Introduction to Single-Cell RNA-seg

Thanks to Dennis Wylie for some slides



Why single-cell RNA-seq?

e Allows profiling of gene expression in individual cells.

e To look at heterogeneity across cell type subpopulations



Unique Challenges with
single-cell RNA-seq

Gene dropouts

* Due to low amounts of RNA per cell.

e Some cells are easier to capture than others.
Large, but sparse gene expression matrix

* Expression values for all genes across 102 to 1075 cells.

* Many zeros



Single-cell RNA-seq
Technology Improvements

https://arxiv.org/abs/1704.01379
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Single-cell RNA-seq Sample Prep

(1) Sample prepraration

Cgmplex Disaggregation Single (v) Single-cell capture
tissue cells and cell IyS|s

(i) Mechanical (ii) Enzymatic (iii) Filtering (iv) Selection
(dissection) (FACS/MACYS)
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Taken from Lafzi et al. (2018)



Single-cell RNA-Seq Library Prep

(2) Single-cell RNA sequencing

RNA capture and reverse transcription
(first-strand synthesis)
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Second-strand synthesis and cDNA
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Sequencing (paired-end, single-end)j

Taken from Lafzi et al. (2018)

eUMI (Unique molecular index)

eRandom 4-20 bp sequences attached to
each RNA fragment/template to uniquely
identify that RNA fragment/template.

eOne per fragment.
oFor detection of PCR duplicates.

oCell barcode

oA cell-specific sequence attached to
RNA fragments.

eOne per cell

oFor differentiating by cell.
eSample barcode/index

eOne per sample

eAllows pooling multiple samples on the
same sequencing run.



Coverage Recommendations

¢ How many cells per sample?
e~10,000 cells per ‘typical’ sample.
¢ How many reads per cell?
e 30,000-50,000 reads per cell for ‘typical’ samples.

e This would take up >1 lane/sample

Coverage decisions should be made based on
the purpose/questions of the study.



Coverage Recommendations

* Interested in measuring genes expressed at low levels?
* |ncrease number of reads per cell.

* Detection of novel transcripts, or quantification of isoforms
* Need full-length libraries (not 10x)
* |ncrease number of reads per cell.

* Interested in finding rare cell types?
* |ncrease number of cells
* |ncrease number of reads per cell.



Single-cell RNA-Seq Data Analysis

o (3) Data processing
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Single-cell RNA-Seq Data Analysis

(4) Data analysis
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Single-cell RNA-seq Analysis Steps

Many, many tools available: http://www.scRNA-tools.org

e QC Assessment (FastQQC)
e Alignment to reference (STAR within Cell Ranger)

e Quantification (within Cell Ranger, UMI-tools)



Single-cell RNA-seq Analysis
Steps

e Imputation (OPTIONAL) (SAVEF

)

 Normalization (scran or sctransform)

Vi b

 Dimensionality reduction (tSNE, UMAP, PCA, etc)

e Clustering (hierarchical, k-means, Seurat, etc)

e Differential expression analysis (deseq2, edgeR
limma, MAST)
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Cell Ranger

e Cell ranger is a set of analysis pipelines that process Chromium
(10x) single-cell RNA-Seq data.

Assess quality
Aligns reads (using star)
UMI, cell barcode error correction and demultiplexing

Generates a gene expression matrix after 1 and 2.
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Will also do further downstream analysis (normalization,
Clusterlng, DE analysis).

6. Analyses provided in a nice interactive report.



Single-cell RNA-Seq Data Analysis
UMI demultiplexing and error correction

A
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+ e Some sequences tend to have more
than others.
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Imputation

e Method to deal with dropouts (genes with zero
counts) by borrowing information from other cells.

* For a dropout gene X in cell Y,

* Impute expression based on expression of gene X
iIn other similar cells.



Single-cell RNA-seq
Analyses Benchmarked
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Taken from Vieth et al. (2019).



Normalization Is important!

e Remove Technical variations without removing biological variation
e dropout events, amplification bias, sequencing depth
e pbatch effects

* Why is it different from normalization of bulk RNA-Seq?

* “One main assumption in traditional DE-analysis is that differences
IN expression are symmetric. This implies that either a small
fraction of genes is DE while the expression of the majority of
genes remains constant or similar numbers of genes are up-and
down-regulated so that the mean total mMRNA content does not
differ between groups. This assumption is no longer true when
diverse cell types are considered.” - Taken from Vieth et al. (2019).



Normalization i1s important!
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Single-cell RNA-seq
Analyses Benchmarked
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Normalization with SCRAN

e Cluster cells into cell pools by similarity first.

e Perform normalization within each cluster/cell pool.
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Fig. 3 Schematic of the deconvolution method. All cells in the data set are averaged to make a reference pseudo-cell. Expression values for cells in
pool A are summed together and normalized against the reference to yield a pool-based size factor 64. This is equal to the sum of the cell-based
factors 6; for cells j = 1-4 and can be used to formulate a linear equation. (For simplicity, the t; term is assumed to be unity here.) Repeating this for
multiple pools (e.g., pool B) leads to the construction of a linear system that can be solved to estimate 6; for each cell



Dimensionality Reduction

e Why?

* Reduce the number of
dimensions in a high
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Image generated by Dennis Wylie



PC 2 (5.8% explained var.)

PCA
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tsne 2

Dimensionality Reduction

tSNE (t-Distributed Stochastic Neighbor Embedding )
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Clustering

Clustering to identify cell subpopulations

Heirarchical clustering K-means clustering
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Differential Expression Analysis

Important to distinguish:
1. DE between predefined cell populations across different
samples.
2. DE between clustering-defined subpopulations in 1
sample
e applying standard statistical tests to clusters learned
from same data set will result in very biased p values!
 Use fold changes(effect sizes) to identify driver genes
for each cluster compared to every other cluster.



Differential Expression Analysis

* Bulk RNA-Seq DE analyses methods:
e DESeqg?2
* edgeR

e Specialized scRNA-Seq DE analysis methods
» Single Cell Differential Expression (SCDE)
e Model-based Analysis of Single-cell Transcriptomics (MAST)

e Soneson & Robinson (2018) evaluated 36 DE approaches:
e “bulk RNA-seq analysis methods do not generally perform worse
than those developed specifically for scRNA-seq.”



ldentifying Marker Genes
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Label Clusters/ldentify Cell
Types

e | abel cell clusters based on

known markers.

e https://panglaodb.se

e Use tools that automate this

Process.

e Cibersort

e scMatch
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https://panglaodb.se
https://cibersort.stanford.edu
https://academic.oup.com/bioinformatics/article/35/22/4688/5480299

Conclusions

Lots of tools available for scRNA-Seq. Tools are actively being developed,
updated and benchmarked.

Mapping using bulk RNA-Seqg methods is just fine.
When quantifying genes, UMIs should be taken into account and error corrected.

Normalization is one of the most important steps in scRNA-seq data analysis
and needs to be treated differently from bulk RNA-Seq datasets. Scran
normalization works very well. Seurat’s new scTransform is a good option as well.

Clustering using clustering methods to identify group for doing DE analysis.
DE analysis using standard bulk RNA-Seq methods works fine.

Identifying cell types among clusters requires some prior knowledge about
markers expected for cell types.



