Visualization of RNA-Seq Data

Data Visualizations

- Visualizations are useful for:
 - Illustrating relationships between variables
 - Identifying patterns/issues in the data
 - Summarizing results

Preprocessing of data

- Not Raw Read Counts
- Many visualizations (all of the ones in the following slides) work best on normalized, log transformed gene expression data.

MA Plots

- For visualizing differences in measurements (in this case, gene expression) between two groups.
- M- log fold change (differences between two groups)
- A mean gene expression (average value across samples)

Volcano Plots

Plots fold change vs significance value for all genes.

 Helps quickly see how many significantly differentially expressed genes are present.

Volcano plot

Heatmaps

- Heat Maps represent gene expression by colors.
 - For visualizing how gene expression changes in different samples.
 - Columns are genes
 - Rows are Samples

Heatmaps/Clustering

- Dendograms can be added to heat maps
- Samples can be clustered by gene expression
- Genes can be clustered by gene expression
 - time consuming for large number of genes

Principal Component Analysis

- Each principal component is one dimension in the data.
- Illustrates how the data groups based on the dimensions that represent the highest variability.

Principal Component Analysis

- What are the Principal components of this data?
 - Directions where there is most variance
 - When data is projected onto a straight line, the data is most spread out.

Principal Component Analysis

- Each principal component is one dimension in the data.
- Illustrates how the data groups based on the dimensions that represent the highest variability.

Contributed by Nick Dawes

Looking at Some Real Data

- Mysterious results for an experiment with 6 samples across:
 - 2 different time points, 2 different conditions: control vs treated. 3replicates each.

1e+06

Looking at Some Real Data

Can these plots inform us about what might be going on?

