01 Basics of Chemistry

01-01 States of Matter: Descriptive, Properties [] physical states: solid, liquid, gas
01-02 Element Names, Symbols
01-03 Chemical and Physical Properties and Changes [] def sublimation
01-04 Extensive, Intensive Properties
01-05 Mixtures, Cmpds, Elements, Atoms, \& Molecules [] classification of matter, homogeneous/heterogeneous, basic allotrope concept
01-06 Units and SI System: Definitions [] basic, derived
01-07 Metric Prefixes: Definitions [] increasing/decreasing order
01-08 Scientific Notation and Decimal Notation
01-09 Measurements and Significant Figures [] accuracy, precision, \% error
01-10 Error Analysis [] confidence interval
01-11 Area, Volume
01-12 Unit Conversions [] English to metric, metric to English
01-13 Density and Specific Gravity
01-14 Temperature Conversions [] (see 19:11 specific heat)
01-15 Energy, Heat and Electrical Power
01-16 Basic Chemical Laws
01-17 Scientific Method
01-18 Math Review Problems
01-19 Lab Safety
01-50 Multi-concept and Complex Questions [] mass \leftrightarrow weight
01-99 Associated problems in Chapter 01

02 Atoms and Molecules

02-01 Origins of Atomic Theory [] early history/observations
02-02 Dalton's Atomic Theory
02-03 Early Experiments [] canal rays, gold foil: Rutherford, oil drop: Milikan, Thomson
02-04 Nuclear Model [] atomic structure, fundamental particles, protons, neutrons, electrons, mass number, charge, simple valence
02-05 Fundamentals of Isotopes [] $Z=p+n$, carbon-13, etc.
02-06 Isotopic Abundance
02-07 Periodic Table: Introduction [] groups, periods, families, properties due to position, Mendeleev
02-08 Molecules and Formulae [] allotropes: not crystalline solids, diatomic molec
02-09 Ions and Formula Units [] predict ionic formulae
02-10 Nomenclature: Ionic (Polyatomic Ions)
02-11 Nomenclature: Molecules [] inorganic, covalent
02-12 Nomenclature: Acids and Other Compounds
02-13 Common Names for Substances
02-50 Multi-concept and Complex Questions
02-99 Associated problems in Chapter 02

03 Composition Stoichiometry

03-01 Atomic Mass [] unit amu
03-02 The Mole: Basics, Descriptive [] Avogadro's number
03-03 Molar Mass [] formula mass
03-04 Percent Composition [] \% by mass
03-05 Laws of Definite and Multiple Proportions [] no reactant left over, definite com-
position/proportions, multiple proportions
03-06 Conversions with Mass, Moles, Entities
03-07 Determining Formulae: Empirical, Molecular
03-50 Multi-concept and Complex Questions
03-99 Associated problems in Chapter 03

04 Reaction Stoichiometry

04-01 Basics, Descriptive
04-02 Balancing: Equation Given
04-03 Balancing: Names Given
04-04 Stoichiometry: mol-mol [] mol \rightarrow mol
04-05 Stoichiometry: Mass [] g \rightarrow mol, g $\rightarrow \mathrm{g}, \mathrm{mol} \rightarrow \mathrm{g}$
04-06 Stoichiometry: Avogadro's Number
04-07 Stoichiometry: Percent
04-08 Combustion Analysis
04-09 Limiting Reactant
04-10 Purity
04-11 Percent Yield
04-12 Sequential Reactions
04-50 Multi-concept and Complex Questions
04-99 Associated problems in Chapter 04

05 Solution Basics

05-01 Solution Basics [] solute, solvent, heterogeneous, homogeneous, types of solutions
05-02 Expressing Concentration: Mass \%, Vol \%
05-03 Expressing Concentration: Molarity [] $M=\frac{\mathrm{mol} \text { solute }}{\mathrm{L} \text { soln }}=\frac{\mathrm{g} / \mathrm{MW}}{\mathrm{L}}$, molar mass $=\frac{\mathrm{g}}{\mathrm{mol}}$
05-04 Molarity Conversions [] vol \rightarrow mol, no stoichiometry
05-05 Density and Molarity
05-06 Expressing
Concentration: ppm, ppb [] ppm $=\frac{1 \mathrm{~g} \text { solute }}{10^{6} \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}}=\frac{1 \mathrm{mg} \text { solute }}{1 \mathrm{LH} \mathrm{H}_{2} \mathrm{O}}=\frac{\text { mass solute }}{\text { mass soln }} \times 10^{6}$, $\mathrm{ppb}=\frac{1 \mathrm{~g} \text { solute }}{10^{9} \mathrm{~g} \mathrm{H}} \mathrm{H}_{2} \mathrm{O}=\frac{1 \mu \mathrm{~g} \text { solute }}{1 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}}=\frac{\text { mass solute }}{\text { mass soln }} \times 10^{9}$
05-07 Expressing Concentration: Molality [] $m=\frac{\mathrm{mol} \text { solute }}{\mathrm{kg} \text { solvent }}=\frac{\mathrm{g} / \mathrm{MM} \text { solute }}{\mathrm{kg} \text { solvent }}$
05-08 Expressing Concentration: Mole Fraction [] $X_{\mathrm{A}}=\frac{\mathrm{mol} \mathrm{A}}{\text { total mol }}$
05-09 Concentration Conversions
05-10 Dilutions [] $M_{1} V_{1}=M_{2} V_{2}$
05-50 Multi-concept and Complex Questions
05-99 Associated problems in Chapter 05
06 Solution Stoichiometry
06-01 Laboratory Preparation of Solutions
06-02 Stoichiometry and Calculations [] actual/theoretical yields, molarity with stoichiometry, simple titration calculations
06-03 Percent Solution Calculations [] given \% by mass/vol
06-04 Primary Standards and Titrations
06-50 Multi-concept and Complex Questions
06-99 Associated problems in Chapter 06

07 Chemical Reactions

Problem Bank - Chemistry

07-01 Solubility Rules
07-02 Electrolytes [] conductive solution
07-03 Oxidation Numbers [] charge per atom
07-04 Reactions in Water: Introduction
07-05 Hydrolysis
07-06 Reaction Type: Precipitation
07-07 Reaction Type: Acid/Base [] neutralization
07-08 Reaction Type: Redox [] oxidation numbers change, oxidation/reduction
07-09 Predict Reaction Type
07-10 Alternate Reaction Type: Combination
07-11 Alternate Reaction Type: Decomposition
07-12 Alternate Reaction Type: Single Displacement [] activity series
07-13 Alternate Reaction Type: Double Displacement [] activity series
07-50 Multi-concept and Complex Questions
07-99 Associated problems in Chapter 07

08 Quantum Concepts

08-01 Waves, Electromagnetic Radiation [] $c=\lambda \nu$, EM scale
08-02 Photons, Planck, and Photoelectric [] $E=m c^{2}, E=h \nu=\frac{h c}{\lambda}$, Wien's law, work function
08-03 Uncertainty Principle, Duality [] wave nature/characteristics of matter, de Broglie: $\lambda=\frac{h}{p}=\frac{h}{m v}, \Delta x \Delta v=\frac{\hbar}{2 m}$
08-04 Bohr's Model, H-atom [] $\Delta E=h \nu$, line spectrum, Balmer series
08-05 Rydberg and Changing Energy Levels [] Rydberg: $\nu=\mathcal{R}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
08-06 Schrodinger and Wave Functions [] particle in a box, quantum mechanical model
08-07 Quantum Numbers n, l, m_{ℓ}
08-08 Atomic Orbitals [] orbital shapes, nodal planes/cones, \# electrons, s, p, d, f
08-09 Electron Spin
08-10 Quantum Numbers and Spin Revisited [] Pauli Exclusion Principle
08-11 Periodic Table: Orbital View
08-12 Electron Configurations [] Aufbau, Building-Up, Hund's rule, molecular config: [Ar] $2 s^{2}$
08-13 Electronic Configuration of Ions [] isoelectronic
08-14 Paramagnetic, Diamagnetic
08-50 Multi-concept and Complex Questions
08-99 Associated problems in Chapter 08

09 Periodicity

09-01 Atomic Radius [] effective nuclear charge
09-02 Ionic Radius
09-03 Ionization Energy
09-04 Electron Affinity [] energy to remove electron
09-05 Electronegativity [] attract electrons toward itself
09-06 Metallic Trends
09-07 Periodicity: Other Trends [] lattice energy/periodicity, oxide periodicity, polarizability of atoms/ions
09-08 Periodicity Revisited
09-50 Multi-concept and Complex Questions

09-99 Associated problems in Chapter 09

10 Types of Bonding

10-01 Determine Bond Types, Basics
10-02 Ionic Bonding: Model, Properties [] electron dot representation, electron transfer, greatest electronegative difference
10-03 Covalent Bonding: Model, Properties [] share electrons
10-04 Metallic Bonding: Model, Properties [] ductility, malleability
10-05 Lattice Energy, Calculations [] Coulomb PE calculations, Madelung constant, lattice enthalpy
10-06 Born-Haber Cycle
10-07 Bond Polarity [] dipole moment, polar covalent character, polar bonds
10-08 Polarizability of Ionic Bonds
10-09 Bond Length, Strength, and Stability [] single/double/triple bonds
10-50 Multi-concept and Complex Questions
10-99 Associated problems in Chapter 10

11 Lewis Structures

11-01 Lewis Symbols of Atoms [] valence
11-02 Lewis Symbols of Ions, Ionic Compounds
11-03 $S=N-A$
11-04 Octet Rule Strictly Obeyed
11-05 Incomplete Octet
11-06 Expanded Octet
11-07 Resonance
11-08 Formal Charge
11-09 Radicals and Reactivity [] free radicals
11-50 Multi-concept and Complex Questions
11-99 Associated problems in Chapter 11

12 3D Structures: VESPR

12-01 VSEPR Model: Terms, Basics
12-02 VSEPR: Two Electron Groups (2 RHED)
12-03 VSEPR: Three Electron Groups
12-04 VSEPR: Four Electron Groups
12-05 VSEPR: Five Electron Groups
12-06 VSEPR: Six Electron Groups
12-07 VSEPR: More than One Central Atom
12-08 Molecular Polarity [] dipole moment
12-09 Applications of Polarity
12-50 Multi-concept and Complex Questions
12-99 Associated problems in Chapter 12

13 Bonding Orbital Theories

13-01 Valence Bond (VB): Orbital Hybridization [] hybridization of orbitals
13-02 VB: Sigma and Pi Bonds [] double bond: no rotation
13-03 VB: More than One Central Atom
13-04 Molecular Orbital (MO) Theory: Introduction [] antibonding, energy level diagram, molecular orbital diagram

13-05 MO: Homonuclear Diatomics for Period 2
13-06 MO: Other Homonuclear Diatomics
13-07 MO: Heteronuclear Diatomics
13-08 MO: Delocalization [] electron delocalization
13-09 MO: Other
13-10 MO: Characterizations [] bond order, length, strength, stability, paramagnetism, diamagnetism
13-50 Multi-concept and Complex Questions
13-99 Associated problems in Chapter 13

14 Gases

14-01 Pressure [] pressure units (atm, bar, torr), barometer, manometer, Pascal, pressure of a column of liquid: $P=d h g$
14-02 Boyle's Law [] $P_{1} V_{1}=P_{2} V_{2}$
14-03 Charles' Law [] $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
14-04 Combined Gas Law [] before-and-after systems, $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
14-05 Avogadro's Principle and STP [] $V \propto n$, standard molar volume of ideal gas: 22.414 $\mathrm{L} / \mathrm{mol}$ at STP
14-06 Ideal Gas Law [] $P V=n R T$
14-07 Gas Laws: Molecular Weights, Formulae, Density [] molar mass \leftrightarrow gas density
14-08 Stoichiometry of Gases [] amt of reagent needed to react with an amt of gas
14-09 Partial Pressures [] partial pressures in mixtures, Dalton: $P_{\text {total }}=\sum_{i} P_{i}$, mole fraction X_{i}
14-10 Kinetic Molecular Theory for Gases [] root mean square speed, kinetic model, molar heat capacity, average molec speed: $\bar{u} \propto \sqrt{\frac{T}{\mathrm{MW}}}$, average molec KE: $\overline{K E} \propto T$
14-11 Maxwell Distribution
14-12 Diffusion and Effusion [] Graham's Law: rate eff $\propto \frac{1}{\sqrt{\mathrm{MW}}}$,
14-13 Real Gases [] van der Waals equation
14-50 Multi-concept and Complex Questions
14-99 Associated problems in Chapter 14

15 Solids and Liquids (Intermol Forces)

15-01 Phases \& Phase Changes: Descriptive [] no calculations, change of state, sublimation
15-02 Kinetic-Molecular Description [] heating/cooling curves
15-03 Intermolecular Forces (IF) [] dipole-dipole, ion-ion/ion-dipole/London dispersion forces, hydrogen bonding, qualitative prediction of hydration
15-04 Properties of Liquid State: Surface Tension [] $\gamma=\frac{d h g r}{2}$
15-05 Properties of Liquid State: Capillary Action
15-06 Properties of Liquid State: Viscosity [] fluid flow
15-07 Vapor Pressure \& IF
15-08 Melting, Boiling \& IF [] relative order of substances,
15-09 Vapor Pressure and Temperature [] $\Delta \mathrm{VP}$ with temperature, Clausius-Clapeyron: $\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
15-10 Phase Diagrams [] critical/triple point
15-11 The Uniqueness of Water
15-12 Amorphous Solids

15-13 Crystalline Solids: Intro [] body-centered cubic, fraction of occupied space for crystal lattice, coordination number, face-centered cubic, packing, unit cell
15-14 Crystalline Solids: Metallic Solids [] basic properties (maleability, ducile, conductivity, brittle)
15-15 Crystalline Solids: Ionic Solids
15-16 Crystalline Solids: Molecular Solids
15-17 Crystalline Solids: Network Solids [] allotropes, network bonding/compounds
15-18 Band Theory [] band gap, semiconductor in band theory, p-type, n-type
15-19 Identify the Solid
15-50 Multi-concept and Complex Questions
15-99 Associated problems in Chapter 15

16 Advanced Materials

16-01 Electronic Materials, Semiconductors [] semiconductor as a product or material
16-02 Liquid Crystals
16-03 Ceramics
16-04 Nanotechnology
16-05 Thin Films
16-06 Polymers
16-07 Alloys [] (related problems in 28:02 Metallurgy)
16-50 Multi-concept and Complex Questions
16-99 Associated problems in Chapter 16

17 Properties of Mixtures

17-01 Nature of Dissolving: Descriptive [] saturation, solvation, solubility
17-02 Solute, Solvent Interactions: Like Dissolves Like [] dissolution, hydrophilic, hydrophobic, influence of polarity in dissolution, predict relative solubilities using IF, predict solubility using polarity (no calc)
17-03 Applications: Like Dissolves Like [] alloys, antibiotics, soap
17-04 Temperature and Solubility: Liquids
17-05 Pressure and Solubility: Gases [] Henry's law: $S=k_{\mathrm{H}} P$
17-06 Temperature and Solubility: Gases
17-07 Solution Formation [] enthalpy of hydration/solution, entropy, free/hydration energy, Δ temp and enthalpy, $n \Delta H=m C \Delta T$
17-08 Colloids [] Tyndall effect
17-50 Multi-concept and Complex Questions
17-99 Associated problems in Chapter 17

18 Colligative Properties for Solutions

18-01 Colligative Properties: Overview
18-02 Vapor Pressure Lowering: Ideal Mixture [] Raoult's Law: $P_{\text {solvent }}=$ $X_{\text {solvent }} P_{\text {pure solvent }}^{\circ}$
18-03 Boiling Point Elevation [] $\Delta T_{\mathrm{b}}=i k_{\mathrm{b}} m$
18-04 Freezing Point Depression [] $\Delta T_{\mathrm{f}}=i k_{\mathrm{f}} m$, simplified Gibbs: $\Delta H_{\text {vap }}^{\circ}-T_{\mathrm{B}} \Delta S_{\text {vap }}^{\circ}=0$
18-05 Applications: Osmotic Pressure [] osmosis, flow through membrane, $\Pi=i R T M$
18-06 Applications: Fractional Distillation
18-07 Applications: Other
18-08 Lowering Vapor Pressure: Non-ideal Mixtures [] azeotropes, van't Hoff factor i

18-09 Effective Molality [] $n_{\text {eff }}=i \frac{\left(\frac{\text { mass solute }}{\mathrm{FW} \text { solute }}\right)}{\mathrm{kg} \text { solute }}$
18-50 Multi-concept and Complex Questions
18-99 Associated problems in Chapter 18

19 Thermodynamics: First Law

19-01 Basics, Introduction [] energy in systems (surr, univ, closed, open, isolated), types of energy, energy units (cal, Cal, J, etc.), heat as energy
19-02 Heat and Work [] $W=P \Delta V=\Delta n R T$, isothermal expansion: $w=-n R T \ln \left(\frac{V_{f}}{V_{i}}\right)$
19-03 Changes in Internal Energy (ΔU) [] ΔU due to heat/work, changes in gas due to expansion, $\Delta U=q+w$
19-04 First Law of Thermodynamics [] conservation of energy
19-05 Standard States, Standard Enthalpy Changes [] state functions
19-06 Changes in Enthalpy (ΔH) [] heat output of a fuel, reaction enthalpy at different temp, enthalpy of fusion/vaporization, enthalpy as part of phase changes, Kirchoff's law: $\Delta H_{\mathrm{r}}^{\circ}\left(T_{2}\right)=\Delta H_{\mathrm{r}}^{\circ}\left(T_{1}\right)+\left(T_{2}-T_{1}\right) \Delta C_{\mathrm{p}}$
19-07 Calorimetry: Basics
19-08 Calorimetry: Constant Pressure [] styrofoam cup
19-09 Calorimetry: Constant Volume, Bomb
19-10 Calorimetry: Constant Volume \& Pressure
19-11 Simple Heat Transfer [] one step, heat of fusion/vaporization, phase change calculations, specific heat
19-12 Complex Heat Transfer [] multistep calculations, heating/ cooling curves/ calculations/ interpretation, (see 10:06 Born-Haber)
19-13 Thermochemical Equations [] chem rxn, scaling amounts, combustion
19-14 Hess' Law: Rxn Combination
19-15 Hess' Law: Formation Rxn (ΔH_{f}) [] heat of formation, $\Delta H_{\mathrm{rxn}}^{\circ}=\sum_{n} H_{\mathrm{f} \text { prod }}^{\circ}-$ $\sum_{n} H_{\mathrm{frct}}^{\circ}$
19-16 Hess' Law: Bond Energies [] bond enthalpy, standard enthalpy from average bond enthalpies, Hess: $\Delta H_{\mathrm{rxn}}^{\circ}=\sum \Delta \mathrm{BE}_{\mathrm{rct}}-\sum \Delta \mathrm{BE}_{\text {prod }}$
19-17 Combining ΔH and ΔU [] compare/contrast internal energy/enthalpy, $\Delta H=\Delta U-w$
19-18 Applications of the First Law
19-19 Internal Energy: Trans and Rotat Components
19-20 Adiabatic Expansion
19-50 Multi-concept and Complex Questions
19-99 Associated problems in Chapter 19

20 Thermodynamics: Second and Third Laws

20-01 Spontaneity and the Second Law of Thermodynamics [] entrop univ increases for spontaneous rxns
20-02 Entropy: Definitions, Descriptions [] entropy of sys or surr may incr/decr
20-03 Standard Molar Entropies (ΔS) \& the Third Law [] calculate entropy of system, standard molar entropies, entropy (molecular interpretation, predicting relative values), $\Delta S_{\mathrm{rxn}}^{\circ}=\sum n S_{\mathrm{f} \text { prod }}^{\circ}-\sum n S_{\mathrm{frct}}^{\circ}, \frac{\text { heat }}{\text { temp }},($ units: $\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}, \mathrm{cal} / \mathrm{g} \cdot \mathrm{K}), \Delta S_{\text {surr }}=\frac{q}{T}=\frac{\Delta H_{\mathrm{sys}}}{T}$, $\Delta S_{\text {total }}=\Delta S_{\text {surr }}+\Delta S, \Delta S=n C_{\mathrm{v}} \ln \left(\frac{T_{2}}{T_{1}}\right)$
20-04 Entropy Changes [] entropy of vaporization, Δ entropy due to temp, $d S=\frac{d q}{T}=P \frac{d V}{d T}=$ $\frac{n R}{V} d V, \Delta$ molar entropy $\Delta S=n R \ln \left(\frac{P_{\text {ini }}}{P_{\text {fin }}}\right)$

20-05 Free Energy Change [] standard free energy, Gibbs: $\Delta G_{\mathrm{rxn}}^{\circ}=\Delta H_{\mathrm{rxn}}^{\circ}-T \Delta S_{\mathrm{rxn}}$
20-06 Predicting Spontaneity [] spon: $\Delta G<0$, calculate/predict temp at which reaction becomes spontaneous
20-07 Boltzmann Formula: $S=k \ln W$ [] positional entropy
20-08 Entropy: Phase Changes [] $\Delta G=0$ in Gibbs, $T_{\mathrm{BP}}=\frac{\Delta H_{\text {vap }}}{\Delta S_{\text {vap }}}, T_{\mathrm{FP}}=\frac{\Delta H_{\text {fus }}}{\Delta S_{\text {fus }}}$, Trouton: $\Delta S_{\text {vap }} \approx$ the same for common substances ($85 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$)
20-50 Multi-concept and Complex Questions
20-99 Associated problems in Chapter 20

21 Kinetics

21-01 Reaction Rate and Concentration [] instantaneous rate, rate of reaction as expression of Δ concentration over time: $\frac{[\mathrm{A}]}{\mathrm{t}}$, units: $\frac{\mathrm{mol} / \mathrm{L}}{\mathrm{s}}$, etc.
21-02 Rxn Rates and Rate Law: Terms, Descriptive [] initial rates, factors affecting reaction rate
21-03 Determining Rate Law, k, Reaction Order [] calculate rate constant/reaction order, rate $=k \Pi_{i}\left[\mathrm{rct}_{i}\right]^{\text {order }}$
21-04 Conc vs Time: Integrated Rate Equation [] zero order: rate is constant, $[\mathrm{A}]_{0}$ $[\mathrm{A}]=a k t$, first order: $\ln [\mathrm{A}]$ vs t is a straight line $\ln \left(\frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}\right)=a k t$ or $[\mathrm{A}]=[\mathrm{A}]_{0} e^{-k t}$ (units: $\mathrm{s}^{-1}, \min ^{-1}$), second order: $\ln \left(\frac{1}{[\mathrm{~A}]}\right)$ vs t is a straight line, $\frac{1}{[\mathrm{~A}]}-\frac{1}{[\mathrm{~A}]_{0}}=a k t$ (units: $\mathrm{L} / \mathrm{mol} / \mathrm{min}, \mathrm{L} / \mathrm{mol} / \mathrm{s}$)
21-05 Half-lives [] first-order half-life equation. zero order: $\frac{[\mathrm{A}]_{0}}{t_{1 / 2}}$ is constant, first order: $t_{1 / 2}$ is independent of $[\mathrm{A}]_{0}$, second order: $t_{1 / 2}=\frac{1}{a k} \frac{1}{[\mathrm{~A}]_{0}}\left(t_{1 / 2}[\mathrm{~A}]_{0}\right.$ is constant $)$
21-06 Reaction Mechanisms [] rate law from reaction mechanism, multistep, Michaelis constant: $K_{\mathrm{m}}=\frac{k_{1}^{\prime}+k_{2}}{k_{1}}$, Michaelis-Menten:
21-07 Temperature: The Arrhenius Equation [] activation energy from rate constant and temp, Arrhenius: $\ln \left(\frac{k^{\prime}}{k}\right)=\frac{E_{\mathrm{a}}}{\mathcal{R}}\left(\frac{1}{T}-\frac{1}{T^{\prime}}\right)$ or rate $=A e^{-E_{\mathrm{a}} /(R T)}$
21-08 Collision Model [] speed, mean relative speed
21-09 Transition State Theory \& Reaction Profile [] activated complex theory, reaction energy diagrams, reaction profile
21-10 Catalysis: Basics [] effect on reaction profile
21-11 Catalysis: Applications, Types [] biochemical (enzymes), homogeneous, heterogeneous, catalytic converters
21-50 Multi-concept and Complex Questions
21-99 Associated problems in Chapter 21

22 Chemical Equilibrium

22-01 Basic Concepts and Theory
22-02 Mass Action Expression: Q and $K[]$ (pure liq, solids excluded), $k=\frac{\Pi_{\mathrm{i}}[\text { prod }] \text { coeff }}{\Pi_{\mathrm{i}}[\text { rct }]^{\text {coeff }}}$ gases: $k=\frac{\Pi_{i} P_{\text {prod }}}{\Pi_{i} P_{\mathrm{rct}}}$
22-03 Extent of Reaction: K
22-04 Form of K (Multiplying, Combining Equations) [] $K_{\text {reverse }}=\frac{1}{K_{\text {forward }}}$
22-05 Thermo Equil: $\Delta G, K$, and Q Relationship [] $K=e^{-\Delta G /(R T)}, \Delta G_{\mathrm{r}}=R T \ln \left(\frac{Q}{K}\right)$ 22-06 Kinetic Equil: Rate Constants and $K[] K=\frac{k_{\mathrm{f}}}{k_{\mathrm{r}}}$
$22-07 K_{\mathrm{c}}$ to $K_{\mathrm{p}}[] K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$ where $\Delta n=n_{\text {gas prod }}-n_{\text {gas rct }}$

22-08 Initial, Change, Final (ICE) Table Setup
22-09 Mathematical Equation Solving
22-10 Getting Q and Comparing to $K[]$ equil shift
22-11 Calculations 1: All Eq Conc Given [] $K=$ fraction: solve for either K or a concentration
22-12 Calculations 2: One Final Conc Given [] not much to solve
22-13 Calculations 3: ICE Solve for $x[$ eqtn reduced to linear
22-14 Calculations 4: ICE Quadratic Needed [] quad formula
22-15 Rxn Stress: Le Chatelier's Principle (L, R, NC) [] system in equilibrium responds (shifts) to relieve stress
22-16 Temperature Dependence of K [] van't Hoff: $\ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta H_{\mathrm{rxn}}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
22-17 Equilibrium: Specific Applications [] Haber
22-50 Multi-concept and Complex Questions
22-99 Associated problems in Chapter 22

23 Acids and Bases

23-01 Basics and Properties [] conceptual, recall, acidic $<7<$ basic
23-02 Production, Use and Application [] some reactions (not necessarily acid/base) that produce acids/bases
23-03 Arrhenius Theory of Acids and Bases [] acid contains H and produces H^{+}(protons) in water, base produces OH^{-}in water
23-04 Autoionization of Water, Conversions with $K_{\mathrm{w}}[]$ autoprotolysis constant of water: $K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{OH}^{-}\right]$, def neutral water
23-05 Bronsted-Lowry Theory of Acids and Bases [] in water acid donates H^{+}(to form hydronium ion $\mathrm{H}_{3} \mathrm{O}^{+}$), base accepts H^{+}(supplies $\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$), identify conjugate
23-06 Lewis Theory of Acids and Bases [] acid is e^{-}pair acceptor, base is e^{-}pair donor
23-07 Relative Strengths of Acids or of Bases [] order given $K_{\mathrm{a}}, K_{\mathrm{b}}$ (more than just formula), relative conjugate strengths
$23-08 \mathbf{p H}$ and $\mathbf{p O H}:$ Descriptive, Basics [] simple calculations: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$, $\mathrm{pH} \leftrightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$23-09 \mathbf{p H}$ and $\mathbf{p O H}:$ Calculations, Conversions [] $\mathrm{pH} \leftrightarrow\left[\mathrm{OH}^{-}\right], \mathrm{pOH} \leftrightarrow\left[\mathrm{H}^{+}\right], \mathrm{pH}+\mathrm{pOH}$ $=14$
23-10 Acid/Base Strengths [] identify strong/weak acid/base/salt from formula
23-11 Comparing Solutions [] calculations
23-12 Equivalent Weights and Normality [] normality unit N
23-13 Acidic and Basic Salts: General [] amphoterism, acidic cations
23-14 Neutralizations (Titrations) [] no equilibria, strong acid/base, no K_{a} nor K_{b} needed
23-15 Leveling Effect
23-16 Hydrides: Acid/Base Perspective
23-17 Acid Strength: Electronegativity, Series
23-50 Multi-concept and Complex Questions
23-99 Associated problems in Chapter 23
24 Equilibria: Acids and Bases [] one species in soln
24-01 Weak Mono Acids (K_{a}) [] K_{a} from pH , percent dissociation, equilibria, pH from K_{a} and initial acid concentration
24-02 Weak Mono Bases (K_{b}) [] K_{b} from $K_{\mathrm{w}}: K_{\mathrm{w}}=K_{\mathrm{a}} \cdot K_{\mathrm{b}}, \mathrm{pH}$ from K_{b} and initial base concentration or equilibria
24-03 Polyprotic Acids, Bases [] $K_{\mathrm{a} 1}, K_{\mathrm{a} 2}, K_{\mathrm{a} 3}, K_{\mathrm{b} 1}, K_{\mathrm{b} 2}, K_{\mathrm{b} 3}$

24-04 Molecular Structure and Acid Strength [] predict relative strengths of acids/bases (molecular level), like HClO_{3} vs HClO_{4}
24-05 Oxides [] amphoteric, anhydride, relative acid strength
24-06 Salts of Strong Bases and Strong Acids [] K_{a} and K_{b} in calculations
24-07 Salts of Strong Bases and Weak Acids [] K_{a} and K_{b} in calculations
24-08 Salts of Weak Bases and Strong Acids [] K_{a} and K_{b} in calculations
24-09 Salts of Weak Bases and Weak Acids [] K_{a} and K_{b} in calculations
24-10 Very Dilute Solutions [] importance of autoprotolysis of water in calculations,
24-11 Systematic Treatment of Equilibrium
24-50 Multi-concept and Complex Questions
24-99 Associated problems in Chapter 24
25 Buffer Systems [] two species
25-01 Buffer Basics, Descriptive
25-02 Prepare a Buffer [] how to prepare/design, pH of buffer solution, solute concentrations based on desired pH ,
25-03 Buffer Systems and Common Ion Effect [] Henderson-Hasselbach: $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+$ $\log \left(\frac{\mathrm{A}^{-}}{\mathrm{HA}}\right)$
25-04 Buffer Capacity, Range, Response to Stress
25-05 Acid-Base Indicators
25-06 Titration Curves [] pH curve/features, pH at specific point in titration curve, equivalence point
25-07 Polyprotic Buffers
25-08 Fraction of Species Curves
25-50 Multi-concept and Complex Questions
25-99 Associated problems in Chapter 25

26 Equilibria: Slightly Soluble Ionic Cmpds

26-01 Solubility Product Constants [] $K_{\text {sp }}$, molar solubility
26-02 Fractional Precipitation
26-03 Slightly Soluble Compounds: Simultaneous Equil
26-04 Dissolving Precipitates
26-05 Complex Ions
26-06 Applications of Ionic Equilibria
26-50 Multi-concept and Complex Questions
26-99 Associated problems in Chapter 26

27 Electrochemistry

27-01 Balancing Redox Reactions in Acid
27-02 Balancing Redox Reactions in Base
27-03 Electrical Conduction and Electrodes [] oxidation, reduction
27-04 Coulometry: Faraday's Law of Electrolysis [] amount of product formed or reactant consumed by electrolysis current \approx amount of electrons supplied, $q=I t, n=\frac{Q}{F}$, Faraday's constant F
27-05 Electrolysis/Electrolytic Cells [] Hall process
27-06 Voltaic Cells [] spontaneous chemical reaction, galvanic, fuel cell, mercury cell
27-07 Standard Electrode Potentials/SHE
27-08 Nernst Equation [] $E=E^{\circ}-\frac{R T}{n F} \ln Q$, estimate EMF of cells under nonstandard
conditions
27-09 $E, \Delta G$, and K Relationships [] $\Delta G=-n F E=-R T \ln \left(K_{\text {sp }}\right)$
27-10 Find Concentrations: Electrochemical Cells
27-50 Multi-concept and Complex Questions
27-99 Associated problems in Chapter 27

28 Batteries

28-01 Battery Design and Use
28-02 Primary [] not rechargeable: dry/alkaline/silver cells
28-03 Secondary [] rechargeable: lead-acid/lithium-ion/sodium-sulfur cells
28-04 Fuel Cells
28-50 Multi-concept and Complex Questions
28-99 Associated problems in Chapter 28

29 Metals

29-01 Occurrence of Metals
29-02 Metallurgy
29-03 Alkali Metals
29-04 Alkaline Earth Metals
29-05 Post-Transition Metals
29-06 d-Transition Metals
29-07 Gems and Minerals
29-50 Multi-concept and Complex Questions
29-99 Associated problems in Chapter 29
30 Nonmetals and Metalloids
30-01 Noble Gases
30-02 Halogens
30-03 Silicon
30-04 Hydrogen and Hydrides
30-05 Other Nonmetals
30-06 Carbon and Its Uses
30-50 Multi-concept and Complex Questions
30-99 Associated problems in Chapter 30

31 Coordination Compounds

31-01 Coordination Compounds [] ligand compounds
31-02 Amine Complexes
31-03 Nomenclature
31-04 Structures
31-05 Isomerism
31-06 Bonding: Crystal Field Theory
31-50 Multi-concept and Complex Questions
31-99 Associated problems in Chapter 31

32 Instrumental Methods

32-01 IR
32-02 UV-Vis
32-03 X-Ray Diffraction

32-04 Chromatography [] liquid, gas
32-05 Mass Spectrometry
32-06 NMR
32-50 Multi-concept and Complex Questions
32-99 Associated problems in Chapter 32

33 Nuclear Chemistry

33-01 Neutron-Proton Ratio and Nuclear Stability
33-02 Binding Energy and Nuclear Stability [] mass defect (mass lost during nuclear change)
33-03 Radioactive Decay
33-04 Equations for Nuclear Reactions
33-05 Detection of Radiation
33-06 Rates of Decay and Half-life
33-07 Disintegration Series
33-08 Uses of Radionuclides
33-09 Artificial Transmutations of Elements
33-10 Nuclear Fission
33-11 Nuclear Weapons
33-12 Nuclear Fusion
33-50 Multi-concept and Complex Questions
33-99 Associated problems in Chapter 33
34 Energy Production and Fuels [] (see 19:13 for combustion)
34-01 Petroleum and Its Products
34-02 Coal
34-03 Natural Gas
34-04 Conventional Energy Plants
34-05 Alternative Energies
34-06 Hydroelectric Energy
34-07 Nuclear Reactors
34-08 Nuclear Waste
34-50 Multi-concept and Complex Questions
34-99 Associated problems in Chapter 34
35 Basic Organic Chemistry
35-01 Hydrocarbons
35-02 Isomerism: Structural \& Stereoisomers
35-03 Substitution Reactions
35-04 Addition Reactions
35-05 Elimination Reactions
35-06 Polymerization Reactions
35-07 Functional Groups
35-50 Multi-concept and Complex Questions
35-99 Associated problems in Chapter 35
36 Polymers and Plastics
36-01 General Polymer Properties and Structures
36-02 Cross-linking of Polymers

36-03 Addition Polymers
36-04 Condensation Polymers
36-05 Natural Polymers
36-06 Polyamides
36-07 Polyesters
36-08 Plastics: Use and Application
36-50 Multi-concept and Complex Questions
36-99 Associated problems in Chapter 36
37 Food and Nutrition
37-01 Carbohydrates
37-02 Proteins and Amino Acids
37-03 Fats and Lipids
37-04 Vitamins and Minerals
37-05 Artificial Sweeteners
37-06 Food Preservation
37-07 Energy and Nutrition From Food
37-50 Multi-concept and Complex Questions
37-99 Associated problems in Chapter 37
38 Drugs and Poisons
38-01 Pain Killers
38-02 Allergy
38-03 Narcotics
38-04 Barbiturates
38-05 Tranquilizers
38-06 Steroids
38-07 Birth Control
38-08 Cancer/Chemotherapy
38-09 Other Drugs
38-10 Heavy Metals
38-11 Neurotoxins
38-12 Other Poisons
38-13 Drug Design and Development
38-14 Hormones and Enzymes
38-15 Herbal Medicine
38-50 Multi-concept and Complex Questions
38-99 Associated problems in Chapter 38
39 Genetics
39-01 Nucleic Acids
39-02 DNA and RNA
39-03 Proteins: Production and Structure
39-04 Carcinogens, Mutagens, Teratogens
39-05 Viruses
39-06 Diagnosis of Genetic Problems, Gene Therapy
39-07 PCR and Genetic Techniques
39-08 Transgenic Organisms
39-09 Cloning

Problem Bank - Chemistry

39-50 Multi-concept and Complex Questions
39-99 Associated problems in Chapter 39
40 Environmental Issues
40-01 Air Pollution [] calculation (ppm)
40-02 Ozone Layer [] free radicals, CFC, HFC, uv radiation, Chapman cycle
40-03 Global Warming [] carbon sequestration, greenhouse gas, IR
40-04 Acid Rain [] sulfur combustion, nitrogen cycle
40-05 Water Supply, Pollution, Treatment
40-06 Recycling
40-07 Other Environmental Issues
40-50 Multi-concept and Complex Questions
40-99 Associated problems in Chapter 40
41 Risk Assessment
41-01 Drugs
41-02 Industry
41-03 Fuels
41-04 Laws and Regulations
41-50 Multi-concept and Complex Questions
41-99 Associated problems in Chapter 41
42 Industry, Agriculture, and Earth Chemistry
42-01 Fertilizers
42-02 Pesticides
42-03 Other Agricultural Chemicals
42-04 Earth's Crust Composition
42-05 Metals and Ores
42-06 Ceramics and Cement
42-07 Glass
42-08 Commercial Production of Chemicals
42-50 Multi-concept and Complex Questions
42-99 Associated problems in Chapter 42

43 Household Chemistry

43-01 Surfactants
43-02 Soaps, Detergents, and Bleaches
43-03 Paints and Solvents
43-04 Lotions, Creams, and Cosmetics
43-05 Perfumes
43-06 Toothpaste and Deodorant
43-07 Hair Products
43-08 Sunscreens
43-09 Other Household Chemicals
43-50 Multi-concept and Complex Questions
43-99 Associated problems in Chapter 43

44 Advanced Organic Chemistry

44-01 Introduction

44-50 Multi-concept and Complex Questions
44-99 Associated problems in Chapter 44
45 Biochemistry
45-01 Foundations of Biochemistry
45-02 Water
45-03 Amino Acids, Peptides, and Proteins
45-04 The Three-Dimensional Structure of Proteins
45-05 Protein Function
45-06 Enzymes
45-07 Carbohydrates and Glycobiology
45-08 Nucleotides and Nucleic Acids
45-09 DNA-Based Information Technologies
45-10 Lipids
45-11 Biological Membranes and Transport
45-12 Biosignaling
45-13 Principles of Bioenergetics
45-14 Glycolysis, Gluconeogenesis, Pentose Pathway
45-15 Principles of Metabolic Regulation
45-16 The Citric Acid Cycle
45-17 Fatty Acid Catabolism
45-18 Amino Acid Oxidation; Production of Urea
45-19 Phosphorylation and Photophosphorylation
45-20 Plant, Bacteria Carbohydrate Biosynthesis
45-21 Lipid Biosynthesis
45-22 Biosynthesis of Amino Acids, Nucleotides, etc.
45-23 Mammalian Metabolism Regulation, Integration
45-24 Genes and Chromosomes
45-25 DNA Metabolism
45-26 RNA Metabolism
45-27 Protein Metabolism
45-28 Regulation of Gene Expression
45-50 Multi-concept and Complex Questions
45-99 Associated problems in Chapter 45
46 Analytical Chemistry
46-01 Introduction
46-50 Multi-concept and Complex Questions
46-99 Associated problems in Chapter 46

47 Physical Chemistry

47-01 Introduction
47-50 Multi-concept and Complex Questions
47-99 Associated problems in Chapter 47
48 Inorganic Chemistry
48-01 Introduction
48-50 Multi-concept and Complex Questions
48-99 Associated problems in Chapter 48

Problem Bank - Chemistry

49 Miscellaneous
49-01 Survey Questions
49-02 General Information
49-03 Extra Credit
49-04 Demonstration Questions
49-50 Multi-concept and Complex Questions
49-99 Associated problems in Chapter 49

