marking** -cc--cc-- mRNA Bisulfite 15,16 bisulfite Convert 'C's to 'U's in RNA RT cDNA 2nd strand synthesis

with dUTP

USER

dUTP 2nd strand13

and size selection

2nd strand synthesis with dUTP, remove 'U's after adaptor ligation

Appendix

Levin et al.

Page 10

Figure 1. Methods for strand-specific RNA-Seq

Salient details for seven protocols for strand-specific RNA-Seq, differential adaptor methods (a) and differential marking methods (b). mRNA is shown in grey, and cDNA in black. For differential adaptor methods, 5' adaptors are shown in blue, and

Third generation sequencing

- Next, next generation sequencing?
- Single molecule sequencing- takes care of all above mentioned issues.
- Much longer reads (1-100kb)
- · Many issues- high error rate and expensive
- Two categories:
 - Sequencing by synthesis (pacbio)
 - WATCH DNA as it is sequenced in realtime
 - ZMW technology lets smallest amount of light to be detected.
 - Direct sequencing
 - Oxford nanopore
 - Hydrogen ion changes ph in well. Change in ph indicates base has been incorporated.

