
Linear Models

September 12, 2014

What is the point of a statistical model?

I (Underlying Pattern) + (Noise) = Data

+ =

I Pattern = hypothesized biological process
I Noise = random process and measurement error

Goal: Infer process by accounting for noise

Dr. Box tells it like it is

All models are wrong, but some are useful.
– George E. P. Box

What is a linear model?

A linear model is type of statistical model of the form:
I Stochastic / Noise component:

yi ∼ Distribution(Parameters)

I Deterministic / Process component:

E[yi] = β1xi1 + β2xi2 + ...+ βijxij

For the ith observation: y is response, x are covariates, β are
regression coefficients. Normal linear model:

y ∼ N (µ, σ)

µ and σ are location and scale parameters of the normal
distribution.

Normal linear model

We can write this as random variable and expected value:

yi ∼ N (µi , σ), E[yi] = µi = β1xi1 + β1xi2 + ...

Or equivilantly as linear model plus random errors:

yi = β1xi2 + β2xi2 + ...+ εi , ε ∼ N (0, σ)

Or equivalently as random variable where µ is linear model:

yi ∼ N (µi = [β1xi1 + β1xi2 + ...], σ)

For any technical description (not this one) a familiarity with
matrix notation is mandatory!

’Deterministic’ component

The linear model described above can incorporate:
I Continuous covariates
I Categorical covariates (as dummy variables)
I Interactions between covariates

Includes as special cases:
I Simple and multiple regression
I Analysis of variance (ANOVA)
I Analysis of covariance (ANCOVA)

In R we specify structure of linear model through the ’formula’
syntax.

response ∼ covariate + factor + ...

’Deterministic’ component
Continuous covariates: just like in the equation for a line:

E[yi] = α+ β1xi

α is intercept, β is slope.

Covariate

R
es

po
ns

e

R syntax: response ∼ 1 + covariate or response ∼
covariate

’Deterministic’ component

Categorical covariates: each category is coded as a dummy
variable dij .

I dij = 1 if ith observations belongs to category j.
I dij = 0 otherwise.

Think of this as a toggle (associated β is turned on or off)

Can write linear model in terms of category means:

E[yi] = β1di1 + β2di2 + β3di3 + ...

The βj are the mean value of y for each category.

R syntax: response ∼ 0 + category

’Deterministic’ component
Example: for a three-category covariate, if the response
belongs to category 2:

E[yi] = β1 · 0 + β2 · 1 + β3 · 0 = β2 · 1 = β2

= the mean value of y for category 2.

Category

R
es

po
ns

e

β1

β2

β3

’Deterministic’ component

Often we are interested in mean differences among groups.
Set one of the categories as a reference:

E[yi] = α+ β2di2 + β3di3 + ...

I α is the intercept = mean value of the response for the
reference.

I β2 and β3 = mean difference between reference and
categories 2 and 3.

This gives the exact same result as the previous example.

Ways of coding categorical variables to get the same outcome,
with different coefficients, are called contrasts.

’Deterministic’ component

Category

R
es

po
ns

e
β1

β2
α

With our three category example, if response belongs to
category 2:

E[yi] = α+ β2 · 1 + β3 · 0 = α+ β2

= mean value of category 2

R syntax: response ∼ 1 + category OR response ∼
category

’Deterministic’ component

With multiple types of categories (two-way ANOVA),
define a reference level for both types of categories.

For example: ’red’ vs. ’blue’ (first category type), and
’straight’ vs. ’crooked’ (second category type)

I ’red’ and ’crooked’ as reference combination
I di1 = 1 if "blue", di2 = 1 if "straight"

Model:
E[yi] = α+ β1di1 + β2di2

α = mean response for ’red’ and ’crooked’
β1 = diff. in response between ’red’ and ’blue’
β2 = diff. in response between ’crooked’ and ’straight’

’Deterministic’ component

β1

β2
β1

β2

α

red blue red blue

crooked crooked straight straight

Given α, β1, β2 calculate four possible values of response:
α+ β1 · 0 + β2 · 0 = α = mean value for ’crooked red’
α+ β1 · 1 + β2 · 0 = α+ β1 = mean value for ’crooked blue’
α+ β1 · 0 + β2 · 1 = α+ β2 = mean value for ’straight red’
α+ β1 · 1+ β2 · 1 = α+ β1 + β2 = mean value for ’straight blue’

’Deterministic’ component

Continuous and categorical covariates can be combined:

E[yi] = α+ β2di2 + β3xi3

In this case the dummy variable and associated coefficient,
combine into the intercept. i.e. where di2 = 1:

E[yi] = α+ β2 · 1 + β3xi3

= (α+ β2) + β3xi3

α is the intercept for category 1

β2 is the mean difference between the intercept for category 2
and the intercept for category 1.

β3 is the slope associated with continuous covariate, x.3.

’Deterministic’ component

This linear model (classic ANCOVA) codes for two lines, with
the same slope but different intercepts.

Covariate

R
es

po
ns

e

R syntax: response ∼ covariate + category

’Deterministic’ component
Covariates can interact. The interaction term takes the form:

(regression coefficient) · (covariate one) · (covariate two)

For categorical by continuous interaction, the interaction
combines with a slope:

E[yi] = α+ β2di1 + β3xi2 + β4di1xi2

= α+ β2 · 1 + β3xi + β4 · 1 · xi2

= (α+ β2) + (β3 + β4)xi2

For categorical by categorical interaction, the interaction
combines with an intercept:

E[yi] = α+ β2di1 + β3di2 + β4di1di2 + β5xi

= α+ β2 · 1 + β3 · 1 + β4 · 1 · 1 + β5xi

= (α+ β2 + β3 + β4) + β5xi

’Deterministic’ component
For categorical by continuous interaction, the regression
coefficient for the interaction is the difference in slope
between a category and the reference category.

Covariate

R
es

po
ns

e

This corresponds to a classical ANCOVA with interaction.
R syntax: response ∼ covariate + category +
covariate:category OR

response ∼ covariate * category

’Stochastic’ component

Deterministic component gives the fitted values.

The difference between the observed data and the fitted values
are the residuals.

Covariate

R
es

po
ns

e

0

Value of Residuals
Pr

ob
ab

ili
ty

For a normal linear model, we use a normal probability
distribution with µ = 0, to describe the random properties of
the residuals.

’Stochastic’ component
The scale parameter (aka standard deviation aka σ) determines
the spread of the residuals. In the plot below, the red and blue
points have the same quantiles, but are from distributions
with different scales.

0

Value of Residuals

Pr
ob

ab
ili

ty
σ = 1 σ = 2

A model with a single scale parameter – where the residuals all
have the same scale regardless of fitted value – is a
homoskedastic model.

Degrees of freedom

Degrees of freedom can be thought of as the number of
independent bits of information we have to estimate a given
measure.

A normal linear model has residual degrees freedom N − p
where N is number of observations and p is effective number
parameters.

A model is said to be overfit when the deterministic portion is
describing random noise instead of an underlying pattern.

Likelihood

We have specified the deterministic and stochastic components
of our model(s).

We have collected data that corresponds to the model(s).

Now we need to fit the model(s) – estimate the parameters (α,
β, etc.) – and to test hypotheses about the model(s).

Likelihood provides a framework for doing this.

Likelihood

Negative likelihood is one of many loss functions.

A loss function is a measure of how poorly a model fits the
data. A familiar example is the sum of squared residuals (the
least squares criterion):

Covariate

R
es

po
ns

e

Bad Fit

Covariate

R
es

po
ns

e

Good Fit

Likelihood
For a given probability distribution with specified parameters,
we have a probability density function (pdf), which gives
the probability of a given value of a random variable.

For example, for a single data point from normal distribution
with µ = 5:

0.33

Value of Random Variable

Pr
ob

ab
ili

ty

1 3 5 7 9

0.1

0.2

0.3

0.4

Likelihood

What is the probability of multiple observations?

Recall from basic probability: the probability of n independent
events is the product of the probabilities of each event.

0.04

0.39
0.34

0.22
0.26

0.11

Value of Random Variable

Pr
ob

ab
ili

ty

1 3 5 7 9

0.1

0.2

0.3

0.4

Likelihood

The product of these probabilities is:

0.04 · 0.11 · 0.22 · 0.26 · 0.34 · 0.39 = 3.3 · 10−5

This is the likelihood of µ = 5, given these data and the
scale parameter (fixed at 1 for this example):

L(µ = 5|y, σ)

Because the product of many probabilities is very small, we
usually use the log-likelihood.

logL(µ = 5|y, σ)

For clarity we’ll stick with the (unlogged) likelihood in this
example.

Likelihood
What is likelihood at different values of µ, for the same data?

Value of µ

Li
ke

lih
oo

d

3 5 7

0e+00

1e-05

2e-05

3e-05

4e-05

5e-05 µ = 3 µ = 4 µ = 5 µ = 6 µ = 7

Fun facts about likelihood
This is the likelihood surface for µ.

The peak of this surface is the maximum likelihood
estimate (MLE).

The curvature of the liklihood surface relates to the
precision of the MLE. If wide and flat, many values have similar
likelihood. If narrow and steep, few values have similar
likelihood.

The data are random, and the MLE is a function of the data:
thus the MLE is random.

The MLE is asymptotically normally distributed, for a normal
model.

The standard error (SE) of the MLE, is an estimate of
standard deviation of the distribution of the MLE.

The SE relates to the curvature of the likelihood surface: the
larger the SE, the more imprecise the estimate of the
MLE.

Likelihood
For multiple parameters (i.e. α and β in a simple regression),
the likelihood surface is two-dimensional. For y = α+ βx,
where x = [1 : 10]:

α

β

Likelihood
Then the sampling distribution of the MLE is multivariate
normal, with a variance-covariance matrix called the inverse
information matrix.

Likelihood

Depending on the statistical model, the MLE can be found
through analytical methods, optimization, etc.

For linear models, σ is often treated as a nuisance parameter
and is estimated with the unbiased estimator

σ2 = 1
N − p

N∑
i=0

(yi − E[yi])2

For the normal linear model, ordinary least squares finds the
MLE.

Workflow for modelling

1. Generate biological hypotheses
2. Develop models for hypotheses
3. Gather data to test models
4. Fit models to data
5. Model selection
6. Diagnose best model(s)
7. Test hypotheses with models

Motivating example

From Whitehorn et al. Science 2012: Bombus exposed to
neonicatinoid pesticides. Do neonicatinoids impact colony
growth?

I Response : the maximum weight a colony reaches,
max.weight in data

I Example of a non-normal response : number of queens
produced, reproductives in data

I Predictor of interest : neonicatinoid treatment
(CONTROL, LOW, HIGH), treatment in data

I Covariates : weight and workers by colony at start,
start.weight, start.workers in data

Motivating example
Bombus = read.csv("Bombus_pesticide.csv")
pairs(Bombus)

max.weight

550 650 750 5 15 25 35 1.0 2.0 3.0

70
0

13
00

55
0

75
0

start.weight

range.weight

0
40

0

5
20 start.workers

reproductives

0
80

700 1100

1.
0

2.
5

0 200 500 0 40 100

treatment

Fitting a linear model

lm(<formula>, <data>) is the workhorse for the normal
linear model.

Confusing terminology:
I ’General linear model’ is sometimes used for the normal

linear model
I ’Generalized linear model’ refers to linear models of

exponential-family distributions, of which normal is one

R code for fitting model:

weight_lm <- lm(max.weight ~ start.weight +
start.workers + treatment, data = Bombus)

Output from a linear model

print(<lm object>) will return a brief summary.

print(weight_lm)

##
Call:
lm(formula = max.weight ~ start.weight + start.workers + treatment,
data = Bombus)
##
Coefficients:
(Intercept) start.weight start.workers treatmentHigh treatmentLow
58.49 1.20 5.44 -77.39 -53.83

Output from a linear model

summary(<lm object>) will return a longer summary.

summary(weight_lm)

##
Call:
lm(formula = max.weight ~ start.weight + start.workers + treatment,
data = Bombus)
##
Residuals:
Min 1Q Median 3Q Max
-222.53 -70.08 4.79 72.56 288.54
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 58.489 166.710 0.35 0.727
start.weight 1.195 0.226 5.30 1.3e-06 ***
start.workers 5.445 2.273 2.40 0.019 *
treatmentHigh -77.386 32.837 -2.36 0.021 *
treatmentLow -53.831 31.975 -1.68 0.097 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 111 on 70 degrees of freedom
Multiple R-squared: 0.385, Adjusted R-squared: 0.35
F-statistic: 10.9 on 4 and 70 DF, p-value: 5.96e-07

Output from a linear model

summary(<lm object>)$coef will return just the coefficient
table.

summary(weight_lm)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 58.489 166.7101 0.3508 7.268e-01
start.weight 1.195 0.2256 5.2969 1.295e-06
start.workers 5.445 2.2726 2.3958 1.926e-02
treatmentHigh -77.386 32.8372 -2.3567 2.124e-02
treatmentLow -53.831 31.9751 -1.6835 9.673e-02

Output from a linear model

Many useful components are stored within model object.

str(weight_lm, max.level = 1, give.attr = F,
width = 40, strict.width = "cut")

List of 13
$ coefficients : Named num [1:5] 58.4..
$ residuals : Named num [1:75] 15...
$ effects : Named num [1:75] -80..
$ rank : int 5
$ fitted.values: Named num [1:75] 981..
$ assign : int [1:5] 0 1 2 3 3
$ qr :List of 5
$ df.residual : int 70
$ contrasts :List of 1
$ xlevels :List of 1
$ call : language lm(formula ..
$ terms :Classes 'terms', 'for..
$ model :'data.frame': 75 obs...

Output from a linear model

Extractor functions return raw and derived output.

formula(<lm object>) : returns formula
resid(<lm object>) : returns residuals
fitted(<lm object>) : returns fitted values
coef(<lm object>) : returns estimated coefficients
vcov(<lm object>) : variance-covariance of coefficients
model.matrix(<lm object>) : matrix of predictors
logLik(<lm object>) : returns log-likelihood of model
summary(<lm object>)$sigma : estimate of standard
deviation
df.residual(<lm object>) : residuals degrees freedom

formula(weight_lm)

max.weight ~ start.weight + start.workers + treatment

Model selection

Often we have a model set representing competing
hypotheses, and need to evaluate which model is the best.

Model selection can only occur between models with the same
response data (the same observations).

Two approaches I discuss:
I via information criteria: for any models with the same

response
I via hypothesis testing for nested models (will discuss

later)
Both use likelihood and are based on the principle of parsimony.

Model selection

Information criteria provide a summary value for each model.

All are based on the following:

(Measure of Fit) + (Penalty for Complexity)

Most common for maximum-likelihood =⇒ Akaike’s
Information Criterion (AIC):

AIC = −2 · (LogLikelihood) + 2 · (Number of Parameters)

Many variants exist: differ in the penalty for complexity.

Model selection

The model with the lowest AIC is preferred.
I Models within 2 AIC units from the best model are

considered nearly equivalent.
I Models between 2-10 AIC units from the best model are

considered to have weak support.
I Models with greater than 10 AIC above the best model

are considered to have no support.
We typically summarize by ∆AIC:

∆AIC = (AIC of model)− (AIC of best model)

Model selection
Example: using max.weight as response,

I Full model : ∼ start.weight + start.workers + treatment
I Reduced model : ∼ start.weight
I Null model : ∼ 1

We use update() to remove terms from our full model.

full_model <- weight_lm
reduced_model <- update(full_model, . ~ start.weight)
null_model <- update(full_model, . ~ 1)

We use ICtab() in package bbmle to create an AIC table for
all models:

bbmle::ICtab(full_model, reduced_model, null_model,
type = "AIC", base = T, weights = T)

AIC df dAIC weight
full_model 926.2 6 0.0 0.9924
reduced_model 935.9 3 9.7 0.0076
null_model 954.6 2 28.4 <0.001

Model selection
AIC(<lm object>) extracts AIC from a given model object.

AIC(full_model)

[1] 926.2

AICc(<lm object>) in package bbmle extracts second-order
AIC (corrected for small sample size).

bbmle::AICc(full_model)

[1] 927.4

step() performs automatic model selection with AIC, but is not
a good idea (thoughtless model selection returns thoughtless
model)

In R, models with transformed responses (log, etc.) cannot
naively be compared to untransformed equivalent (more on
this later)

Diagnostics for linear models

Why diagnostics in addition to model selection? A model can
be the best in a set of models, and still be rubbish.

Three themes:
I Check model assumptions
I Detect poorly fit data points (outliers)
I Detect influential data points

R has many capabilities for model diagnostics: only a few
covered here.

Check out package car and associated book.

Diagnostics for linear models
Residuals (in various forms) are the primary tool for
diagnostics.

Standardized residuals are scaled by overall residual
variance.

Studentized residuals are scaled by residual-specific variance.

resid(weight_lm)[1:5] # raw

1 2 3 4 5
15.68 -148.69 123.50 -222.53 -190.04

rstandard(weight_lm)[1:5] # standardized

1 2 3 4 5
0.1448 -1.3718 1.1353 -2.0521 -1.7995

rstudent(weight_lm)[1:5] # studentized

1 2 3 4 5
0.1438 -1.3807 1.1377 -2.1016 -1.8294

Diagnostics for linear models
Assumption 1: Normality of residuals

Note that residuals need to be normal, not data
=⇒ obvious from this formula:

yi = β1xi2 + β2xi2 + ...+ εi , ε ∼ N (0, σ)

Quantile: the value of a random variable beneath which
variates are drawn with a given probability.

0.1 Quantile

Value of Random Variable

Pr
ob

ab
ili

ty

Diagnostics for linear models

Quantile-Quantile plot: observed quantiles vs. theoretical
quantiles

car::qqPlot(rstandard(weight_lm), xlab = "Theoretical Quantiles",
ylab = "Observed Quantiles")

-2 -1 0 1 2

-2
0

2

Theoretical Quantiles

O
bs

er
ve

d
Q

ua
nt

ile
s

Diagnostics for linear models
Example of non-normal residuals:

reprod_lm <- lm(reproductives ~ max.weight +
treatment, data = Bombus)

car::qqPlot(rstandard(reprod_lm), xlab = "Theoretical Quantiles",
ylab = "Observed Quantiles")

-2 -1 0 1 2

-1
1

3
5

Theoretical Quantiles

O
bs

er
ve

d
Q

ua
nt

ile
s

What can you do? use GLM, transform response

Diagnostics for linear models

Assumption 2: Homoskedasticity

Constant variance of residuals. Again apparent from formula
for linear model.

yi = β1xi2 + β2xi2 + ...+ εi , ε ∼ N (0, σ)

One scale variable for all residuals regardless of fitted value.

If heteroskedastic, can use gls() to fit model with
non-constant variance.

Diagnostics for linear models

Check by plotting residuals against fitted values.

plot(weight_lm, which = 1) # homoskedastic
plot(reprod_lm, which = 1) # heteroskedastic

700 800 900 1000 1100

-2
00

0
10

0
30

0

Fitted values

R
es

id
ua

ls

10

418

-10 0 10 30 50

-2
0

0
20

40
60

80

Fitted values

R
es

id
ua

ls

10

7

42

Diagnostics for linear models

Some common patterns of heteroskedasticity:

Fitted values

R
es

id
ua

ls

Diagnostics for linear models

Assumption 3: Linearity

If underlying process is nonlinear, a linear model will not be
adequate.

CERES plot: plots partial residuals for jth covariate against
jth covariate.

Partial Residuals: for jth covariate, residuals from the fitted
value with jth covariate dropped. I.e. for 3rd covariate in
model:

PR[xi3] = yi − (α+ βi1xi1 + βi2xi2)

Relationship should be approximately linear (conform to fitted
line).

Diagnostics for linear models
CERES plots:

car::ceresPlots(weight_lm, ylab = "Residuals")

550 650 750

-2
00

0
20

0
40

0

start.weight

R
es

id
ua

ls

5 10 20 30
14

00
16

00
18

00

start.workers

R
es

id
ua

ls

CERES Plots

Red line is fitted line, green line is smoothed relationship

Diagnostics for linear models

Assumption 4: Independence

If residuals are non-independent (eg. correlated), they are not
accurately modelled by a normal linear model.

Best defense: a well thought-out sampling scheme.

To detect: plot residuals vs. spatial, temporal covariates.

If present (intentionally or not): hierarchical or mixed models
can model complex dependence structures.

Collinearity

If two covariates are highly correlated aka collinear ⇒
cannot statistically distinguish which one influences the
response.

Covariate 1 could have large coefficient & covariate 2 could have
small coefficient, or vis versa.

y = 2x1 + 4x2 = 4x1 + 2x2 if x1 = x2

Many values are equally likely for the regression coefficients.

Estimated standard errors for coefficients will be inflated,
compared to model where only one is present.

Collinearity
The variance inflation factor (VIF) is a measure of how
much the estimated standard error of a regression coefficient is
increased by collinearity.

Use vif(<lm object>) in car package:

car::vif(weight_lm)

GVIF Df GVIF^(1/(2*Df))
start.weight 1.008 1 1.004
start.workers 1.098 1 1.048
treatment 1.095 2 1.023

Example of a collinear model:

collinear_model <- lm(reproductives ~ max.weight + range.weight,
data = Bombus)

car::vif(collinear_model)

max.weight range.weight
5.791 5.791

Diagnostics for linear models

Rule of thumb: if square root of VIF is greater than 2, be
concerned.

sqrt(car::vif(collinear_model)) > 2

max.weight range.weight
TRUE TRUE

Can also use cov2cor(vcov(<lm object>)) to view
correlation matrix among regression terms.

If collinearity is a problem:
I Use biological insight to remove one of the offending

covariates
I Use dimension reduction (i.e. PCA) to collapse into

orthogonal variables

Diagnostics for linear models
Outlier detection: outliers are observations far from fitted
value.

Use studentized residuals vs. fitted values to detect:

plot studentized residuals
plot(fitted(weight_lm), rstudent(weight_lm),

xlab = "Fitted Values", ylab = "Studentized Residuals")
abline(h = c(0, -1.96, 1.96), col = c("gray",

"red", "red"), lty = c(1, 3, 3))
detect and label outliers
is_outlier <- which(abs(rstudent(weight_lm)) >

2)
text(fitted(weight_lm)[is_outlier], rstudent(weight_lm)[is_outlier],

labels = is_outlier, pos = 4)

Also look for outliers in Q-Q plot:

car::qqPlot(rstandard(weight_lm), ylab = "Observed Quantiles",
xlab = "Theoretical Quantiles")

Diagnostics for linear models
Labelled points (beyond 2 standard deviations) are past 0.95th
quantile.

700 800 900 1000 1100

-2
-1

0
1

2
3

St
ud

en
tiz

ed
R

es
id

ua
ls

4

10

18

-2 -1 0 1 2
-2

-1
0

1
2

O
bs

er
ve

d
Q

ua
nt

ile
s

Two questions to ask once outliers are detected:
I Do they influence our results (fitting, hypothesis testing)?
I Why are they not well fit (is there some process we are not

modelling)?

Diagnostics for linear models
Influence measures: influential points are observations that
highly influence the estimates of the regression coefficients.

These are not necessarily outliers!

Use influence.measures(<lm object>) to calculate
influence measures and flag influential observations.

influence.measures(weight_lm)$infmat[1:3, 1:5] # influence measures

dfb.1_ dfb.strt.wg dfb.strt.wr dfb.trtH dfb.trtL
1 0.003642 0.003821 -0.01374 -0.0238 -0.02287
2 -0.007485 -0.057954 0.10134 0.2188 0.21307
3 0.016959 0.018572 -0.01461 -0.1608 -0.16340

influence.measures(weight_lm)$is.inf[1:3, 1:5] # flagged 'TRUE' if influential

dfb.1_ dfb.strt.wg dfb.strt.wr dfb.trtH dfb.trtL
1 FALSE FALSE FALSE FALSE FALSE
2 FALSE FALSE FALSE FALSE FALSE
3 FALSE FALSE FALSE FALSE FALSE

Diagnostics for linear models
Cook’s Distance: combines outlying-ness with influence.

plot(reprod_lm, which = 4)
plot(reprod_lm, which = 5)

0 20 40 60

0.
0

0.
4

0.
8

1.
2

Obs. number

C
oo

k’
s

di
st

an
ce

Cook’s distance
10

7
46

0.00 0.04 0.08 0.12
-2

0
2

4
6

Leverage

St
an

da
rd

iz
ed

re
sid

ua
ls

Cook’s distance

0.5

1

Residuals vs Leverage
10

7

46

Points beyond red dashed boundary have large Cook’s distance

Prediction

Prediction: calculate expected value of response for arbitrary
values of covariates. Basic formula: generate data frame with
covariate values to predict for,

to_predict = expand.grid(start.weight = c(200,
400, 600), treatment = c("Low", "High",
"Control"), start.workers = 20)

Then pass to predict(<lm object>):

predicted_response <- predict(weight_lm,
newdata = to_predict, se.fit = T) # the predicted response

head(predicted_response$fit)

1 2 3 4 5 6
352.6 591.6 830.6 329.0 568.0 807.1

Argument "se.fit = T" for standard errors of predictions.

Hypothesis testing

Hypothesis testing discussed here is null hypothesis testing.
1. Determine probability distribution of null hypothesis for

some test statistic.
2. Calculate probability of a test statistic larger than the

observed test statistic, under the null hypothesis.
3. If this probability is lower than arbitrary value (significance

level), have evidence to reject the null hypothesis.

Null hypotheses can be pretty trivial (just because you
reject a null hypothesis don’t think that you have found
something important).

Hypothesis testing
Tests of single coefficients in summary(<lm object>)

summary(weight_lm)$coef[1,]

Estimate Std. Error t value Pr(>|t|)
58.4888 166.7101 0.3508 0.7268

Null hypothesis: coefficient = 0

Test statistic: T-value = ratio of the coefficient and its
standard error. For example, for (Intercept):

Tintercept = 58.49
166.71 = 0.351

MLE and standard error of coefficient are random variables, so
ratio is also random. Null T distribution is centered at 0, with
(degrees freedom) = (data points) - (number of parameters).

Hypothesis testing

Given out observed T statistic, we ask:
I What is probability that a random T-statistic from a

central T distribution with 75− 5 = 70 degrees freedom ...
I Is higher than our observed T statistic?

We use the cumulative distribution function (CDF) of T
distribution to find this:

Value of T-statistic

Pr
ob

ab
ili

ty

0.36

Value of T-statistic
C

um
ul

at
iv

e
Pr

ob
ab

ili
ty

Two-tailed probability of Tintercept = 0: 0.363 · 2 = 0.726

Hypothesis testing

Confidence interval: if an experiment is repeated 100 times,
and a P% confidence interval is constructed each time for a
parameter of interest, P% of the confidence intervals will
include the true value of the parameter. Formula:

0.95CI = Mean± (0.95 Quantile · Standard Error)

In R, use confint(<lm object>) which employs 0.95 quantile
of standard T distribution.

confint(weight_lm)

2.5 % 97.5 %
(Intercept) -274.0040 390.982
start.weight 0.7451 1.645
start.workers 0.9121 9.977
treatmentHigh -142.8780 -11.894
treatmentLow -117.6039 9.941

Hypothesis testing

Tests of main effects: Is the increase in explanatory power
associated adding an ’effect’ (such as Treatment) substantial,
given the increase in model complexity. ⇒ Think of this as
model selection.

Imagine a standard measure, such as: Improvement in fit
Increase in complexity

If we define a null model and a full model–the full model has all
covariates–could calculate this for each model in between.

Hypothesis testing

If ’Improvement in fit’ depends on the scale of the data ... then
we need a reference measure (defined against full model) to
compare with, to get scale-less standard measure:

Room for improvement in fit
Room to add complexity

We need two metrics: one for improvement in fit, another for
increase in complexity.

Hypothesis testing
Let ȳ be the mean of the response.

Let E[yi]model be the fitted value for the ith response for a given
model.

Define total sum of squares as :

SStot =
N∑

i=0
(yi − ȳ)2

Define regression sum of squares for a given regression
model as :

SSreg =
N∑

i=0
(E[yi]model − ȳ)2

Define residual sum of squares as :

SSres =
N∑

i=0
(yi − E[yi]model)2

Hypothesis testing

The total sum of squares is the sum of squares of a ’null’
model – a model with just an intercept (aka mean parameter).

Starting weight

M
ax

im
um

we
ig

ht

Total Sum of Squares
∼ 1

Null model

Hypothesis testing

The residual sum of squares (RSS) is the sum of squares of
the ’full’ model.

Starting weight

M
ax

im
um

we
ig

ht

Residual Sum of Squares
∼ start.weight + treatment

Full model

and has residual degrees freedom N − pmax .

Hypothesis testing

The residual sum of squares and residual degrees
freedom combine to form our "reference measure" aka
residual mean square.

Room for improvement in fit
Room to add complexity =

∑N
i=0(yi − E[yi]model)2

N − pmax

We add terms to model, calculating increase in the regression
sums of squares ∆SS , and increase in parameter number ∆p.

With each additional term, calculate our "standard measure"
aka mean square = ∆SSreg

∆p

Hypothesis testing

Begin with null model and full model, calculate total and
residual sum of squares and associate degrees freedom

Total Sum of Squares
∼ 1

Null model

Residual Sum of Squares
∼ start.weight + treatment

Full model

Starting Weight

M
ax

im
um

W
ei

gh
t

Hypothesis testing

Add covariate to null model. Calculate regression sums of
squares (improvement in fit) and the increase in parameter
number (increase in complexity).

Total Sum of Squares
∼ 1

Null model

Residual Sum of Squares
∼ start.weight + treatment

Full model

Regression Sum of Squares
∼ start.weight

Starting Weight

M
ax

im
um

W
ei

gh
t

Hypothesis testing

Add LAST covariate to previous model. Calculate NEW
regression sums of squares (improvement in fit) and the
increase in parameter number (increase in complexity).

Total Sum of Squares
∼ 1

Null model

Residual Sum of Squares
∼ start.weight + treatment

Full model

Regression Sum of Squares
∼ start.weight

Regression Sum of Squares
∼ start.weight + treatment

Starting Weight

M
ax

im
um

W
ei

gh
t

Hypothesis testing

The F-statistic is ratio of regression mean square to residual
mean square (at each step) – this is our scale-less standard
measure.

FSS =

(
SSreg
∆p

)
(

SSres
n−pmax

)
Null distribution is F-distribution with ∆p and N − pmax
degrees freedom.

Calculate probability that a random F-statistic from null
distribution, is greater than observed F-statistic.

Hypothesis testing

This is sequential aka "Type I" sums of squares. In R, use
anova(<lm object>).

anova(weight_lm)

Analysis of Variance Table
##
Response: max.weight
Df Sum Sq Mean Sq F value Pr(>F)
start.weight 1 338535 338535 27.45 1.6e-06 ***
start.workers 1 129584 129584 10.51 0.0018 **
treatment 2 71902 35951 2.92 0.0608 .
Residuals 70 863225 12332

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sensitive to ordering of effects.

Hypothesis testing

For marginal aka "Type III" sums of squares use
car::Anova(<lm object>).

car::Anova(weight_lm, type = "3")

Anova Table (Type III tests)
##
Response: max.weight
Sum Sq Df F value Pr(>F)
(Intercept) 1518 1 0.12 0.727
start.weight 345998 1 28.06 1.3e-06 ***
start.workers 70781 1 5.74 0.019 *
treatment 71902 2 2.92 0.061 .
Residuals 863225 70

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Not sensitive to ordering of effects (but many statisticians don’t
like it)

Hypothesis testing

The coefficient of variation aka R2 is the proportion of
variance explained by the model.

R2 = 1− SSresidual
SStotal

An omnibus test asks how well the model as whole explains
the data relative to a null model (ie. intercept only).

We can perform an omnibus F test on R2 by defining the F
statistic:

FR2 =

(
R2

pmax−1

)
(

1−R2

n−pmax

)
With null distribution as F-distribution with pmax − 1 and
n − pmax degrees freedom.

Hypothesis testing

This is given at the end of summary(<lm object>):

summary(weight_lm)

##
Call:
lm(formula = max.weight ~ start.weight + start.workers + treatment,
data = Bombus)
##
Residuals:
Min 1Q Median 3Q Max
-222.53 -70.08 4.79 72.56 288.54
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 58.489 166.710 0.35 0.727
start.weight 1.195 0.226 5.30 1.3e-06 ***
start.workers 5.445 2.273 2.40 0.019 *
treatmentHigh -77.386 32.837 -2.36 0.021 *
treatmentLow -53.831 31.975 -1.68 0.097 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 111 on 70 degrees of freedom
Multiple R-squared: 0.385, Adjusted R-squared: 0.35
F-statistic: 10.9 on 4 and 70 DF, p-value: 5.96e-07

Multiple comparisons

When we do a set of all pairwise comparisons (ie. among
treatment groups), we run into the multiple comparisons
problem.

Essentially, our comparisons are not independent, and we
inflate our Type-I error (probability to detect effect when there
is none).

Many solutions to control for inflation, most common is
probably Tukey’s Honest Significant Difference (HSD).

Multiple comparisons

In R:
tukey_weight_lm <- multcomp::glht(weight_lm, linfct = multcomp::mcp(treatment = "Tukey"))
summary(tukey_weight_lm)

##
Simultaneous Tests for General Linear Hypotheses
##
Multiple Comparisons of Means: Tukey Contrasts
##
##
Fit: lm(formula = max.weight ~ start.weight + start.workers + treatment,
data = Bombus)
##
Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)
High - Control == 0 -77.4 32.8 -2.36 0.055 .
Low - Control == 0 -53.8 32.0 -1.68 0.219
Low - High == 0 23.6 31.6 0.74 0.738

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

There is also TukeyHSD(anova(<model name>)) in base
R, but function glht() extends to complex comparisons.

Log-Transformation

Transformations (often log) used to "normalize" response.

This is not a good move for count or proportion data – use a
GLM.

However, for continuous all-positive data, this is OK – and is
equivalent to fitting log-normal model.

Sometimes we might want to compare log-normal model to
equivalent normal model. But in R, the log-likelihoods are on
different scales:
norm_lm <- lm(max.weight ~ start.weight, data = Bombus) # normal model
lognorm_lm <- lm(log(max.weight) ~ start.weight, data = Bombus) # log-normal model
c(logLik(norm_lm), logLik(lognorm_lm), AIC(norm_lm), AIC(lognorm_lm))

[1] -464.95 48.77 935.90 -91.55

Log-Transformation

Solution: calculate likelihood using log-normal pdf
(dlnorm() in R).

lognorm_sigma <- summary(lognorm_lm)$sigma
lognorm_mu <- fitted(lognorm_lm)
lognorm_np <- lognorm_lm$rank
lognorm_logLik <- sum(dlnorm(Bombus$max.weight, meanlog = lognorm_mu,

sdlog = lognorm_sigma, log = T))
lognorm_AIC <- -2 * lognorm_logLik + 2 * lognorm_np # AIC
c(AIC(norm_lm), lognorm_AIC)

[1] 935.9 929.8

Parametric bootstrapping / Simulation

General idea is to see if observed data are consistant with
model, when analytical methods are not very clear:
1. Have model, have observed data
2. Simulate data from model
3. Calculate some statistic from simulated data (possibly

refiting model to simulated data)
4. Simulations of statistic give estimated distribution of that

statistic
5. Check consistency of observed statistic, against simulated

distribution of statistic
Really very useful for complex linear models (not the ones
here). Some Mickey-Mouse examples in the script.

