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Recipe for a probability model

1. Define the mutually exclusive outcomes of all random variables
(aka the sample space).

2. Assign probabilities to outcomes (must add to 1).

3. Define dependencies among random variables.
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Example probability model: sick elk

Two outcomes each for random variables X and Y.

Elk
perishes

Elk
survives

Elk
infected

Elk
uninfected

Y:

X:
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Example probability model: sick elk

Incidence of bovine tuberculosis in the population is 7%.

Elk
perishes

Elk
survives

Elk
infected

Elk
uninfected

Y:

X:

Marginal probability of variable X (infection status):

Pr(X = Infected) = 0.07

Pr(X = Uninfected) = 0.93
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Example probability model: sick elk

Uninfected individuals are more likely to live than to die.

Elk
perishes

Elk
survives

Elk
infected

Elk
uninfected

Y:

X:

Conditional prob. of variable Y (survival) given X = uninfected:

Pr(Y = Survives|X = Uninfected) = 0.77

Pr(Y = Perishes|X = Uninfected) = 0.23
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Example probability model: sick elk

Infected individuals are more likely to die than to live.

Elk
perishes

Elk
survives

Elk
infected

Elk
uninfected

Y:

X:

Conditional prob. of variable Y (survival) given X = infected:

Pr(Y = Survives|X = Infected) = 0.17

Pr(Y = Perishes|X = Infected) = 0.83
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Example probability model: sick elk

Elk
perishes

Elk
survives

Elk
infected

Elk
uninfected

Y:

X:

Joint prob. of Y = survival AND X = uninfected:

Pr(Y = Survives, X = Uninfected) =

Pr(X = Uninfected)× Pr(Y = Survives|X = Uninfected) =

0.93× 0.77 = 0.716
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Example probability model: sick elk

What about the marginal probability of random variable Y?

Two possible ways for outcome Y = survive.

1. X = uninfected and Y = survive.

2. X = infected and Y = survive.

The marginal probability equals:

Pr(Y = Survive) =

Pr(Y = Survive, X = Uninfected) + Pr(Y = Survive, X = Infected)

= (0.93× 0.77) + (0.07× 0.17) = 0.728

The sum of values of the joint distribution where Y = survive.
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Marginal, joint probability as a table

Infected Uninfected

Survives Pr(Infected)×
Pr(Survives|Infected)

Pr(Uninfected)×
Pr(Survives|Uninfected)

Pr(Survives)

Perishes Pr(Infected)×
Pr(Perishes|Infected)

Pr(Uninfected)×
Pr(Perishes|Uninfected)

Pr(Perishes)

Pr(Infected) Pr(Uninfected) 1
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Marginal, joint probability as text

Marginal probability is the probability of a random variable taking a
value, regardless of the values of other random variables.

Pr(Y) =
∑
x∈χ

Pr(Y, X = x) =
∑
x∈χ

Pr(X = x)× Pr(Y|X = x)

Conditional probability is the probability of a random variable taking a
value, given the values of other random variables.

Joint probability is the probability of a combination of values of several
random variables.

Pr(X, Y) = Pr(X)× Pr(Y|X) = Pr(Y)× Pr(X|Y)
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Generalizing to other types of RVs

The set of possible outcomes for a random variable can be:

D Infinite (unbounded) or finite (bounded)

D Integer, real, or categorical valued

We use functions to distribute (allocate) the probability among
outcomes.

These functions are called probability distribution functions:

D aka PDFs

D with finite number of parameters

D parameters often have an intuitive interpretation

D these functions must sum (integrate) to 1.
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Shiny time

1. Examples of probability distribution functions.

2. How does conditional/marginal/joint probability translate to
continuous RVs?

Code on GitHub:
https://github.com/sjfox/CCBB_Intro_Biostats/tree/master/week_2
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How likelihood makes our lives better

Problem:

Have data. Need explanation.

Solution:

1. (Arbitrarily?) choose distribution of data, such that parameters
reflect something of interest.

2. Calculate joint probability of data, conditional on parameter
values. This is the likelihood.

3. Vary parameter values, recalculate likelihood.

4. Find parameters which maximize joint probability of data. This is
the maximum likelihood estimate.

Likelihood measures how probable the data are at a parameter value.
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Shiny time

1. Examples of calculating the likelihood.

Code on GitHub:
https://github.com/sjfox/CCBB_Intro_Biostats/tree/master/week_2
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The likelihood of some parameter values is the joint probability of the
data, conditional on given parameter values.

L(parameters|data) =
n∏
i=1

Pr(datumi|parameters)

The maximum likelihood estimate (MLE) is the parameter value
which maximizes the joint probability of the data.

The Fisher information of the parameters is the negative of the
Hessian (the second derivative of the log-likelihood).

I(parameters) = −∂2 lnL(parameters|data)

∂(parameters)2

Measures the information the data bring about the parameters, and is
used to calculate the standard error of the MLE.
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Takeaway:

D Types of probability and how they relate.

D What a probability distribution function is.

D What likelihood is, and how to calculate it.

D What the likelihood tells us about the possible parameter values
that generated our data.

D How uncertainty in the maximum likelihood estimate is measured
(with the Fisher information/Hessian)
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