Introduction to Single-Cell RNA-seq

Thanks to Dennis Wylie for some slides

Why single-cell RNA-seq?

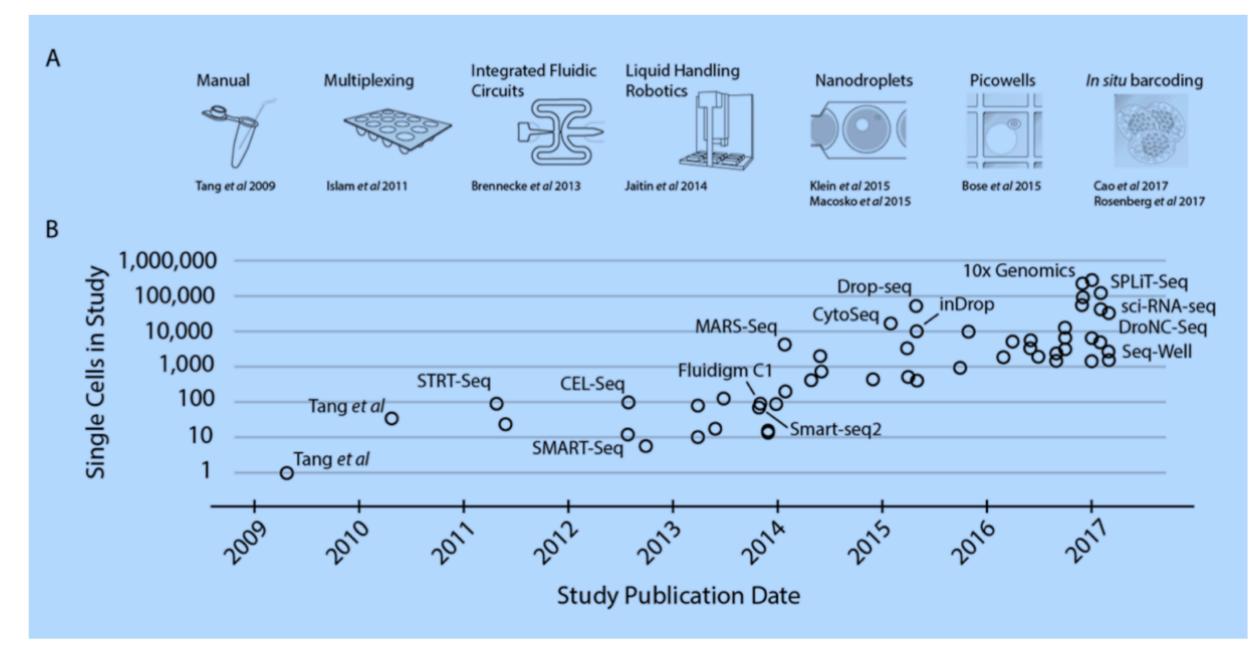
- Allows profiling of gene expression in individual cells.
 - To look at heterogeneity across cell type subpopulations

Unique Challenges with single-cell RNA-seq

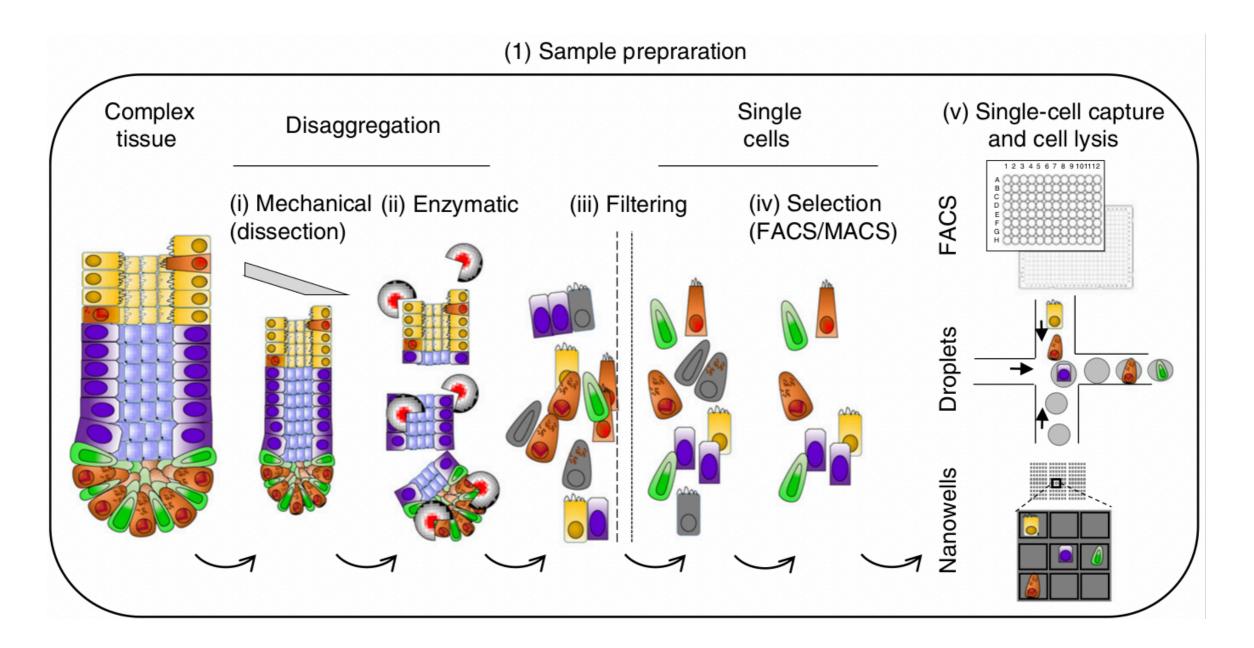
- Gene dropouts
 - Due to low amounts of RNA per cell.
 - Some cells are easier to capture than others.
- Large, but sparse gene expression matrix
 - Expression values for all genes across 10^2 to 10^5 cells.
 - Many zeros

Single-cell RNA-seq Technology Improvements

https://arxiv.org/abs/1704.01379

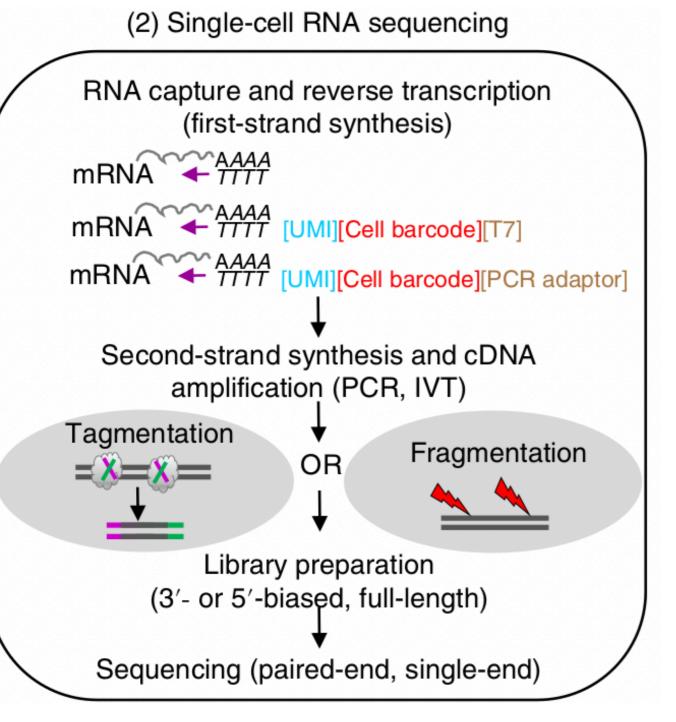


Single-cell RNA-seq Sample Prep



Taken from Lafzi et al. (2018)

Single-cell RNA-Seq Library Prep



[•]UMI (Unique molecular index)

- •Random 4-20 bp sequences attached to each RNA fragment/template to uniquely identify that RNA fragment/template.
- •One per fragment.
- •For detection of PCR duplicates.

•Cell barcode

- •A cell-specific sequence attached to RNA fragments.
- •One per cell
- •For differentiating by cell.

•Sample barcode/index

- •One per sample
- •Allows pooling multiple samples on the same sequencing run.

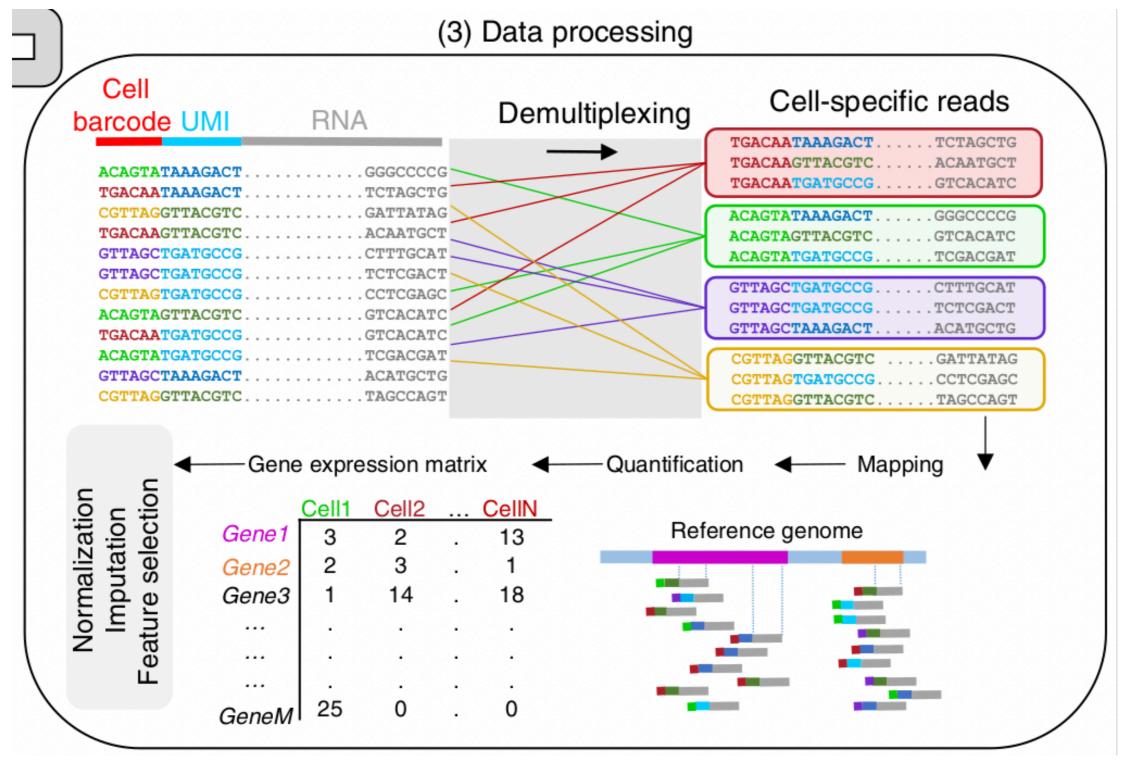
Taken from Lafzi et al. (2018)

Coverage Recommendations

- How many cells per sample?
 - •~10,000 cells per 'typical' sample.
- How many reads per cell?
 - 30,000-50,000 reads per cell for 'typical' samples.
- This would take up >1 lane/sample

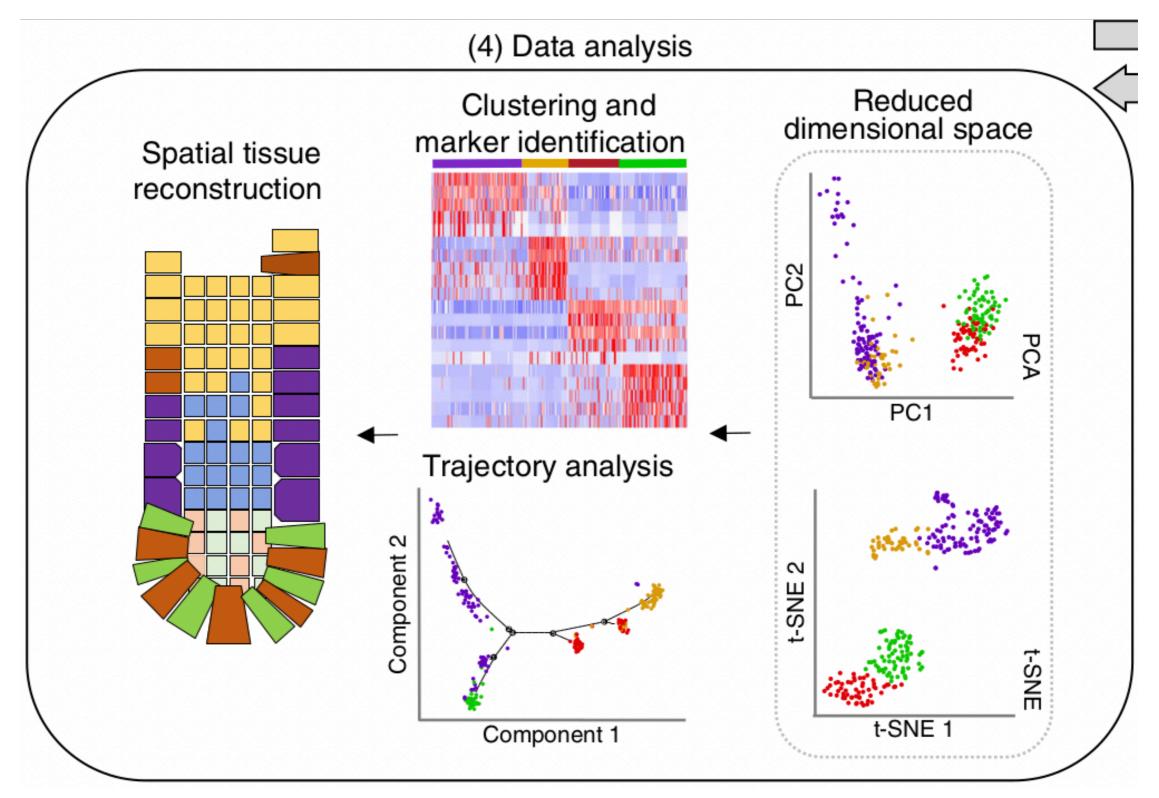
Coverage decisions should be made based on the purpose/questions of the study.

Single-cell RNA-Seq Data Analysis



Taken from Lafzi et al. (2018)

Single-cell RNA-Seq Data Analysis



Taken from Lafzi et al. (2018)

Single-cell RNA-seq Analysis Steps

Many, many tools available: http://www.scRNA-tools.org

- QC Assessment (FastQC)
- Alignment to reference (STAR within Cell Ranger)
- Quantification (within Cell Ranger, UMI-tools)

Single-cell RNA-seq Analysis Steps

- Imputation (OPTIONAL) (SAVER)
- Normalization (scran or sctransform)
- **Dimensionality reduction** (tSNE, PCA, etc)
- Clustering (hierarchical, k-means, Seurat, etc)
- **Differential expression analysis** (deseq2, edgeR, limma, MAST)

Cell Ranger

- Cell ranger is a set of analysis pipelines that process Chromium (10x) single-cell RNA-Seq data.
- 1. Assess quality
- 2. Aligns reads (using star)
- 3. UMI, cell barcode error correction and demultiplexing
- **'4.** Generates a gene expression matrix after 1 and 2.

5. Will also do further downstream analysis (normalization, clustering, DE analysis).

6. Analyses provided in a nice interactive report.

Cell Ranger Web QC Page

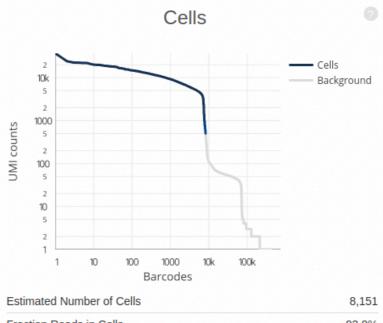
Cell Ranger · crtest ·

SUMMARY ANALYSIS

Estimated Number of Cells 8,151 Mean Reads per Cell Median Genes per Cell 28,670 2,405

Sequencing	
Number of Reads	233,692,380
Valid Barcodes	97.3%
Sequencing Saturation	58.4%
Q30 Bases in Barcode	95.4%
Q30 Bases in RNA Read	79.7%
Q30 Bases in UMI	95.9%

85.3%
77.4%
3.3%
15.2%
58.9%
56.5%
1.5%

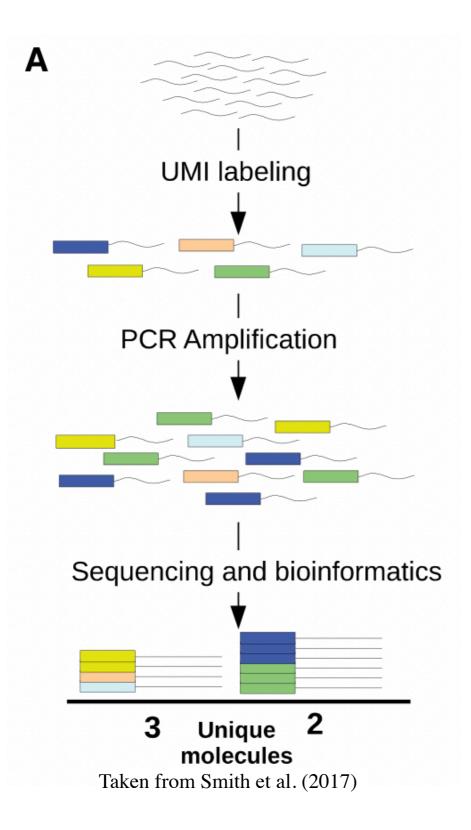


Estimated Number of Cells	8,151
Fraction Reads in Cells	92.9%
Mean Reads per Cell	28,670
Median Genes per Cell	2,405
Total Genes Detected	23,394
Median UMI Counts per Cell	5,484

Sample

Name	crtest	
Description		
Transcriptome	mm10	
Chemistry	Single Cell 3' v2	
Cell Ranger Version	3.0.0	

Single-cell RNA-Seq Data Analysis UMI demultiplexing and error correction

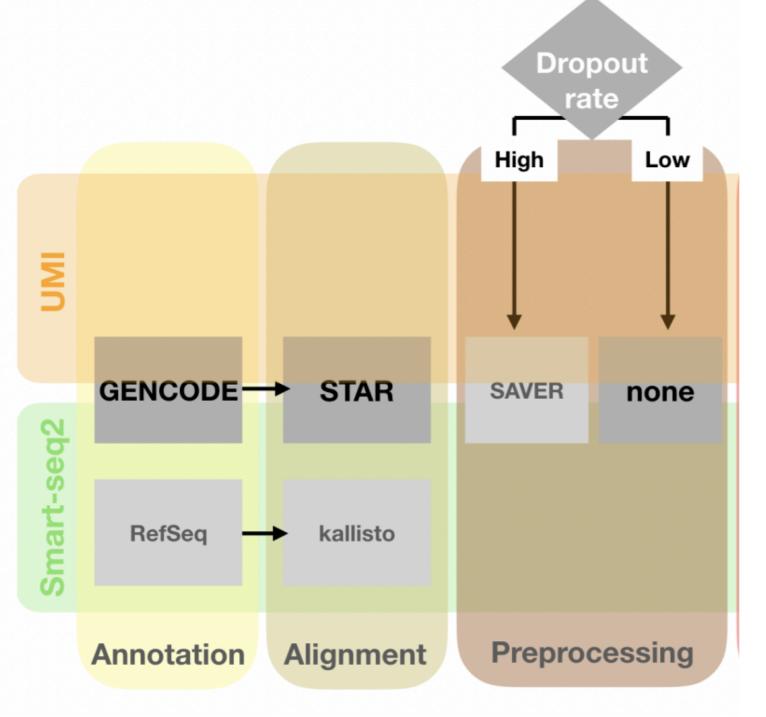


- UMIs can have sequencing errors.
- Some sequences tend to have more than others.
- UMI error correction/filtering
 - No homopolymers
 - No N's
 - No bases with quality lower than 10
 - If a UMI is 1 base pair substitution away from a higher-count UMI, it's corrected to the higher count UMI if they share a cell barcode.

Imputation

- Method to deal with dropouts (genes with zero counts) by borrowing information from other cells.
- For a dropout gene X in cell Y,
 - Impute expression based on expression of gene X in other similar cells.

Single-cell RNA-seq Analyses Benchmarked



- STAR mapper works well for UMI based/ chromium (10x) scRNA-Seq data
- Imputation only if dropout rate is high

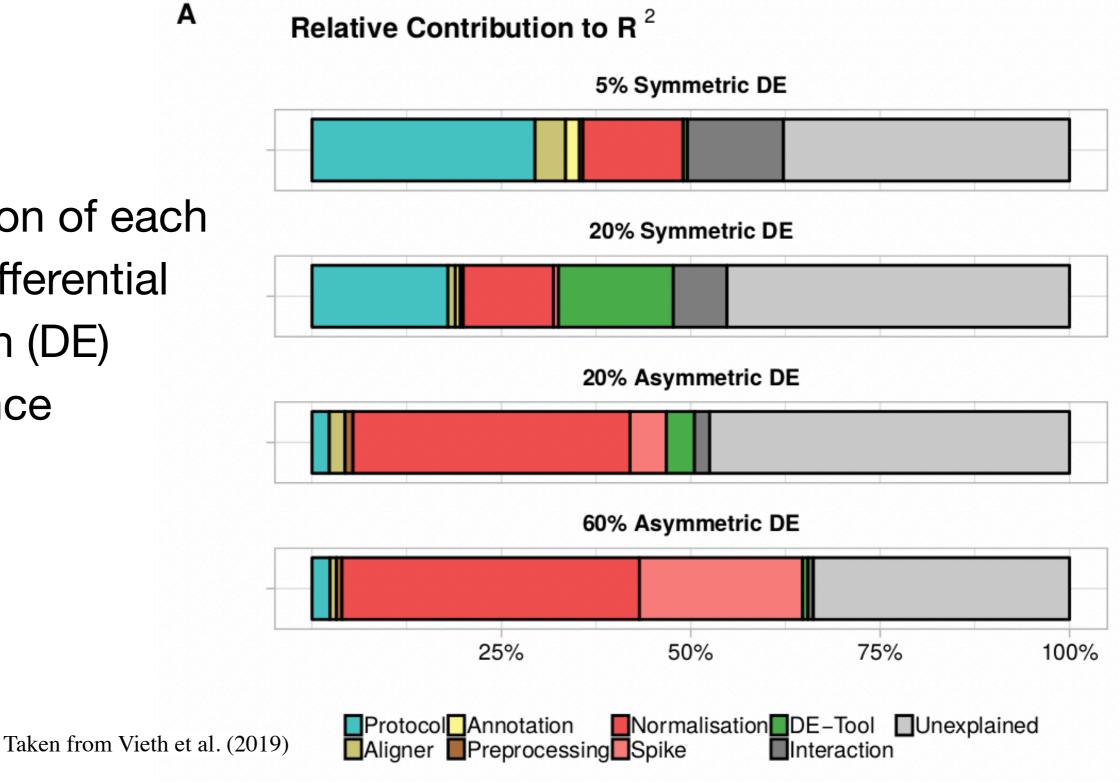
Taken from Vieth et al. (2019).

Normalization is important!

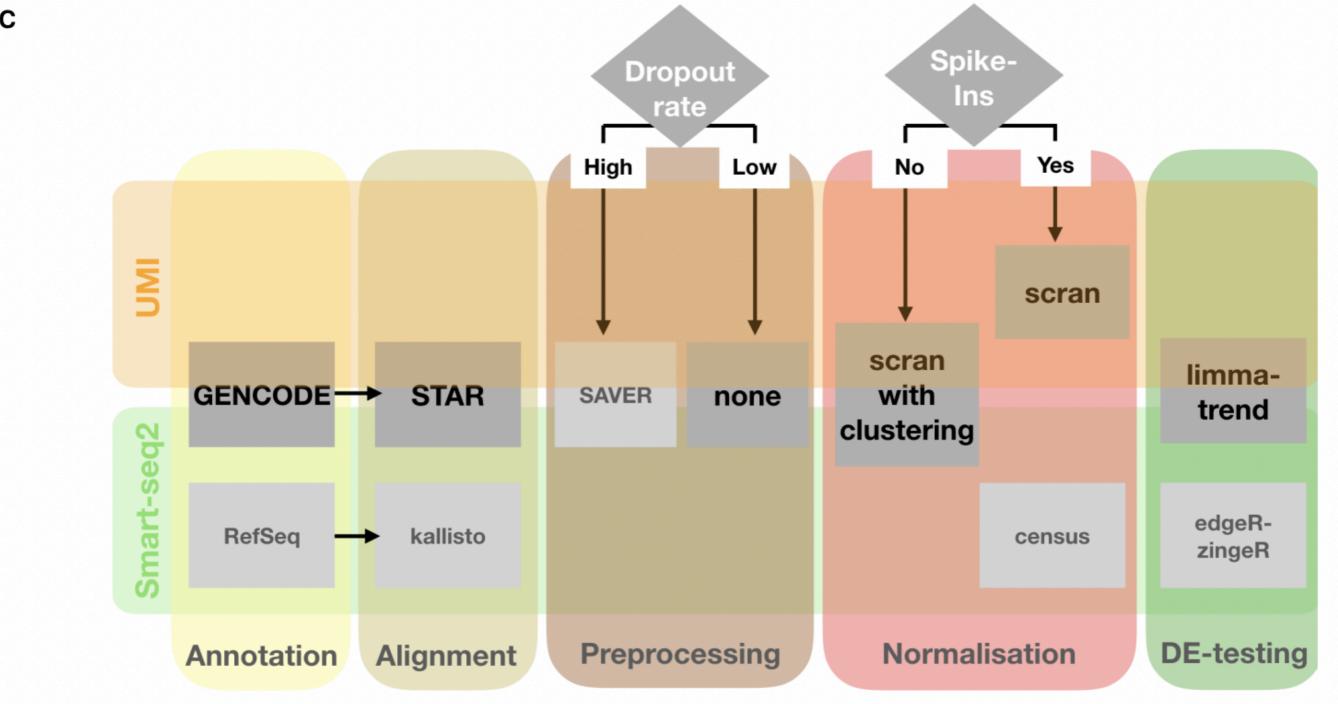
- Remove Technical variations without removing biological variation
 - dropout events, amplification bias, sequencing depth
 - batch effects
- Why is it different from normalization of bulk RNA-Seq?
 - "One main assumption in traditional DE-analysis is that differences in expression are symmetric. This implies that either a small fraction of genes is DE while the expression of the majority of genes remains constant or similar numbers of genes are up-and down-regulated so that the mean total mRNA content does not differ between groups. This assumption is no longer true when diverse cell types are considered." - Taken from Vieth et al. (2019).

Normalization is important!

Contribution of each step on differential expression (DE) performance



Single-cell RNA-seq Analyses Benchmarked



Taken from Vieth et al. (2019).

Normalization with SCRAN

- Cluster cells into cell pools by similarity first.
- Perform normalization within each cluster/cell pool.

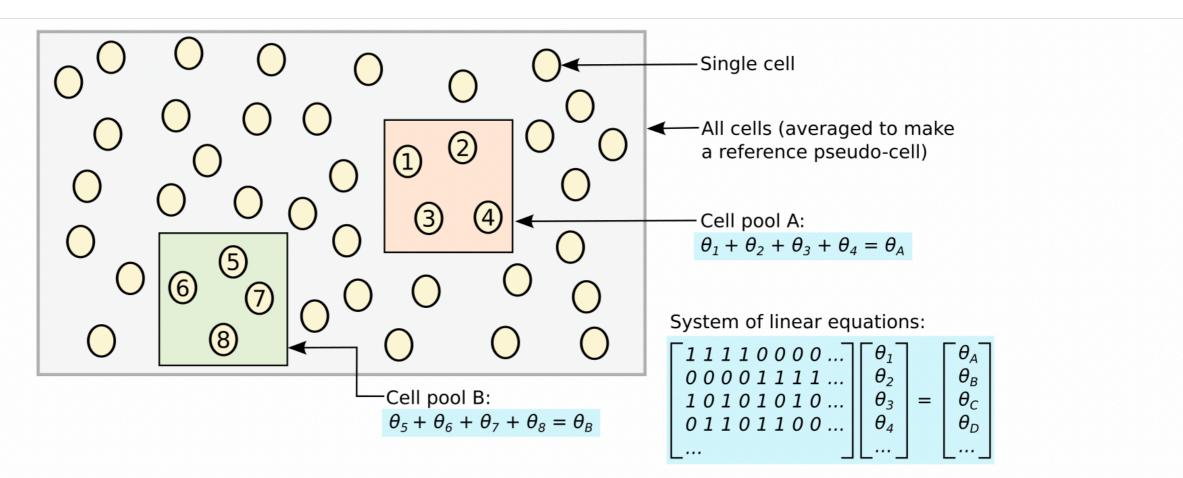
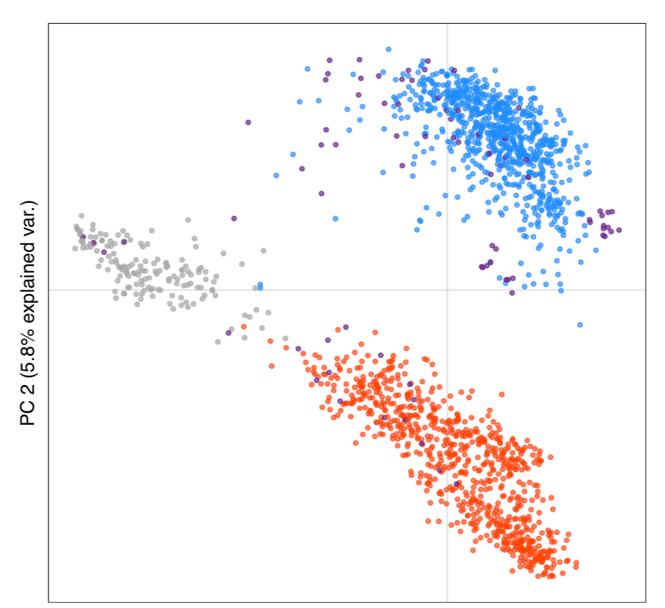


Fig. 3 Schematic of the deconvolution method. All cells in the data set are averaged to make a reference pseudo-cell. Expression values for cells in pool A are summed together and normalized against the reference to yield a pool-based size factor θ_A . This is equal to the sum of the cell-based factors θ_j for cells j = 1-4 and can be used to formulate a linear equation. (For simplicity, the t_j term is assumed to be unity here.) Repeating this for multiple pools (e.g., pool B) leads to the construction of a linear system that can be solved to estimate θ_j for each cell j

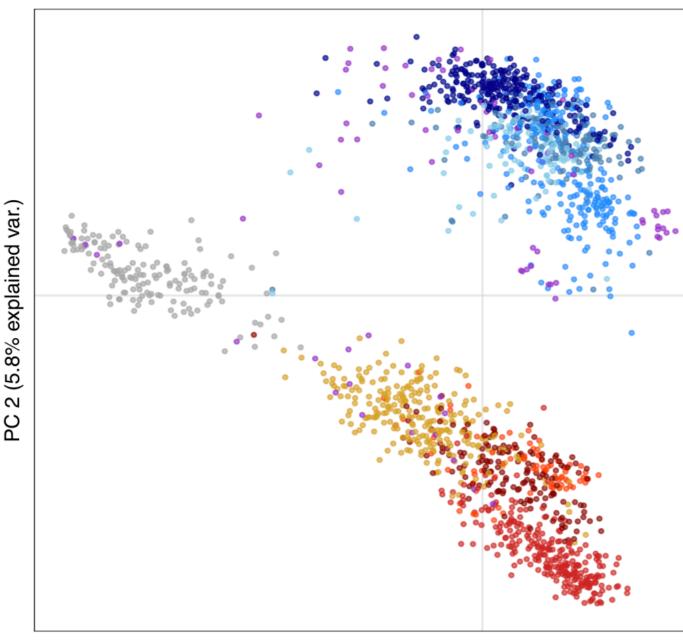
Dimensionality Reduction

- Why?
 - Reduce the number of dimensions in a high dimensional data for visualization.
 - To prepare the dataset for subsequent clustering.



PC1 (12.9% explained var.)

Dimensionality Reduction PCA

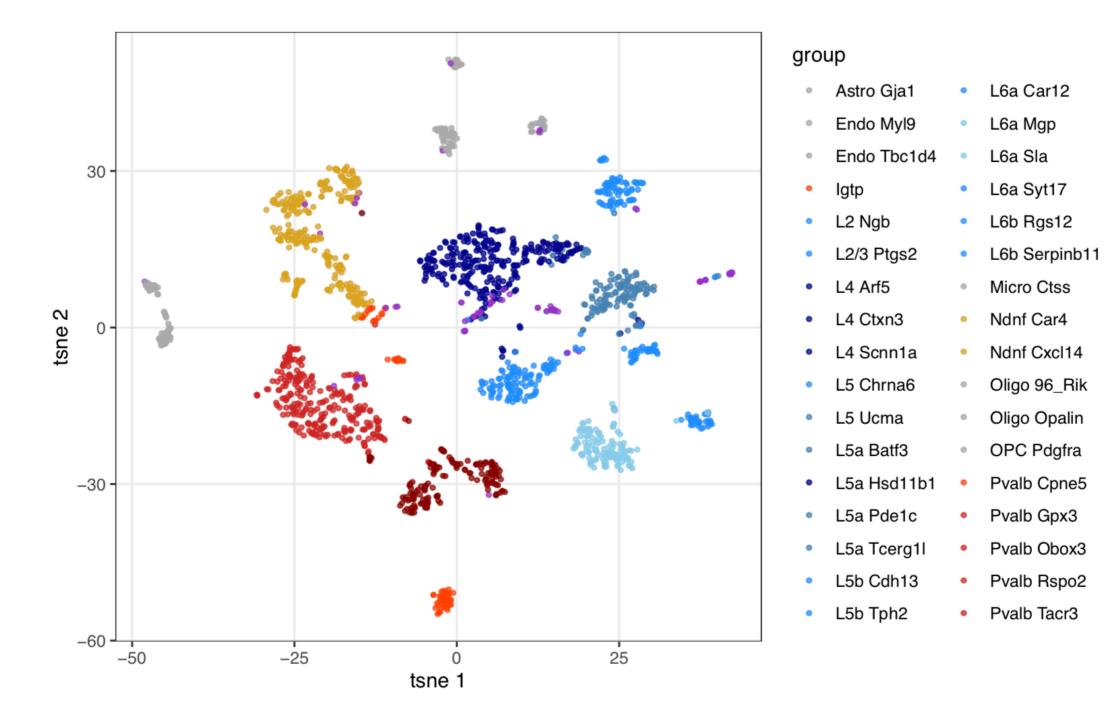


 As 	tro Gja1 🔹 🔹	L6a Car12	٠	Pvalb Tpbg
 En 	do Myl9 🛛 🔍	L6a Mgp	٠	Pvalb Wt1
• En	do Tbc1d4 🛛 🔍	L6a Sla	•	Smad3
• Igt	р •	L6a Syt17	٠	Sncg
• L2	Ngb •	L6b Rgs12	٠	Sst Cbln4
• L2	/3 Ptgs2	L6b Serpinb11	٠	Sst Cdk6
• L4	Arf5 •	Micro Ctss	•	Sst Chodl
• L4	Ctxn3 •	Ndnf Car4	٠	Sst Myh8
• L4	Scnn1a 🛛 🔸	Ndnf Cxcl14	٠	Sst Tacstd2
• L5	Chrna6 •	Oligo 96_Rik	٠	Sst Th
• L5	Ucma •	Oligo Opalin	٠	Unclassified
• L5	a Batf3	OPC Pdgfra	٠	Vip Chat
• L5	a Hsd11b1 🛛 🔸	Pvalb Cpne5	•	Vip Gpc3
• L5	a Pde1c 🔹 🔹	Pvalb Gpx3	•	Vip Mybpc1
• L5	a Tcerg1l 🛛 🔹	Pvalb Obox3	•	Vip Parm1
• L5	b Cdh13	Pvalb Rspo2	•	Vip Sncg
• L5	b Tph2 🛛 🔸	Pvalb Tacr3		

PC1 (12.9% explained var.)

Image generated by Dennis Wylie

Dimensionality Reduction tSNE (t-Distributed Stochastic Neighbor Embedding)



Pvalb Tpbg

Pvalb Wt1

Sst Cbln4

Sst Cdk6

Sst Chodl

Sst Myh8

Sst Th

Sst Tacstd2

Unclassified

Vip Chat

Vip Gpc3

Vip Mybpc1

Vip Parm1

Vip Sncg

Smad3

Sncg

•

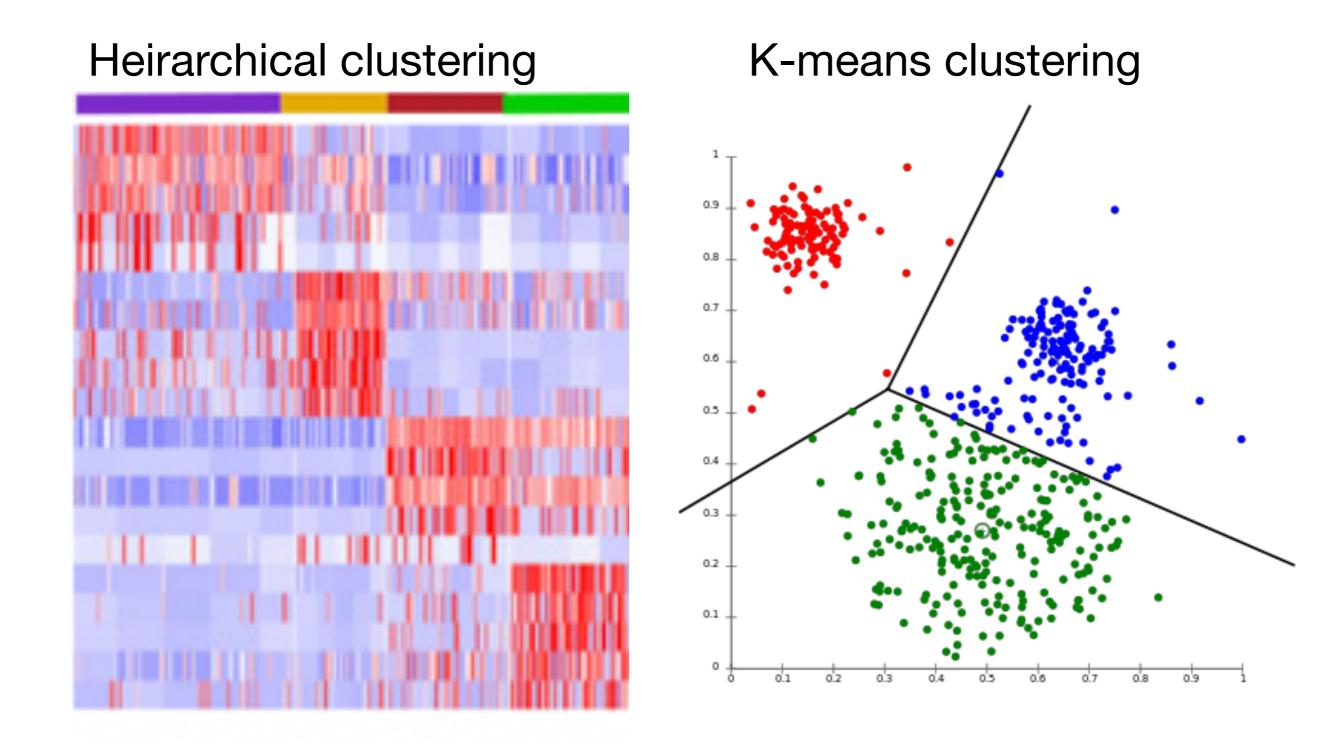
•

•

•

Clustering

Clustering to identify cell subpopulations



Differential Expression Analysis

Important to distinguish:

- 1. DE between predefined cell populations across different samples.
- 2. DE between clustering-defined subpopulations in 1 sample
 - applying standard statistical tests to clusters learned from same data set will result in very biased p values!
 - Use fold changes(effect sizes) to identify driver genes for each cluster compared to every other cluster.

Differential Expression Analysis

- Bulk RNA-Seq DE analyses methods:
 - DESeq2
 - edgeR
- Specialized scRNA-Seq DE analysis methods
 - Single Cell Differential Expression (SCDE)
 - Model-based Analysis of Single-cell Transcriptomics (MAST)
- Soneson & Robinson (2018) evaluated 36 DE approaches:
 - "bulk RNA-seq analysis methods do not generally perform worse than those developed specifically for scRNA-seq."

Conclusions

- Lots of tools available for scRNA-Seq. Tools are actively being developed, updated and benchmarked.
- **Mapping** using bulk RNA-Seq methods is just fine.
- When quantifying genes, UMIs should be taken into account and error corrected.
- Normalization is one of the most important steps in scRNA-seq data analysis and needs to be treated differently from bulk RNA-Seq datasets. Scran normalization works very well.
- **Clustering** using clustering methods to identify group for doing DE analysis.
- **DE analysis** using standard bulk RNA-Seq methods works fine.