Introduction to Single-Cell RNA-seq

Thanks to Dennis Wylie for some slides

Why single-cell RNA-seq?

- Allows profiling of gene expression in individual cells.
 - To look at heterogeneity across cell type subpopulations

Unique Challenges with single-cell RNA-seq

Gene dropouts

- Due to low amounts of RNA per cell.
- Some cells are easier to capture than others.
- Large, but sparse gene expression matrix
 - Expression values for all genes across 10² to 10⁵ cells.
 - Many zeros

Single-cell RNA-seq Technology Improvements

https://arxiv.org/abs/1704.01379

Single-cell RNA-seq Sample Prep

Single-cell RNA-Seq Library Prep

•UMI (Unique molecular index)

- •Random 4-20 bp sequences attached to each RNA fragment/template to uniquely identify that RNA fragment/template.
- •One per fragment.
- •For detection of PCR duplicates.

Cell barcode

- •A cell-specific sequence attached to RNA fragments.
- One per cell
- •For differentiating by cell.

Sample barcode/index

- One per sample
- •Allows pooling multiple samples on the same sequencing run.

Coverage Recommendations

- How many cells per sample?
 - ~10,000 cells per 'typical' sample.
- How many reads per cell?
 - 30,000-50,000 reads per cell for 'typical' samples.
- This would take up >1 lane/sample

Coverage decisions should be made based on the purpose/questions of the study.

Coverage Recommendations

- Interested in measuring genes expressed at low levels?
 - Increase number of reads per cell.
- Detection of novel transcripts, or quantification of isoforms
 - Need full-length libraries (not 10x)
 - Increase number of reads per cell.
- Interested in finding rare cell types?
 - Increase number of cells
 - Increase number of reads per cell.

Single-cell RNA-Seq Data Analysis

Single-cell RNA-Seq Data Analysis

Single-cell RNA-seq Analysis Steps

Many, many tools available: http://www.scRNA-tools.org

- QC Assessment (FastQC)
- Alignment to reference (STAR within Cell Ranger)
- Quantification (within Cell Ranger, UMI-tools)

Single-cell RNA-seq Analysis Steps

- Imputation (OPTIONAL) (SAVER)
- Normalization (scran or sctransform)
- Dimensionality reduction (tSNE, UMAP, PCA, etc)
- Clustering (hierarchical, k-means, Seurat, etc)
- Differential expression analysis (deseq2, edgeR, limma, MAST)

Cell Ranger

- Cell ranger is a set of analysis pipelines that process Chromium (10x) single-cell RNA-Seq data.
- 1. Assess quality
- 2. Aligns reads (using star)
- 3. UMI, cell barcode error correction and demultiplexing
- '4. Generates a gene expression matrix after 1 and 2.
- 5. Will also do further downstream analysis (normalization, clustering, DE analysis).
- 6. Analyses provided in a nice interactive report.

Single-cell RNA-Seq Data Analysis UMI demultiplexing and error correction

- UMIs can have sequencing errors.
- Some sequences tend to have more than others.
- UMI error correction/filtering
 - No homopolymers
 - No N's
 - No bases with quality lower than 10
 - If a UMI is 1 base pair substitution away from a higher-count UMI, it's corrected to the higher count UMI if they share a cell barcode.

Imputation

- Method to deal with dropouts (genes with zero counts) by borrowing information from other cells.
- For a dropout gene X in cell Y,
 - Impute expression based on expression of gene X in other similar cells.

Single-cell RNA-seq Analyses Benchmarked

- STAR mapper works well for UMI based/ chromium (10x) scRNA-Seq data
- Imputation only if dropout rate is high

Normalization is important!

- Remove Technical variations without removing biological variation
 - dropout events, amplification bias, sequencing depth
 - batch effects
- Why is it different from normalization of bulk RNA-Seq?
 - "One main assumption in traditional DE-analysis is that differences in expression are symmetric. This implies that either a small fraction of genes is DE while the expression of the majority of genes remains constant or similar numbers of genes are up-and down-regulated so that the mean total mRNA content does not differ between groups. This assumption is no longer true when diverse cell types are considered." - Taken from Vieth et al. (2019).

Normalization is important!

Contribution of each step on differential expression (DE) performance

Single-cell RNA-seq Analyses Benchmarked

Normalization with SCRAN

- Cluster cells into cell pools by similarity first.
- Perform normalization within each cluster/cell pool.

Fig. 3 Schematic of the deconvolution method. All cells in the data set are averaged to make a reference pseudo-cell. Expression values for cells in pool A are summed together and normalized against the reference to yield a pool-based size factor θ_A . This is equal to the sum of the cell-based factors θ_j for cells j=1-4 and can be used to formulate a linear equation. (For simplicity, the t_j term is assumed to be unity here.) Repeating this for multiple pools (e.g., pool B) leads to the construction of a linear system that can be solved to estimate θ_j for each cell j

Dimensionality Reduction

• Why?

- Reduce the number of dimensions in a high dimensional data for visualization.
- To prepare the dataset for subsequent clustering.

PC1 (12.9% explained var.)

Dimensionality Reduction PCA

Dimensionality Reduction

tSNE (t-Distributed Stochastic Neighbor Embedding)

Clustering

Clustering to identify cell subpopulations

Heirarchical clustering

K-means clustering

Differential Expression Analysis

Important to distinguish:

- 1. DE between predefined cell populations across different samples.
- 2. DE between clustering-defined subpopulations in 1 sample
 - applying standard statistical tests to clusters learned from same data set will result in very biased p values!
 - Use fold changes(effect sizes) to identify driver genes for each cluster compared to every other cluster.

Differential Expression Analysis

- Bulk RNA-Seq DE analyses methods:
 - DESeq2
 - edgeR
- Specialized scRNA-Seq DE analysis methods
 - Single Cell Differential Expression (SCDE)
 - Model-based Analysis of Single-cell Transcriptomics (MAST)
- Soneson & Robinson (2018) evaluated 36 DE approaches:
 - "bulk RNA-seq analysis methods do not generally perform worse than those developed specifically for scRNA-seq."

Identifying Marker Genes

- Differential expression analysis across clusters can identify top marker genes for each cluster
 - DEGs for each cluster
- Visualize using violin plots and tSNEs.

Label Clusters/Identify Cell Types

- Label cell clusters based on known markers.
 - https://panglaodb.se
- Use tools that automate this process:
 - Cibersort
 - scMatch

Conclusions

- Lots of tools available for scRNA-Seq. Tools are actively being developed, updated and benchmarked.
- Mapping using bulk RNA-Seq methods is just fine.
- When quantifying genes, UMIs should be taken into account and error corrected.
- Normalization is one of the most important steps in scRNA-seq data analysis and needs to be treated differently from bulk RNA-Seq datasets. Scran normalization works very well. Seurat's new scTransform is a good option as well.
- Clustering using clustering methods to identify group for doing DE analysis.
- DE analysis using standard bulk RNA-Seq methods works fine.
- Identifying cell types among clusters requires some prior knowledge about markers expected for cell types.