01 Physics and Measurement [] (see chem chap 1)
01-01 The SI System
01-02 Standard Unit for Length, Mass, and Time
01-03 Derived Units
01-04 The Building Blocks of Matter [] atoms, molecules
01-05 Density and Atomic Mass [] amu
01-06 Dimensional Analysis
01-07 Conversion of Units
01-08 Order-of-Magnitude Calculations
01-09 Significant Digits and Measurements
01-10 Elementary Error Analysis
01-11 Mathematical and Scientific Notation [] (see chem 01:09)
01-12 Coordinate Systems
01-13 Mathematics Overview
01-14 Scientific Method
01-15 Scaling
01-16 Problem Solving Strategy
01-17 Measurement Tools
01-99 Associated problems in Chapter 01

02 Motion in One Dimension

02-01 Displacement [] $\Delta x=x_{f}-x_{i}$
02-02 Velocity and Speed [] $v=\frac{\Delta x}{\Delta t}$
02-03 Average Velocity for Motion along a Straight Line [] $\bar{v}=\frac{v_{i}+v_{f}}{2}$
02-04 Instantaneous Velocity and Speed [] $v=\frac{d x}{d t}$
02-05 Acceleration [] $a=\frac{\Delta v}{\Delta t}, a=\frac{d v}{d t}$
02-06 One-Dimensional Motion with Constant Acceleration [] $v_{f}=v_{o}+a t$, etc.
02-07 Freely Falling Objects
02-08 One-Dimensional Motion: Calculus Techniques [] area under curve, $v=\int a d t$, etc.
02-09 Relative Velocities
02-10 Frame of Reference
02-99 Associated problems in Chapter 02

03 Vectors

03-01 Coordinate Systems and Frames of Reference [] $x=r \cos \theta, y=r \sin \theta$
03-02 Vector and Scalar Quantities
03-03 Some Properties of Vectors [] add, subtr, negate
03-04 Methods of Solving Triangles [] law of sines, cosines
03-05 Graphical Addition of Vectors [] head to tail, etc.
03-06 Components of a Vector [] $a_{x}=a \cos \theta, a_{y}=a \sin \theta$
03-07 Adding Vector Components
03-08 Unit Vectors [] $\vec{r}=r_{x} \hat{\imath}+r_{y} \hat{\jmath}$
03-09 Vector Kinematics
03-10 The Vector Dot (Scalar) Product
03-11 The Vector Cross Product
03-99 Associated problems in Chapter 03

04 Motion in Two Dimensions
04-01 Position and Displacement
04-02 Average and Instantaneous Velocity
04-03 Average and Instantaneous Acceleration
04-04 Two-Dimensional Motion with Constant Acceleration
04-05 Graphical Solutions
04-06 Projectile Motion
04-07 Uniform Circular Motion [] $a_{c}=\frac{v^{2}}{r}$, period $T=\frac{2 \pi r}{v}$
04-08 Tangential and Radial Acceleration
04-09 Relative Velocity [] cross river
04-10 Relative Acceleration
04-11 Relative Motion at High Speeds
04-99 Associated problems in Chapter 04
05 The Laws of Motion
05-01 The Concept of Force
05-02 Newton's First Law and Inertial Frames [] frame w/o accel
05-03 Inertial Mass
05-04 Newton's Second Law [] $F=m a$
05-05 Weight
05-06 Contact and Normal Forces
05-07 Hooke's Law [] $F=-k x$
05-08 Combining Forces
05-09 Newton's Third Law [] $f_{12}=-f_{21}$
05-10 Free Body Diagrams in Problem Solving
05-11 Static Applications of Newton's Law
05-12 Dynamic Applications of Newton's Law
05-13 Friction [] $F=\mu \mathcal{N}$
05-14 Other Resistive Forces (Terminal Velocity) [] air drag, Stokes' Law
05-15 The Fundamental Forces of Nature
05-99 Associated problems in Chapter 05
06 Circular Motion and Newton's Laws
06-01 Newton's Second Law Applied to Uniform Circular Motion [] $F_{c}=m a_{c}=m \frac{v^{2}}{r}$
06-02 Banked and Unbanked Curves
06-03 Nonuniform Circular Motion [] vert circles, child on swing, roller coaster
06-04 Circular Motion in Accelerated Frames [] passenger in car, merry-go-round
06-05 Circular Motion in the Presence of Resistive Forces
06-06 Numerical Modeling (Euler's Method) in Particle Dynamics
06-99 Associated problems in Chapter 06
07 Work and Energy
07-01 Forms of Energy
07-02 Kinetic Energy
07-03 Work [] $W=F \Delta x$
07-04 Work: a General Constant Force
07-05 Work: the Gravitational Force
07-06 Work: a Spring Force [] $W=-\frac{1}{2} k x^{2}$
07-07 Work: a General Varying Force [] $W=\int \vec{F} \cdot d \vec{x}$

07-08 Kinetic Energy and the Work-Energy Theorem [] $\sum W=\Delta K=K_{f}-K_{i}$
07-09 The Nonisolated System - Conservation of Energy [] system interacts w/ environment
07-10 Kinetic Friction [] $\Delta E_{i n t}=f_{k} d$
07-11 Power [] $P=\frac{W}{t}, P=\vec{F} \cdot \vec{v}$
07-12 Work and Energy in Three Dimensions
07-13 Energy and the Automobile
07-14 Kinetic Energy at High Speeds
07-15 Simple and Compound Machines
07-99 Associated problems in Chapter 07
08 Potential Energy and Conservation of Energy
08-01 Potential Energy [] gravit: $U_{g}=m g h$
08-02 Spring Potential Energy [] $U_{s}=\frac{1}{2} k x^{2}$
08-03 Conservative and Nonconservative Forces
08-04 Conservative Forces and Potential Energy
08-05 Conservation of Mechanical Energy [] $E_{\text {mech }}=K+U$
08-06 Changes in Mechanical Energy
08-07 Relationship Between Conservative Forces and Potential Energy [] $F=-\frac{d U}{d x}$
08-08 Energy Diagrams and the Equilibrium of a System [] U vs x
08-09 Work Done on a System by an External Force
08-10 Conservation of Energy in General
08-11 Mass-Energy Equivalence [] $E=m c^{2}$
08-12 Quantization of Energy
08-99 Associated problems in Chapter 08
09 Linear Momentum and Collisions
09-01 Linear Momentum [] $\vec{p}=m \vec{v}, \sum \vec{F}=\frac{d \vec{p}}{d t}$
09-02 Impulse and Momentum [] $d \vec{p}=\vec{F} d t, I=\int \vec{F} d t$
09-03 Conservation of Linear Momentum
09-04 Elastic Collisions [] momen and KE conserv, $v_{1 i}-v_{2 i}=v_{2 f}-v_{1 f}$
09-05 Inelastic Collisions [] stick together, Ballistic pendulum
09-06 One-Dimensional Collisions
09-07 Two- and Three-Dimensional Collisions
09-08 The Center of Mass [] $x_{C M}=\frac{\sum m_{i} x_{i}}{\sum m_{i}}, x_{C M}=\frac{1}{M} \int x d m$
09-09 Finding the Center of Mass by Integration
09-10 Motion of a System of Particles (Explosions) []$\vec{v}=\frac{d \vec{r}_{C M}}{d t}, \vec{a}=\frac{d \vec{v}_{C M}}{d t}$,
09-11 Energy of a System of Particles
09-12 Energy and Momentum Conservation in Collisions
09-13 Center of Mass Reference Frame
09-14 Rocket Propulsion
09-99 Associated problems in Chapter 09
10 Rotation of a Rigid Object About a Fixed Axis
10-01 Angular Position, Velocity and Acceleration [] $s=r \theta, \omega=\frac{d \theta}{d t}$
10-02 Kinematic Equations for Uniformly Accelerated Rotational Motion [] $\omega_{f}=$ $\omega_{i}+\alpha t$, etc.
10-03 Vector Nature of Angular Quantities [] righthand rule

10-04 Relationships Between Angular and Linear Quantities [] $v=r \omega, a=r \alpha$
10-05 Rotational Kinetic Energy [] $I=\sum m_{i} r_{i}^{2}, K_{R}=\frac{1}{2} I \omega^{2}$
10-06 Calculation of Moments of Inertia [] $I=\int r^{2} d m$, Parallel Axis Th: $I=I_{C M}+M D^{2}$
(D dist CM \rightarrow rotational axis)
10-07 Torque [] $\tau=F d$, (NOT vectors)
10-08 Relationship Between Torque and Angular Acceleration [] $\sum \tau=I \alpha$
10-09 Work, Power, and Energy in Rotational Motion [] $d W=\vec{F} \cdot d \vec{s}, \sum W=\int I \omega d \omega$
10-10 Problem Solving in Rotational Dynamics
10-99 Associated problems in Chapter 10
11 Rolling Motion, Angular Momentum, and Torque
11-01 Rotational Plus Translational Motion: Rolling
11-02 The Kinetic Energy of Rolling [] $K=\frac{1}{2} I_{C M} \omega^{2}+\frac{1}{2} M v_{C M}^{2}$
11-03 The Forces of Rolling
11-04 The Yo-Yo
11-05 The Torque Vector [] $\vec{\tau}=\vec{r} \times \vec{F}$
11-06 Angular Momentum of a Particle [] $\vec{L}=\vec{r} \times \vec{p}, \sum \vec{\tau}=\frac{d \vec{L}_{\text {rot }}}{d t}$
11-07 General Motion: Angular Momentum, Torque of a System of Particle [] $\sum \vec{\tau}_{e x t}=I \alpha$
11-08 Rotation of a Rigid Body About a Fixed Axis [] seesaw, etc.
11-09 Rotational Imbalance
11-10 Conservation of Angular Momentum
11-11 Precession: Gyroscopes and Tops
11-12 Rotating Frames of Reference: Inertial Forces
11-13 Coriolis Effect
11-14 Quantization of Angular Momentum
11-99 Associated problems in Chapter 11
12 Static Equilibrium and Elasticity
12-01 The Conditions for Equilibrium of a Rigid Object [] rotation, translation
12-02 Solving Statics Problems
12-03 Stability and Balance: Center of Gravity
12-04 Levers and Pulleys
12-05 Bridges and Scaffolding
12-06 Arches and Domes
12-07 Couples [] two opposing forces
12-08 Other Objects in Static Equilibrium [] ladder, seesaw
12-09 Static Equilibrium in an Accelerated Frame
12-10 Elasticity: Stress and Strain [] Young's/shear/bulk modulus
12-11 Fracturing [] support columns, shear
12-99 Associated problems in Chapter 12

13 Oscillatory Motion

13-01 Simple Harmonic Motion [] $x(t)=A \cos (\omega t+\phi), \omega=\sqrt{\frac{k}{m}}, v=\frac{d x}{d t}, a=\frac{d v}{d t}$
13-02 Mass Attached to a Spring [] $\omega=\frac{k}{m}, f=\frac{1}{T}, \omega=\frac{2 \pi}{T}, x=A \cos \omega t, v=-\omega A \sin \omega t$, $a=-\omega^{2} A \cos \omega t, T=2 \pi \sqrt{\frac{m}{k}}$
13-03 Forces in Simple Harmonic Motion
13-04 Energy in Simple Harmonic Motion [] $E=\frac{1}{2} k A^{2}$

13-05 The Simple Pendulum [] $T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{L}{g}}$
13-06 The Physical Pendulum and Torsion Pendulum
13-07 Simple Harmonic Motion Related to Uniform Circular Motion [] $\frac{A}{v_{o}}=\sqrt{\frac{m}{k}}$, $T=2 \pi \sqrt{\frac{m}{k}}, \omega=2 \pi f=\sqrt{\frac{k}{m}}$
13-08 Damped Oscillations
13-09 Forced Oscillations: Resonance
13-99 Associated problems in Chapter 13

14 The Law of Gravity

14-01 Newton's Law of Gravity
14-02 Gravitational Force Due to a System of Particles [] $F_{n e t}=\sum F_{i}$
14-03 Free Fall Acceleration and the Gravitational Force [] gravit force from $F \propto \frac{g}{r^{2}}$
14-04 Gravitation Inside the Earth
14-05 Kepler's Laws: Plantary and Satellite Motion [] $\frac{d A}{d t}=\frac{L}{2 M p}=\mathrm{const}, T^{2}=$ $\frac{4 \pi^{2}}{G m S} a^{3}=K_{s} a^{3}$, geosyn satellite
14-06 The Gravitational Field
14-07 Gravitational Potential Energy [] $U=\int F d r, U=-\frac{G m_{1} m_{2}}{r}$
14-08 Escape Velocity [] $v=\sqrt{\frac{2 G m_{s}}{R_{E}}}$
14-09 Energy: Planetary and Satellite Motion [] black holes, $E=K+U=\frac{1}{2} m v^{2}-\frac{G M m}{r}$, circle: $E=-\frac{G M m}{r}$, ellipse: $E=\frac{G m_{1} m_{2}}{2 a}$
14-10 Gravitational Force: Extended Object \& Particle
14-11 Gravitational Force: Particle \& Spherical Mass
14-12 Principle of Equivalence
14-99 Associated problems in Chapter 14

15 Fluid Mechanics

15-01 States of Matter [] solid, liqiuid, gas, plasma
15-02 Density and Specific Gravity
15-03 Pressure [] $P=\frac{F}{A}, d F=P d A$
15-04 Fluids at Rest: Variation of Pressure with Depth [] $P=P_{0}+\rho g h$
15-05 Pressure Measurements (Atmospheric, Gauge)
15-06 Pascal's Principle (Hydraulics)
15-07 Buoyant Forces and Archimedes' Principle
15-08 Fluid Dynamics
15-09 Streamlines and the Equation of Continuity [] $A_{1} V_{1}=A_{2} V_{2}=$ constant
15-10 Bernoulli's Equation [] $P+\frac{1}{2} \rho v^{2}+\rho g h=$ constant, Venturi tube, Torricelli's Law
15-11 Transport Phenomena [] diffusion, osmosis, Fick's Law, Stokes: $F_{r}=6 \pi \eta r v$, sedimentation, centrifugation
15-12 Other Applications of Fluid Dynamics [] lift on plane, spinning ball, atomizer
15-13 Energy from the Wind
15-14 Viscosity [] $\eta=\frac{F L}{\Delta V}$
15-15 Surface Tension and Capillarity [] Poiseuille's Law: $\Delta P=\frac{8 \eta L}{\pi r^{4}} I_{v}$, Reynold's number: $R_{N}=\frac{\rho v d}{\eta}$
15-16 Pumps: the Heart
15-99 Associated problems in Chapter 15

16 Wave Motion

16-01 Wave Characteristics and Propagation [] $f=\frac{1}{T}, \omega=\frac{2 \pi}{f}, v=f \lambda$, amplitude
16-02 Transverse and Longitudinal Waves
16-03 Speed of a Traveling Wave [] fluid: $v=\sqrt{\frac{B}{\rho}}$, gas: $v=\sqrt{\frac{\gamma R T}{m}}, v=\frac{d x}{d t}=-\frac{\omega}{t}$
16-04 Energy Conservation [] $P=2 \pi^{2} v \rho f^{2} D_{M}^{2}$, spherical $I=\frac{\bar{P}}{4 \pi r^{2}}$, ampl $D_{m} \propto \frac{1}{r}$
16-05 One-Dimensional Traveling Waves [] $y=f(x \pm v t), v=\frac{d x}{d t}$
16-06 Periodic Waves (Harmonic, Electromagnetic) [] $y=A \sin (k x+\delta), k=\frac{2 \pi}{\lambda}$
16-07 Superposition and Interference of Waves
16-08 The Speed of Waves on Strings [] $v=\sqrt{\frac{T}{\mu}}$
16-09 Reflection and Transmission of Waves
16-10 Refraction of Waves
16-11 Diffraction of Waves
16-12 Sinusoidal Waves [] $x=A \cos \omega t, v=-A \omega \sin \omega t, a=A \omega^{2} \cos \omega t=-\omega^{2} x$
16-13 Energy Transmitted by Waves on Strings [] $P=\frac{1}{2} \mu \omega^{2} A^{2} v$
16-14 The Linear Wave Equation [] $\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}$
16-15 Phasors
16-99 Associated problems in Chapter 16

17 Sound Waves

17-01 Characteristics of Sound Waves [] rarefraction, compression
17-02 Speed of Sound Waves [] $v=\sqrt{\frac{B}{\rho}}, v=\sqrt{\frac{Y}{\rho}}$, (Bulk/Young's modulus)
17-03 Periodic Sound Waves [] $\Delta P=\Delta P_{\max } \sin (k x-\omega t)$
17-04 Energy and Intensity of Sound Waves [] $I=\frac{P}{A}$, decibles: $\beta=10 \log \left(\frac{I}{I_{0}}\right)$, loudness
17-05 The Doppler Effect [] $f^{\prime}=\left(\frac{v \pm v_{s}}{v \mp v_{s}}\right) f$, shock waves, mach $=\frac{v_{\text {source }}}{v_{\text {wave }}}$
17-06 Quality of Sound (Noise)
17-07 The Ear
17-08 Sources of Musical Sound
17-09 Digital Sound Recording
17-10 Motion Picture Sound
17-11 Sonar, Ultrasound, and Ultrasound Imaging
17-99 Associated problems in Chapter 17

18 Superposition and Standing Waves

18-01 Superposition of Sinusoidal Waves
18-02 Interference of Sinusoidal Waves [] max/min, constr: $\Delta r=(2 n) \frac{\lambda}{2}$, destr: $\Delta r=$ $(2 n+1) \frac{\lambda}{2}$
18-03 Standing Waves in General [] $y=(2 A \sin k x) \cos \omega t$, antinodes at $(2 n-1) \frac{\lambda}{4}$
18-04 Standing Waves in a String Fixed at Both Ends [] $\lambda_{n}=\frac{2 L}{n}, f_{n}=\frac{v}{\lambda_{n}}=n \frac{v}{2 L}$, $f_{n}=\frac{n}{2 L} \sqrt{\frac{T}{\mu}}$, harmonics
18-05 Forced Vibrations and Resonance
18-06 Standing Waves in Air Columns [] open: $f_{n}=n \frac{v}{2 L}$, closed: $f_{n}=(2 n-1) \frac{v}{4 L}$
18-07 Standing Waves in Rods, Plates, and Membranes
18-08 Complex Waves [] pitch
18-09 Beats: Interference in Time [] $f_{\text {beat }}=f_{1}-f_{2}$

18-10 Shock Waves and the Sonic Boom
18-11 Harmonic Analysis and Synthesis
18-12 Wave Packets and Dispersion
18-99 Associated problems in Chapter 18

19 Temperature

19-01 Atomic Theory of Matter [] atomic mass, molec mass, Avogadro's number, Brownian
19-02 The Zeroth Law of Thermodynamics: Thermal Equilibrium
19-03 Celsius and Fahrenheit Temperature Scales
19-04 The Constant-Volume Gas Thermometer and the Kelvin Scale
19-05 Thermal Expansion of Solids and Liquids [] $\Delta L=\alpha L_{i} \Delta T, \Delta V=\beta V_{i} \Delta T$
19-06 Macroscopic Description of an Ideal Gas [] $P V=N R T$, mole, Avogadro, Boltzman's: $P V=N k_{B} T$
19-07 Problem Solving: Ideal Gas Law [] Boyle, Charles
19-99 Associated problems in Chapter 19
20 Heat and the First Law of Thermodynamics
20-01 Heat and Thermal Energy [] mech equation of heat: $J \leftrightarrow$ cal
20-02 Internal Energy
20-03 Heat Capacity and Specific Heat [] $Q=m c \Delta T$
20-04 Heat Capacity of Gases [] $d E_{i n t}=C_{v} d T, C_{p}=C_{v}+n R, C_{v}=\frac{3}{2} n R, C_{p}=\frac{5}{2} n R$
20-05 Heat Capacity of Solids [] Dulong-Petit, $c^{\prime}=3 R$
20-06 Latent Heat [] phase change $Q= \pm m L$
20-07 Phase Diagrams
20-08 Calorimetry
20-09 Work and Heat in Thermodynamic Processes [] $W=-\int P d V$
20-10 The First Law of Thermodynamics [] $\Delta E=Q+W$
20-11 Work and the $P V$ Diagram for a Gas [] $P V$ curves
20-12 Some Applications of the First Law of Thermodynamics [] isobaric: $W=-P \Delta V$
20-13 Heat and Energy Transfer [] conduction rate $=k A \frac{T_{h}-T_{c}}{L}$, home insulation, net radiation rate: $\sigma A e T^{4}$, Dewar flask
20-14 Global Warming and Greenhouse Gases
20-99 Associated problems in Chapter 20
21 The Kinetic Theory of Gases
21-01 Molecular Model of an Ideal Gas [] $P=\frac{2}{3} \frac{N}{V}\left(\frac{1}{2} m \bar{v}^{2}\right), k=\frac{3}{2} n R T=\frac{3}{2} n k_{B} T$, $U=\frac{3}{2} n R T, \frac{1}{2} m \bar{v}^{2}=\frac{3}{2} k_{B} T$
21-02 Specific Heat of an Ideal Gas [] $Q=m c \Delta T, Q=n C_{v} \Delta T, Q=n C_{p} \Delta T$
21-03 Adiabatic Processes for an Ideal Gas [] $\Delta E_{\text {int }}=W, P V^{\gamma}=\mathrm{constant}$
21-04 The Equipartition of Energy [] Dulong-Petit Law
21-05 The Boltzmann Distribution Law [] $n_{v}(E)=n_{0} e^{-E /\left(k_{b} T\right)}$
21-06 Pressure, Temperature, and RMS Speed [] $v_{r m s}=\sqrt{\frac{3 R T}{M}}$
21-07 Distribution of Molecular Speeds [] $N_{v}=4 \pi N\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} v^{2} e^{-m v^{2} /\left(2 k_{B} T\right)}$, probable speed
21-08 Translational Kinetic Energy
21-09 Mean Free Path [] $\ell=\frac{1}{\sqrt{2} \pi d^{2} n_{v}}=\frac{k_{B} T}{\sqrt{2} \pi P d^{2}}$
21-10 Van der Waals' Equation of State [] $\left(P+\frac{a}{v^{2}}\right)(V-b)=R T$

21-11 Vapor Pressure and Humidity [] partial press
21-12 Diffusion
21-13 Failure of the Equipartition Theorem
21-99 Associated problems in Chapter 21
22 Heat Engines, Entropy, \& Thermodynamics
22-01 The Second Law of Thermodynamics [] $\varepsilon=\frac{Q_{h}-Q_{c}}{Q_{n}} \quad(\Delta S \geq 0)$
22-02 Heat Engines
22-03 Reversible and Irreversible Processes
22-04 The Carnot Engine [] $\varepsilon=1-\frac{T_{c}}{T_{h}}$
22-05 Gasoline and Deisel Engines [] Otto cycle, efficiency: $\varepsilon=1-\frac{1}{\left(V_{1} / V_{2}\right)^{\gamma-1}}, \gamma=\frac{C_{p}}{C_{v}}$
22-06 Heat Pumps and Refrigerators [] COP $=\frac{Q_{c}}{W}$
22-07 Entropy [] $d S=\frac{d Q_{r}}{T}$
22-08 Entropy Changes in Irreversible Processes [] (total entropy cannot decrease)
22-09 Entropy on a Microscopic Scale [] (measure of disorder) $S \equiv k_{B} \ln W$
22-10 Human Metabolism [] metabolic rate, $\frac{\Delta U}{\Delta t}=\frac{Q}{\Delta t}+\frac{W}{\Delta t}, \frac{\Delta U}{\Delta t}=4.8 \frac{\Delta V_{\mathrm{O}_{2}}}{\Delta t}$
22-11 Energy Availability: Heat Death
22-12 Statistical Interpretation of Entropy and the Second Law
22-13 Third Law: Maximum Efficiencies
22-99 Associated problems in Chapter 22

23 Electric Fields

23-01 Static Electricity: Electric Charge
23-02 Quantized Charge [] protons, electrons
23-03 Insulators and Conductors
23-04 Induced Charge: the Electroscope
23-05 Coulomb's Law [] $F=k \frac{q_{1} q_{2}}{r^{2}}, k=\frac{1}{4 \pi \epsilon_{0}}$
23-06 Conserved Charge [] ${ }^{238} \mathrm{U} \rightarrow{ }^{234} \mathrm{Th}+4 \mathrm{He}, e^{-}+e^{-} \rightarrow \gamma+\gamma, \gamma \rightarrow e^{-}+e^{+}$, decay, annhilation, pair production
23-07 The Electric Field [] $E=\frac{F}{q_{0}}=k \frac{q}{r^{2}}, F=q E$
23-08 Electric Field Due to a Point Charge [] test charge $q_{0}, F=\frac{q q_{0}}{r^{2}}, E=\frac{F}{q_{0}}=k \frac{q}{r^{2}}$, momentum $\vec{P}(c \cdot m)$
23-09 Electric Field Due to an Electric Dipole [] $E=2 k \frac{p}{z^{3}}$
23-10 Electric Field Due to a Line of Charge [] charged ring: $E=k \frac{-q z}{\left(z^{2}+q^{2}\right)^{3 / 2}}, R$ radius of ring
23-11 Electric Field Due to a Charged Sheet [] charged disk: $E=\frac{\sigma}{2 \epsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}-R^{2}}}\right)$
23-12 Electric Field Due to a Continuous Charge Distribution
23-13 Electric Field Lines
23-14 Electric Fields and Conductors
23-15 A Point Charge in a Electric Field [] $F=q E=m a$
23-16 A Dipole in a Electric Field [] water molecule, torque: $\vec{\tau}=\vec{p} \times \vec{E}$
23-17 Motion of Charged Particles in a Uniform Electric Field [] $F=q E=m a$
23-18 The Oscilloscope
23-99 Associated problems in Chapter 23

24-01 Electric Flux []$\Phi=\int \vec{E} \cdot d \vec{A}$
24-02 Gauss's Law [] $\Phi=\frac{प_{\text {encl }}}{\epsilon_{0}}$
24-03 Application: Charged Insulators
24-04 Application: Charged Isolated Conductors
24-05 Application: Cylindrical Symmetry [] line of charge: $E=\frac{\lambda}{2 \pi \epsilon_{0} r}$
24-06 Application: Planar Symmetry [] sheet of charge: $E=\frac{\sigma}{2 \epsilon_{0}}$
24-07 Application: Spherical Symmetry [] spherical shell: $E=k \frac{q}{r^{2}}$, field inside shell: $E=0$, uniform charge: $E=k \frac{q r}{R^{3}},(r$ radius encl, R radius of charge distrib)
24-08 Conductors in Electrostatic Equilibrium [] $E=\frac{\sigma}{\epsilon_{0}}$, conductor surface
24-09 Experimental Proof of Gauss' Law and Coulomb's Law
24-99 Associated problems in Chapter 24

25 Electric Potential

25-01 Electric Potential Energy [] $\Delta U=-q \int \vec{E} \cdot \overrightarrow{d s}$
25-02 Potential Difference and Electric Potential [] $\Delta V=\int \vec{E} \cdot \overrightarrow{d s}, V=\frac{U}{q}, \Delta V=-\frac{W}{q}$
25-03 Equipotential Surfaces
25-04 Calculating the Potential from the Field [] $\Delta V=-\int \vec{E} \cdot \overrightarrow{d s}$,
25-05 Potential \& Energy: Point Charges [] $V=k_{e} \frac{q}{r}$
25-06 Potential \& Energy: Systems of Point Charges
25-07 Potential \& Energy: Electric Dipoles [] $U=-\vec{P} \cdot \vec{E}, W=\int T d Q$
25-08 Potential \& Energy: Continuous Charge Distributions [] $V=k_{e} \int \frac{d q}{r}$
25-09 Potential \& Energy: Charged Conductor [] $\Delta V=0$, corona discharge
25-10 Calculating the Field from the Potential [] $E=-\frac{d V}{d r}$
25-11 Electrostatic Potential Energy: the Electron Volt
25-12 The Millikan Oil Drop Experiment
25-13 Cathode Ray Tube: TV, Computer Monitors, and Oscilloscopes
25-14 The Van de Graaff Generator and Other Applications
25-99 Associated problems in Chapter 25
26 Capacitance and Dielectrics
26-01 Definition of Capacitance [] $C=\frac{q}{V}$
26-02 Calculation of Capacitance [] $C=\frac{\epsilon_{0} A}{d}$
26-03 Combinations of Capacitors
26-04 Energy Stored in a Charged Capacitor [] $U=\frac{1}{2} C(\Delta V)^{2}, W=\int_{0}^{Q} \frac{q}{C} d q=\frac{Q^{2}}{2 C}$, energy density: $u=\frac{U}{A d}=\frac{1}{2} \kappa \epsilon_{0} E^{2}$
26-05 Capacitors with Dielectrics [] $C=\kappa C_{0}, C=\kappa \frac{\epsilon_{0} A}{d}$
26-06 Dielectrics from a Molecular Level [] dielectric doesn't fill space, piezoelectric effect
26-07 Dielectrics and Gauss' Law [] $\epsilon \oint \kappa \vec{E} \cdot d \vec{A}=q$
26-08 Electric Dipole in an External Electric Field [] $\vec{\tau}=\vec{p} \times \vec{E}$, polar, nonpolar
26-09 Electrostatic Applications
26-99 Associated problems in Chapter 26
27 Current and Resistance
27-01 Electric Current [] $I=\frac{d Q}{d t}, q=\int d q=\int I d t$
27-02 Current Density and Drift Speed [] $\vec{J}=n q \vec{v}$, current density: $i=q n A v_{d}$
27-03 Resistance and Resistivity [] $R=\rho \frac{\ell}{A}, \rho=\frac{m_{e}}{n e^{2} \tau}$, (average collision time τ)
27-04 Ohm's Law [] $V=I R$

27-05 Microscopic View of Ohm's Law [] mean time between collisions of electrons
27-06 Resistance and Temperature [] $\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right], R=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$,
27-07 Semiconductors
27-08 Superconductors
27-09 Electrical Energy and Power [] $P=I V=\frac{V^{2}}{R}=I^{2} R$
27-10 Power in Household Circuits
27-11 Electrical Hazards: Leakage Currents
27-12 Electrical Energy in the Heart
27-99 Associated problems in Chapter 27

28 Direct Current Circuits

28-01 Electromotive Force and Terminal Voltage [] $\Delta V=\mathcal{E}-I r$
28-02 Work, Energy, and EMF [] $\mathcal{E}=\frac{d W}{d q}$
28-03 Resistance: Series Circuits
28-04 Resistance: Series/Parallel Combinations
28-05 Potential Difference Between Two Points
28-06 Complicated Circuits: Kirchoff's Rules
28-07 RC Circuits [] $I=\frac{\mathcal{E}}{R} e^{-t /(R C)}, q=C \mathcal{E}\left[1-e^{-t /(R C)}\right]=Q\left[1-e^{-t /(R C)}\right]$
28-08 Electrical Instruments: Ammeter and Voltmeter
28-09 Household Wiring and Electrical Safety
28-10 Conduction of Electrical Signals by Neurons
28-11 Transducers and the Thermocouple
28-99 Associated problems in Chapter 28

29 Magnetic Fields

29-01 Magnetic Fields and Forces [] Lorenz force: $\vec{F}=q \vec{v} \times \vec{B}$
29-02 Magnetism from Electric Currents
29-03 Magnetic Force on a Current-Carrying Conductor [] $\vec{F}=i \vec{L} \times \vec{B}$
29-04 Torque on a Current Loop in a Uniform Magnetic Field [] $\vec{\tau}=I \vec{A} \times \vec{B}, \vec{\tau}=\vec{\mu} \times \vec{B}$, mag dipole moment: $\mu=N I A$
29-05 Motion of a Charged Particle in a Magnetic Field [] $q v B=m \frac{v^{2}}{r}$
29-06 Applications of the Motion of Charged Particles in a Magnetic Field [] Lorenz force: $\vec{F}=q \vec{E}+q \vec{v} \times \vec{B}$
29-07 Crossed Fields: Discovery of the Electron
29-08 The Hall Effect [] Hall voltage: $\Delta V_{H}=\frac{I B}{n q t}=\frac{R_{H} I B}{t}$, drift velocity
29-09 Galvanometers, Motors, Loudspeakers
29-10 Cyclotrons and Synchrotrons [] cyclotron: $\omega=\frac{q B}{m}$
29-11 Mass Spectrometer
29-99 Associated problems in Chapter 29

30 Sources of the Magnetic Field

30-01 The Biot-Savart Law [] $d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{s} \times \vec{r}}{r^{2}}$
30-02 Magnetic Field Due to a Straight Wire [] $B=\frac{\mu_{0} I}{2 \pi r}$
30-03 Magnetic Force Between Two Parallel Conductors [] $F_{B}=\mu_{0} \frac{\ell I_{1} I_{2}}{2 \pi a}$
30-04 Ampere's Law
30-05 The Magnetic Field of Current Loops
$30-06$ The Magnetic Field Along the Axis of a Solenoid [] $B=\mu_{o} \frac{N}{\ell} I=\mu_{0} n I, n=\frac{N}{\ell}$
30-07 A Current-Carrying Coil as a Magnetic Dipole

30-08 Magnetic Flux []$\Phi_{B}=\int \vec{B} \cdot d \vec{A}$
30-09 Gauss's Law in Magnetism [] $\int \vec{B} \cdot d \vec{A}=0$
30-10 Displacement Current and the Generalized Ampere's Law [] $I_{B}=\epsilon_{0} \frac{d Q_{E}}{d t}, \int \vec{B}$. $\overrightarrow{d s}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d Q_{E}}{d t}$
30-11 Magnetism and Electrons: Spin
30-12 Magnetism in Matter [] Curie const, $M=C \frac{B}{T}, H=n I$, mag moments
30-13 Diamagnetism
30-14 Paramagnetism
30-15 Ferromagnetism
30-16 Magnetic Field of the Earth
30-99 Associated problems in Chapter 30

31 Faraday's Law

31-01 Faraday's Law of Induction [] (field changes) $\mathcal{E}=-\frac{d Q_{B}}{d t}, \mathcal{E}=-N \frac{d Q_{B}}{d t}$
31-02 Motional EMF [] (conductor moves in magnetic field) $q E=q v B, \mathcal{E}=B H v=B \ell v$, $\Delta V=B \ell v-I r$
31-03 Lenz's Law [] magnetic field opposes Δ flux
31-04 Induced EMF in a Moving Conductor [] $\oint \vec{E} \cdot d \vec{s}=-\frac{d Q_{B}}{d t}$
31-05 Induced Electric Fields
31-06 Electric Field from a Changing Magnetic Flux
31-07 Generators and Motors [] back emf
31-08 Eddy Currents
31-09 Maxwell's Equations [] general Lorenz Force: $\vec{F}=q \vec{E}+q \vec{v} \times \vec{B}$
31-10 Sound Systems, Computer Memory, the Seismograph
31-99 Associated problems in Chapter 31

32 Inductance

32-01 Inductors and Inductance [] $L=N \frac{\Phi_{B}}{\ell}$, solenoid: $L=\mu_{0} n^{2} \ell A$
32-02 Self-Inductance, Self-Induced EMF [] $\mathcal{E}=-L \frac{d I}{d t}=N \frac{d \Phi}{d t}$
32-03 RL Circuits [] $I=\frac{\mathcal{E}}{R}\left(1-e^{-t / \tau}\right), L \frac{d i}{d t}+R i=\mathcal{E}$
32-04 Energy in a Magnetic Field [] $U_{B}=\frac{1}{2} L I^{2}, P=L I \frac{d I}{d t}$
32-05 Energy Density of a Magnetic Field [] density: $u_{B}=\frac{B^{2}}{2 \mu_{0}}, U_{B}=\int u_{B} d V$
32-06 Mutual Inductance [] $M_{12}=\frac{N_{2} Q_{12}}{I_{1}}, \mathcal{E}=-M \frac{d i}{d t}, \mathcal{E}_{2}=-N_{2} \frac{d Q_{21}}{d t}=-M_{2} \frac{d I_{1}}{d t}$
32-07 Oscillations in an LC Circuit
32-08 The RLC Circuit
32-09 Critical Magnetic Fields
32-10 Magnetic Properties of Superconductors
32-99 Associated problems in Chapter 32

33 Alternating Current Circuits

33-01 AC Sources [] generators
33-02 Phasors
33-03 Resistors in an AC Circuit [] $I_{r m s}=\frac{1}{\sqrt{2}} I_{\max }, P=I_{r m s}^{2} R, \Delta V_{r m s}=\frac{1}{\sqrt{2}} \Delta V_{\max }$
33-04 Inductors in an AC Circuit [] $X_{L}=\omega L, I_{\max }=\frac{\Delta V_{\max }}{X_{L}}$
33-05 Capacitors in an AC Circuit [] $i=\omega C \Delta V_{\max } \sin \left(\omega t+\frac{\pi}{2}\right)$
33-06 LC and RLC Circuits [] $Z_{\text {series }}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} ; Z_{\text {parallel }}=\frac{1}{\sqrt{1 / R^{2}+\left(1 / X_{L}-1 / X_{C}\right)^{2}}}$

33-07 The RLC Series Circuit [] $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}, \Delta V_{\max }=I_{\max } Z, \phi=$ $\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)$
33-08 Damped Oscillations in an RLC Circuit
33-09 Power in an AC Circuit [] $P=I_{r m s} \Delta V_{r m s} \cos \phi=I_{r m s}^{2} R$
33-10 Resonance in a Series RLC Circuit [] $I_{r m s}=\frac{\Delta r_{r m s}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}, \omega_{0}=\frac{1}{\sqrt{L C}}$
33-11 Impedance Matching
33-12 Filter Circuits
33-13 The Transformer and Power Transmission [] $I_{1} \Delta V_{1}=I_{2} \Delta V_{2}$
33-14 Three-Phase AC
33-99 Associated problems in Chapter 33

34 Electromagnetic Waves

34-01 Maxwell's Equations and Hertz's Discoveries [] $\int \vec{E} \cdot \overrightarrow{d A}=\frac{q}{\epsilon_{0}}, \int \vec{B} \cdot \overrightarrow{d A}=0$, $\int \vec{E} \cdot \overrightarrow{d s}=\frac{d \Phi_{B}}{d t}, \int \vec{B} \cdot \overrightarrow{d s}=\mu_{0} I+\epsilon_{0} \mu_{0} \frac{d \Phi_{E}}{d t}, \vec{F}=q \vec{E}+q \vec{v} \times \vec{B}$
34-02 Plane Electromagnetic Waves [] $\frac{\partial^{2} E}{\partial x^{2}}=\mu_{0} \epsilon_{0} \frac{\partial^{2} E}{\partial t^{2}}, \frac{\partial^{2} B}{\partial x^{2}}=\mu_{0} \epsilon_{0} \frac{\partial^{2} B}{\partial t^{2}}, E=$ $E_{\text {max }} \sin (k x-\omega t), B=B_{\text {max }} \sin (k x-\omega t)$
34-03 Speed of Electromagnetic Waves [] $c=\frac{1}{\sqrt{\mu_{0} c_{0}}}, \frac{E_{\text {max }}}{B_{\text {max }}}=\frac{E}{B}=c$
34-04 Energy Carried by Electromagnetic Waves: Poynting Vector [] (intensity)
34-05 Momentum and Radiation Pressure [] complete absorption: $p=\frac{U}{c}$, absorption:
$P=\frac{S}{c}$, reflection: $P=\frac{2 S}{c}$
34-06 Radiation from an Infinite Current Sheet
34-07 The Production of Electromagnetic Waves by an Antenna
34-08 Properties of Electromagnetic Waves
34-09 The Spectrum of Electromagnetic Waves
34-10 The Doppler Effect for Electromagnetic Waves
34-11 Radio and Television
34-99 Associated problems in Chapter 34
35 The Nature of Light and Geometric Optics
35-01 The Nature of Light [] $E=h \nu$
35-02 Wave-Particle Duality
35-03 The Speed of Light [] $v=f \lambda$, Romer's, Fizeau's
35-04 Reflection
35-05 Transmission and Refraction [] $\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}}=\mathrm{const}, n=\frac{c}{v}$
35-06 The Law of Refraction [] $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
35-07 Dispersion and Prisms [] rainbows
35-08 Huygens' Principle [] (every pt on wavefront propagates new wave) 3 types: $\lambda \ll d$, $\lambda=d, \lambda \gg d$
35-09 Total Internal Reflection [] $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$
35-10 Fermat's Principle [] least time determines path
35-11 Mixing Pigments
35-12 Luminous Intensity [] luminous flux
35-99 Associated problems in Chapter 35

36 Geometric Optics

36-01 Two Types of Image [] real, virtual
36-02 Images Formed by Flat Mirrors [] $M=\frac{h^{\prime}}{h}$, one/two mirrors

36-03 Images Formed by Concave Mirrors [] $M=\frac{h^{\prime}}{h}=-\frac{q}{p}, \frac{1}{f}=\frac{1}{p}+\frac{1}{q}$
36-04 Images Formed by Convex Mirrors [] $M=\frac{h^{\prime}}{h}=-\frac{q}{p}, \frac{1}{f}=\frac{1}{p}+\frac{1}{q}$
36-05 Spherical Mirrors: Ray Tracing
36-06 Images Formed by Refracting Surfaces [] $\frac{n_{1}}{p}+\frac{n_{2}}{q}=\frac{n_{2}-n_{1}}{R}$
36-07 Atmospheric Refraction
36-08 Images Formed by Thin Lenses
36-09 Combinations of Lenses and Mirrors
36-10 Thin Lenses: Ray Tracing
36-11 Lensmaker's Equation [] $\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
36-12 The Camera [] f-number $=\frac{f}{D}$
36-13 The Eye and Corrective Lenses
36-14 The Simple Magnifier [] $M=\frac{25 \mathrm{~cm}}{f}$
36-15 The Compound Microscope
36-16 The Telescope
36-17 Lens and Mirror Aberrations
36-99 Associated problems in Chapter 36

37 Interference of Light Waves

37-01 Conditions for Interference [] coherent, identical wavelengths
37-02 Double Slit Interference: Young's Experiment [] constr: $\delta=d \sin \theta_{\max }=m \lambda$, destr: $d \sin \theta_{\text {min }}=\left(m+\frac{1}{2}\right) \lambda$
37-03 Coherence
37-04 Intensity Distribution of the Double-Slit Interference Pattern [] $I=$ $I_{\max } \cos ^{2}\left(\frac{\pi d \sin \theta}{\lambda}\right)$
37-05 Phasor Addition of Waves
37-06 Change of Phase Due to Reflection
37-07 Interference in Thin Films [] $\lambda_{n}=\frac{\lambda}{n}, \lambda$ in free space, constr: $2 n t=\left(m+\frac{1}{2}\right) \lambda$, destr: $2 n t=m \lambda$
37-08 The Michelson Interferometer
37-09 Using Interference to Read CDs and DVDs
37-99 Associated problems in Chapter 37

38 Diffraction and Polarization

38-01 Diffraction
38-02 Huygens' Principle and Diffraction
38-03 Huygens' Principle and the Law of Refraction
38-04 Single-Slit Diffraction [] destr: $\sin \theta_{\text {min }}=m \frac{\lambda}{2}$
38-05 Intensity in Single-Slit Diffraction [] $I=I_{\max }\left[\frac{\sin (\beta / 2)}{\beta / 2}\right]^{2}$
38-06 Using Phasors to Add Harmonic Waves
38-07 Fraunhofer and Fresnel Diffraction
38-08 Resolution of Single-Slit and Circular Apertures [] slit: $\theta_{\min }=\frac{\lambda}{a}$, circ: $\theta_{\operatorname{mix}}=$ $1.22 \frac{\lambda}{D}$, Raleigh
38-09 Resolution of Telescopes and Microscopes: the λ Limit
38-10 Resolution of the Human Eye and Useful Magnification
38-11 Diffraction by a Double Slit
38-12 The Diffraction Grating [] $d \sin \theta_{\max }=m \lambda$
38-13 Gratings: Dispersion and Resolving Power

38-14 X-Rays [] Bragg, constr: $2 d \sin \theta=m \lambda$
38-15 Diffraction of X-Rays by Crystals [] Bragg, constr: $2 d \sin \theta=m \lambda$
38-16 Polarization of Light Waves [] Malus: $I=I_{0} \cos ^{2} \theta$
38-17 Polarization by Reflection [] Brewster: $n=\tan \theta_{p}$
38-18 The Spectrometer and Spectroscopy
38-99 Associated problems in Chapter 38

39 Relativity [] $\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$

39-01 Galilean Coordinate Transformations [] principles of Newtonian relativity, $x=$ $x^{\prime}+v t^{\prime}, y=y^{\prime}, z=z^{\prime}, t=t^{\prime}, u=u^{\prime}+v$
39-02 Lorentz Coordinate Transformations [] $x=\gamma\left(x^{\prime}+v t^{\prime}\right), y=y^{\prime}, z=z^{\prime}, t=$ $\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right), u_{x}=\frac{u_{x}^{\prime}+v}{1+v v^{\prime} / c^{2}}$
39-03 Postulates: Speed of Light [] constancy of c
39-04 The Michelson-Morley Experiment
39-05 Consequences of Special Relativity [] equivalence, simultaneity
39-06 The Lorentz Transformation for Displacements [] $L=\frac{L_{p}}{\gamma}$
39-07 The Lorentz Transformation for Time [] $\Delta t=\gamma \Delta t_{p}, t_{p}$ at rest
39-08 The Lorentz Transformation for Velocities [] $u_{x}^{\prime}=\frac{u_{x}-v}{1-u_{x} v / c^{2}}, u_{y}$ and u_{z} affected also (S^{\prime} moving at v)
39-09 Relativistic Momentum and Relativistic Form of Newton's Laws [] $\vec{p}=\gamma m \vec{u}=$ $\frac{m \vec{u}}{\sqrt{1-u^{2} / c^{2}}}, \vec{F}=\frac{d \vec{p}}{d t}$
39-10 Relativistic Energy [] $K=(\gamma-1) m c^{2}, E_{R}=m c^{2}, E_{t o t}=K+m c^{2}=\gamma m c^{2}$, energy-momentum relationship: $E^{2}=p^{2} c^{2}+\left(m c^{2}\right)^{2}$
39-11 Mass as a Measure of Energy [] conservation of mass-energy: $E_{i}=\frac{m_{i} c^{2}}{\sqrt{1-u_{i}^{2} / c^{2}}}, \kappa=$ $(\gamma-1) m c^{2}$, fission, fusion
39-12 Photon Momentum [] $p=\frac{h f}{c}=\frac{h}{\lambda}, E=p c$
39-13 Conservation of Relativistic Momentum, Mass, and Energy
39-14 Doppler Shift for Light
39-15 Pair Production and Annihilation
39-16 Matter and Antimatter
39-17 General Relativity and Accelerating Reference Frames [] gravitational redshift 39-99 Associated problems in Chapter 39

40 The Quantum Theory of Light

40-01 The Photon, the Quantum of Light [] spin, no mass, $E=h f, f=\frac{c}{\lambda}$
40-02 Hertz's Experiments: Light as an Electromagnetic Wave [] $E_{n}=n h f$
40-03 Blackbody Radiation and Planck's Hypothesis [] $e_{f}=J(f, T), e_{t o t}=\int_{0}^{\infty} e_{f} d f=$ σT^{4}, Wien's, Stefan's, $E_{n}=n h f$, Planck's: $u(f, t) d f=\frac{8 \pi f^{2}}{c^{3}}\left[\frac{h f}{e^{h f /\left(k_{B} T\right)}-1}\right] d f$
40-04 Light Quantization and the Photoelectric Effect [] $K_{\max }=\frac{1}{2} m_{e} v_{\max }^{2}=e V_{s}$, photoelectric: $K_{\max }=h f-\phi$
40-05 The Compton Effect [] $\Delta \lambda=\frac{h}{m_{e} c}(1-\cos \theta)$, energy conserv: $E+m_{e} c^{2}=E^{\prime}+E_{e}$, Compton wavelength: $\frac{h}{m c}$, Bragg scattering: $n \lambda=2 d \sin \theta$
40-06 Particle-Wave Complementarity, Duality: Double Slits [] (Davidson-Germer is 42:03)
40-07 Effect of Gravity on Light []$f^{\prime}=f\left(1-\frac{G m}{R_{s} c^{2}}\right), \frac{\Delta f}{f}=\frac{g H}{c^{2}}$, red shift for white dwarf

40-08 The Wave Function

40-09 Electron Microscopes
40-99 Associated problems in Chapter 40

41 The Particle Nature of Matter

41-01 The Atomic Nature of Matter [] spectrum, Balmer series, $\frac{1}{\lambda}=\frac{1}{R_{H}}\left(\frac{1}{4}-\frac{1}{n^{2}}\right)$
41-02 The Composition of Atoms [] Faraday's law of electrolysis: $m=\frac{1 \text { (molar mass) }}{(96500 c) \text { (valence) }}$, Rutherford model, Thomson, $\frac{e}{m_{e}}$ tube, Millikan oil drop
41-03 Molecules
41-04 The Bohr Atom [] spectral series, Balmer series, $\Delta E=h f, m_{e} v r=n \hbar$, Kirchoff, $\frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$, Balmer lines $E=-\frac{k_{e}^{2}}{2 r}, E_{n}=-\frac{k e^{2}}{2 a_{0} n^{2}}=\frac{13.606}{n^{2}} \mathrm{eV}, r_{n}=\frac{n^{2} \hbar^{2}}{m_{e} k e^{2}}$, theoretical: $\frac{1}{\lambda}=\frac{f}{c}=\frac{k e^{2}}{2 a_{0} h c}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$
41-05 Quantum Model of the Hydrogen Atom [] quantization of angular momentum and energy, Bohr's correspondence principal, $L=m_{e} v r=n \hbar, \frac{d E}{d L}=\frac{m_{e} k^{2} e^{4}}{L^{3}}, E=-\frac{1}{2} \frac{m_{e} k^{2} e^{4}}{L^{2}}$, quantum number restrictions: $1<n<\infty, 0<\ell<n-1$, $-\ell<m_{\ell}<\ell$
41-06 Franck-Herz Experiment
41-99 Associated problems in Chapter 41

42 Matter Waves

$42-01$ de Broglie Waves [] $\lambda=\frac{h}{p}, m_{e} v r=n \hbar, f=\frac{E}{h}$
42-02 The Time Independent Schrödinger Equation [] $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+U(x) \Psi(x)=i \hbar \frac{\partial \Psi}{\partial t}$, $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+U(x) \Psi(x)=E \Psi(x)$
42-03 The Davisson-Germer Experiment
42-04 Fourier Integrals [] $f=\frac{1}{\sqrt{2 \pi}} \int a(x) e^{i k x} d x$
42-05 The Heisenberg Uncertainty Principle [] $\Delta p \Delta x=\frac{1}{2} \hbar, \Delta E \Delta t \geq \frac{1}{2} \hbar$
42-06 Wave Groups and Dispersion [] phase velocity: $v_{p}=\frac{\omega}{\kappa}$, group velocity: $v_{g}=\left.\frac{d \omega}{d k}\right|_{k_{0}}$, phase vel for matter waves: $v_{p}=c \sqrt{1+\left(\frac{m c}{\hbar k}\right)^{2}}$, matter wave packets
42-07 Wave-Particle Duality [] electron diffraction, (cannot measure wave and particle properties simultaneously), Ψ
42-08 String Waves and Matter Waves [] Bragg
42-99 Associated problems in Chapter 42

43 Quantum Mechanics in One Dimension

43-01 The Hydrogen Atom [] $E_{n}=-\frac{13.6 \mathrm{eV}}{n^{2}}$
43-02 The Born Interpretation [] $P(x) d x=|\Psi(x, t)|^{2} d x$, normalization $\int|\Psi|^{2} d x=1$, $\int_{-\infty}^{\infty}|\Psi|^{2} d x=1$, probabilities: $P(x)=\int_{a}^{b}|\Psi|^{2} d x$
43-03 The Time-Dependent Schrödinger Equation
43-04 Wavefunction for a Free Particle [] $\Psi=A e^{i(k x-\omega t)}=A \mid \cos (k x-\omega t)+i \sin (k x-$ $\omega t) \mid$
43-05 Wavefunctions in the Presence of Forces [] $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+U(x) \Psi=i \hbar \frac{\partial \Psi}{\partial t}$, (Schröd)
43-06 Particle in a Box [] (infinite box), quantum number n, $E_{n}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}$, stationary states: $\Psi_{n}=A \sin \left(\frac{n \pi x}{L}\right)$,
43-07 Energies of a Trapped Electron [] $E_{n}=\frac{h^{2}}{8 m L^{2}} n^{2}$
43-08 Wave Functions of a Trapped Electron [] $\Psi_{n}=A \sin \left(\frac{n \pi}{L} x\right)$, prob: $P(x)=$

Problem Bank - Physics

$\Psi_{n}^{2}(x) d x$, prob density: $\Psi_{n}^{2}(x)=A^{2} \sin ^{2}\left(\frac{n \pi}{L} x\right)$
43-09 The Finite Square Well [] $E_{n} \approx \frac{n^{2} \pi^{2} \hbar^{2}}{2 m(L+2 \delta)^{2}}, \delta=\frac{1}{\alpha}=\frac{\hbar}{\sqrt{2 m(U-E)}}$
43-10 More Electron Traps [] nanocrystallites, quantum dots, corrals
43-11 Two- and Three-Dimensional Electron Traps [] rectangular box
43-12 The Quantum Oscillator [] $\frac{\partial^{2} \Psi}{\partial x^{2}}=\frac{2 m}{\hbar^{2}}\left(\frac{1}{2} m \omega^{2} x^{2}-E\right) \Psi(x)$, harmonic oscillator $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$
43-13 Expectation Values [] average position: $\langle x\rangle=\int x|\Psi|^{2} d x$, average momentum: $\langle p\rangle=$ $m \frac{d\langle x\rangle}{d t}=\int \Psi^{*}\left(\frac{\hbar}{i}\right) \frac{\partial \Psi}{\partial x} d x$
43-14 Observables and Operators []$\langle Q\rangle=\int \Psi^{*}[Q] \Psi d x, \Delta Q=\sqrt{\left\langle Q^{2}\right\rangle-\langle Q\rangle^{2}}$
43-99 Associated problems in Chapter 43

44 Tunneling Phenomena

44-01 The Square Barrier [] reflection coeff: $F=\frac{|B|^{2}}{|A|^{2}}$, transmission coeff: $T=\frac{|F|^{2}}{|A|^{2}}$
44-02 Barrier Penetration: Some Applications [] alpha decay, tunneling through Coulomb barrier, barrier: $T(E)=\exp \left[-\frac{2}{\hbar} \sqrt{2 m} \int \sqrt{U(x)-E} d x\right]$, field emission: $T(E)=$ $\exp \left(-\frac{4 \sqrt{2 m}|E|^{3 / 2}}{3 e \hbar} \frac{1}{\mathcal{E}}\right)$, decay of black holes
44-03 Decay Rates
44-04 The Scanning Tunneling Microscope
44-99 Associated problems in Chapter 44
45 Quantum Mechanics in Three Dimensions
45-01 Three-Dimensional Schrödinger Equation [] $-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+U(r) \Psi=i \hbar \frac{\partial \Psi}{\partial t}$, Laplacian: $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$,
45-02 Particle in a Three-Dimensional Box [] time-independent Schrödinger equation for particle with energy $E=\hbar \omega:-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(r)+U(r) \Psi(r)=E \Psi(r)$, discrete energies: $E=\frac{1}{2 m}\left(\left|p_{x}\right|^{2}+\left|p_{y}\right|^{2}+\left|p_{z}\right|^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)$, where $\left|p_{x}\right|=\hbar k_{1}=n_{1} \frac{\pi \hbar}{L}$, etc.
45-03 Central Forces and Angular Momentum [] $|\vec{L}|=\sqrt{\ell(\ell+1)} \hbar, L_{z}=m_{\ell} \hbar$
45-04 Space Quantization [] $\cos \theta=\frac{L_{z}}{|\vec{L}|}=\frac{m_{\ell}}{\sqrt{\ell(\ell+1)}}$
45-05 Quantization of Angular Momentum and Energy [] L_{z} is sharp, $|\vec{L}|$ is sharp, E is sharp, $U=U(r)+\frac{\ell(\ell+1) \hbar^{2}}{2 m r^{2}}, L=m_{e} v r=n \hbar, \frac{d E}{d L}=\frac{m_{e} k^{2} e^{4}}{L^{3}}, E=-\frac{1}{c} \frac{m_{e} k^{2} e^{4}}{L^{2}}$
45-06 Atomic Hydrogen and Hydrogen-like Ions [] $E_{n}=-\frac{k e^{2}}{2 a_{o}}\left(\frac{z^{2}}{h^{2}}\right), \ell=0,1,2, \ldots, n-1$, ground state: $P(r)=|g|^{2}=r^{2}|R|^{2},\langle r\rangle=\int_{0}^{\infty} r P(r) d r,\langle f\rangle=\int_{0}^{\infty} f P d r$
45-99 Associated problems in Chapter 45

46 Atomic Structure

46-01 Some Properties of Atoms
46-02 Atomic Spectra
46-03 Orbital Magnetism and the Normal Zeeman Effect [] $\vec{\mu}=\frac{q}{2 m} \vec{L}, \vec{\tau}=\vec{\mu} \times \vec{B}$, $U=-\vec{\mu} \cdot \vec{B}$,
46-04 Electron Spin [] $\mu_{s}, S_{z}=m_{s} \hbar,|\vec{S}|=\sqrt{s(s+1)} \hbar=\frac{\sqrt{3}}{2} \hbar, \vec{\mu}=\vec{\mu}_{o}+\vec{\mu}_{s}=$ $-\frac{e}{2 m_{e}}(\vec{L}+g \vec{S})$
46-05 The Spin-Orbit Interaction and Other Magnetic Effects []$|\vec{J}|=\sqrt{j(j+1)} \hbar$

46-06 Angular Momenta and Magnetic Dipole Moments
46-07 The Stern-Gerlach Experiment
46-08 Magnetic Resonance
46-09 Electron Clouds [] prob of finding electron
46-10 Exchange Symmetry and the Exclusion Principle [] bosons: $\Psi\left(r_{1}, r_{2}\right)=\Psi\left(r_{2}, r_{1}\right)$, fermions: $\Psi\left(r_{1}, r_{2}\right)=-\Psi\left(r_{2}, r_{1}\right)$
46-11 Multiple Electrons in Rectangular Traps
46-12 Electron Interactions and Screening Effects [] Thomas-Fermi atom, quantum defects, Hartree's self-consistent fields
46-13 The Periodic Table [] electron configuraton, Hund's rule
46-14 Isotopes
46-15 X-Ray Spectra and Moseley's Law
46-16 Atomic Transitions [] jump levels, ground/excited states
46-17 Lasers and Holography
46-18 How Lasers Work [] absorption, spontaneous/simulated emission, population inversion, semiconductor lasers
46-99 Associated problems in Chapter 46

47 Statistical Physics

47-01 The Maxwell-Boltzmann Distribution [] $n(v) d V=\ldots$, equipart of energy: $\frac{1}{2} m \bar{v}_{x}^{2}=$ $\frac{1}{2} k_{B} T, \frac{1}{2} m \bar{v}^{2}=\sum \frac{1}{2} m v^{2}=\frac{3}{2} k_{B} T$
47-02 Quantum Statistics, Indistinguishability and the Pauli Exclusion Principle [] Bose-Einstein, Fermi-Dirac
47-03 Applications of Bose-Einstein Statistics [] blackbody radiation, phonons $C=\frac{d U}{d T}$
47-04 An Application of Fermi-Dirac Statistics: The Free-Electron Gas Theory of Metals [] density of states
47-99 Associated problems in Chapter 47

48 Molecular Structure

48-01 Bonding Mechanisms [] ionic/covalent/hydrogen bonds
48-02 Weak (van der Waals) Bonds
48-03 Polyatomic Molecules
48-04 Diatomic Molecules: Molecular Rotation and Vibration [] $E_{n e t}=\frac{L^{2}}{2 I}, E_{\text {rot }}=$ $\frac{\hbar^{2}}{2 I_{c m}} l(l+1), E_{v i b}=\left(\nu+\frac{1}{2}\right) \hbar \omega$, anharmonic effect
48-05 Molecular Spectra [] rotat-vibr spectrum
48-06 Electron Sharing and the Covalent Bond [] hydrogen molec ion, molecular orbitals/atoms/wavefunctions, bonding/antibonding orbitals of He^{+}
48-07 Bonding in Complex Molecules [] σ, π bonds, heteronuclear molec
48-99 Associated problems in Chapter 48

49 The Solid State

49-01 Bonding in Solids [] ionic, atomic cohesive energy, covalent, metallic, molec crystals, amorphous solids
49-02 Electrical Properties of Solids
49-03 Energy Levels in a Crystalline Solid
49-04 Insulators
49-05 Metals [] Fermi energy
49-06 Classical Free-Electron Model [] Ohm's Law, drift speed, current density, heat con-
ductivity, Wiedemann Franz Law, Lorenz number
49-07 Quantum Theory of Metals [] v_{F} instead of $v_{r m s}$, quantum free path, Mattheissen's rule
49-08 Band Theory of Solids [] energy gap, isolated atom approach, conduction metals/insulators/semiconductors, electron wave reflections
49-09 Semiconductor Devices [] solar cells, junction transistor
49-10 Doped Semiconductors [] n-type, p-type
49-11 The $p-n$ Junction [] semiconductor diodes
49-12 The Junction Rectifier
49-13 The Light-Emitting Diode (LED)
49-14 Transistors and Integrated Circuits
49-99 Associated problems in Chapter 49

50 Superconductivity

50-01 Magnetism in Matter [] mag moments, mag field strength, mag permeable, mag hysteresis, paramagnetism, Curie's law: $M=C \frac{B}{T}$, diamagnetism
50-02 A Brief History of Superconductivity [] critical temp, mag fld
50-03 Some Properties of Type I Superconductors [] critical temp, penetration depth
50-04 Type II Superconductors [] vortex state
50-05 Other Properties of Superconductors [] persistent currents, coherent lengths, flux quantization
50-06 Electronic Specific Heat
50-07 BCS Theory [] isotope effect, Cooper pair
50-08 Energy Gap Measurements [] single particle tunneling, EM absorption
50-09 Josephson Tunneling [] dc and ac effects, quantum interference
50-10 High-Temperature Superconductivity
50-11 Applications of Superconductivity
50-99 Associated problems in Chapter 50

51 Nuclear Structure

51-01 Discovering the Nucleus [] Rutherford, Geiger, Marsden
51-02 Some Nuclear Properties [] isotopes, charge, mass, size, structure, nuclear stability, spin magnetic moments, magnetic resonance, MRI, NMR
51-03 Binding Energy and Nuclear Forces [] charge independent
51-04 Nuclear Models [] liquid-drop, independent-particle, collective, combined
51-05 Radioactivity [] positron, decay constant
51-06 Decay Processes
51-07 Alpha Decay [] ${ }^{4} \mathrm{He}$
51-08 Beta Decay [] neutrino ν
51-09 Gamma Decay
51-10 Half-Life and Rate of Decay
51-11 Decay Series
51-12 Radioactive Dating
51-13 Measuring Radiation Dosage
51-14 Natural Radioactivity
51-99 Associated problems in Chapter 51

52 Nuclear Physics Applications

52-01 Nuclear Reactions [] Q values

52-02 Reaction Cross Section

52-03 Interactions Involving Neutrons [] neutron capture
52-04 Nuclear Fission
52-05 A Model for Nuclear Fission
52-06 Nuclear Reactors [] chain reaction, neutron leakage
52-07 A Natural Nuclear Reactor
52-08 Nuclear Fusion [] thermonuclear reactions, fusion, Lawson's criterion, magnetic field confinement, inertial confinement
52-09 Thermonuclear Fusion in the Sun and Other Stars
52-10 Controlled Thermonuclear Fusion [] magnetic, inertial confinement
52-11 Recent Fusion Energy Developments
52-12 Interaction of Particles with Matter [] heavy charged particles, pair production: $I=I_{o} e^{-\mu x}$
52-13 Radiation Damage in Matter [] roentgen, the rad
52-14 Radiation Detectors [] ion/cloud/bubble/closed chambers, Geiger counter, neutron detectors, dosiometry
52-15 Radiation Therapy
52-16 Tracers
52-17 Tomography Imaging: CAT Scans and Emission Tomography
52-18 NMR and MRI
52-99 Associated problems in Chapter 52

53 Particle Physics

53-01 Elementary Particles [] high energy
53-02 The Fundamental Forces in Nature [] strong, weak, EM, gravitational
53-03 Particle Accelerators and Detectors [] cyclotron, synchrotron, linear accelerator, particle detectors, colliding beams
53-04 Particle Exchange
53-05 Particles and Antiparticles [] pair production, electron-positron annhilation, $e^{+}+$ $e^{-} \rightarrow 2 \gamma$
53-06 Mesons and the Beginning of Particle Physics [] π^{-}, μ^{-}
53-07 Classification of Particles [] hadrons, leptons, baryons, mesons
53-08 Conservation Laws [] baryon/lepton number
53-09 Particle Stability and Resonances
53-10 Antiproton in a Bubble Chamber
53-11 Leptons
53-12 Hadrons
53-13 Strange Particles and Strangeness [] karon, lambda, sigma
53-14 Elementary Particle Production; Measurement of Properties [] resonance particles, energy in particle production
53-15 The Eightfold Way [] patterns in particles
53-16 Quarks [] charm, colored quarks, gluons
53-17 Electroweak Theory and the Standard Model
53-18 Quasars
53-19 Grand Unified Theory [] symmetry breaking, string theory, supersymmetry
53-99 Associated problems in Chapter 53

54 Astrophysics and Cosmology

54-01 Stars and Galaxies

54-02 The Birth and Death of Stars [] luminosity, H-R diagram, main sequence
54-03 General Relativity: Gravity and the Curvature of Space [] principle of equivalence, black holes, Schwarzschild radius: $R=\frac{2 G M}{c^{2}}$
54-04 The Expanding Universe [] red shift, Hubble law, quasars
54-05 The Cosmic Connection
54-06 Cosmic Background Radiation
54-07 Dark Matter
54-08 The Big Bang
54-09 Early History of the Universe [] eras
54-10 The Future of the Universe
54-11 Problems and Perspectives
54-99 Associated problems in Chapter 54
55 Probability Distributions
55-01 Uncertainites
55-02 Parent and Sample Distributions
55-03 Mean and Standard Deviation of Distributions
55-04 Binomial Distribution
55-05 Poisson Distribution
55-06 Gaussian or Normal Error Distribution
55-07 Lorentzian Distribution
55-99 Associated problems in Chapter 55
56 Error Analysis [] (see 01:11)
56-01 Instrumental and Statistical Uncertainties
56-02 Propagation of Errors
56-03 Specific Error Formulas
56-04 Application of Error Equations
56-99 Associated problems in Chapter 56
57 Estimates of Mean and Errors
57-01 Method of Least Squares
57-02 Statistical Fluctuations
57-03 χ^{2} Test of a Distribution
57-99 Associated problems in Chapter 57
58 Monte Carlo Techniques
58-01 Introduction
58-02 Random Numbers
58-03 Random Numbers from Probability Distributions
58-04 Specific Distributions
58-05 Efficiency
58-99 Associated problems in Chapter 58

59 Least-Squares Fit to a Straight Line

59-01 Dependent and Independent Variables
59-02 Method of Least Squares
59-03 Minimizing χ^{2}
59-04 Error Estimation

59-05 Some Limitations of the Least-Squares Method
59-06 Alternate Fitting Methods
59-99 Associated problems in Chapter 59
60 Least-Squares Fit to a Polynomial
60-01 Determinate Solution
60-02 Matrix Solution
60-03 Independent Parameters
60-04 Nonlinear Functions
60-99 Associated problems in Chapter 60
61 Least-Squares Fit to an Arbitrary Function
61-01 Nonlinear Fitting
61-02 Searching Parameter Space
61-03 Grid-Search Mechod
61-04 Gradient-Search Method
61-05 Expansion Methods
61-06 The Marquardt Method
61-07 Comments on the Fits
61-99 Associated problems in Chapter 61
62 Fitting Composite Curves
62-01 Lorentzian Peak on Quadratic Background
62-02 Area Determination
62-03 Composite Plots
62-99 Associated problems in Chapter 62
63 Direct Application of the Maximum-Likelihood Method
63-01 Maximum-Likelihood Method
63-02 Computer Example
63-99 Associated problems in Chapter 63
64 Testing the Fit
64-01 χ^{2} Test of Goodness of Fit
64-02 Linear-Correlation Coefficient
64-03 F Test
64-04 Confidence Intervals
64-05 Monte Carlo Tests
64-99 Associated problems in Chapter 64

