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What is a network?

A network is a collection of points, which we refer to as 
vertices or nodes, with connections between them, called 
edges. 

2 The structure and function of complex networks

I. INTRODUCTION

A network is a set of items, which we will call vertices
or sometimes nodes, with connections between them,
called edges (Fig. 1). Systems taking the form of net-
works (also called “graphs” in much of the mathematical
literature) abound in the world. Examples include the In-
ternet, the World Wide Web, social networks of acquain-
tance or other connections between individuals, organi-
zational networks and networks of business relations be-
tween companies, neural networks, metabolic networks,
food webs, distribution networks such as blood vessels
or postal delivery routes, networks of citations between
papers, and many others (Fig. 2). This paper reviews re-
cent (and some not-so-recent) work on the structure and
function of networked systems such as these.

The study of networks, in the form of mathematical
graph theory, is one of the fundamental pillars of dis-
crete mathematics. Euler’s celebrated 1735 solution of
the Königsberg bridge problem is often cited as the first
true proof in the theory of networks, and during the twen-
tieth century graph theory has developed into a substan-
tial body of knowledge.

Networks have also been studied extensively in the so-
cial sciences. Typical network studies in sociology involve
the circulation of questionnaires, asking respondents to
detail their interactions with others. One can then use
the responses to reconstruct a network in which vertices
represent individuals and edges the interactions between
them. Typical social network studies address issues of
centrality (which individuals are best connected to others
or have most influence) and connectivity (whether and
how individuals are connected to one another through
the network).

Recent years however have witnessed a substantial new
movement in network research, with the focus shifting
away from the analysis of single small graphs and the
properties of individual vertices or edges within such
graphs to consideration of large-scale statistical proper-
ties of graphs. This new approach has been driven largely
by the availability of computers and communication net-
works that allow us to gather and analyze data on a
scale far larger than previously possible. Where stud-
ies used to look at networks of maybe tens or in extreme
cases hundreds of vertices, it is not uncommon now to see
networks with millions or even billions of vertices. This
change of scale forces upon us a corresponding change in
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FIG. 1 A small example network with eight vertices and ten
edges.

our analytic approach. Many of the questions that might
previously have been asked in studies of small networks
are simply not useful in much larger networks. A social
network analyst might have asked, “Which vertex in this
network would prove most crucial to the network’s con-
nectivity if it were removed?” But such a question has
little meaning in most networks of a million vertices—no
single vertex in such a network will have much effect at all
when removed. On the other hand, one could reasonably
ask a question like, “What percentage of vertices need to
be removed to substantially affect network connectivity
in some given way?” and this type of statistical question
has real meaning even in a very large network.

However, there is another reason why our approach
to the study of networks has changed in recent years, a
reason whose importance should not be underestimated,
although it often is. For networks of tens or hundreds
of vertices, it is a relatively straightforward matter to
draw a picture of the network with actual points and lines
(Fig. 2) and to answer specific questions about network
structure by examining this picture. This has been one of
the primary methods of network analysts since the field
began. The human eye is an analytic tool of remarkable
power, and eyeballing pictures of networks is an excellent
way to gain an understanding of their structure. With
a network of a million or a billion vertices however, this
approach is useless. One simply cannot draw a mean-
ingful picture of a million vertices, even with modern 3D
computer rendering tools, and therefore direct analysis
by eye is hopeless. The recent development of statistical
methods for quantifying large networks is to a large ex-
tent an attempt to find something to play the part played
by the eye in the network analysis of the twentieth cen-
tury. Statistical methods answer the question, “How can
I tell what this network looks like, when I can’t actually
look at it?”

The body of theory that is the primary focus of this
review aims to do three things. First, it aims to find sta-
tistical properties, such as path lengths and degree distri-
butions, that characterize the structure and behavior of
networked systems, and to suggest appropriate ways to
measure these properties. Second, it aims to create mod-
els of networks that can help us to understand the mean-
ing of these properties—how they came to be as they are,
and how they interact with one another. Third, it aims
to predict what the behavior of networked systems will
be on the basis of measured structural properties and the
local rules governing individual vertices. How for exam-
ple will network structure affect traffic on the Internet, or
the performance of a Web search engine, or the dynamics
of social or biological systems? As we will see, the scien-
tific community has, by drawing on ideas from a broad
variety of disciplines, made an excellent start on the first
two of these aims, the characterization and modeling of
network structure. Studies of the effects of structure on
system behavior on the other hand are still in their in-
fancy. It remains to be seen what the crucial theoretical
developments will be in this area.

In mathematics, these are called graphs.



Why networks?

General yet powerful means of representing patterns of connections between the 
parts of a system 

Mathematical, computational, and statistical framework for studying scientific 
systems: 

• Statistically characterize the structure of systems 

• Use models in an effort to understand how network properties arise in the first 
place 

• Examine the interplay between structure and dynamics to predict system 
behavior



Biological Networks

Saccharomyces protein- 
protein interaction network

E. coli metabolic 
network

Alberta sexual 
network

Energy flows 
in Antarctic Peninsula 

food web model

sifaka social network



Mathematics of 
Networks



Notation and Definitions 

Consider an undirected network (graph) G with n vertices 


G = (V, E) 

V is the set of vertices


E is the set of edges


Edge (u, v) is the edge between vertex u and vertex v  

V= {v1, v2, v3, v4, v5}


E = ({v1, v3}, {v1, v4}, {v1, v2}, {v2, v3}, {v2, v4}, {v4, v5})

v1

v4
v3

v2

v5



The Adjacency Matrix
One of the ways to represent a network mathematically 

Each matrix entry describes a relationship between the vertices 

For an undirected network with n vertices, the adjacency matrix is the n 
x n matrix A in which: 

v1

v4
v3

v2

v5

!
  

€ 

Aij =  
1 if (i, j ) ∈  E
0 otherwise
# 
$ 
% v1 v2 v3 v4 v5

v1 0 1 1 1 0

v2 1 0 1 1 0

v3 1 1 0 0 0

v4 1 1 0 0 1

v5 0 0 0 1 0

vertex i

vertex j



Multi-edges

v1

v4
v3

v2

v5
v1 v2 v3 v4 v5

v1 0 1 1 1 0

v2 1 0 1 1 0

v3 1 1 0 0 0

v4 1 1 0 0 2

v5 0 0 0 2 0



Self-edges

v1

v4
v3

v2

v5
v1 v2 v3 v4 v5

v1 2 1 1 1 0

v2 1 0 1 1 0

v3 1 1 0 0 0

v4 1 1 0 0 2

v5 0 0 0 2 0

Set corresponding diagonal element Aii to 2 

Why 2 and not 1???  

Need to count both ends of every edge 

Non self-edges appear twice in the adjacency matrix



Bipartite networks 
Bipartite networks contain two different types of vertices, and the edges run only 
between vertices of unlike types. 

Examples: group membership, actor-film, author-paper, metabolites-chemical rxns

g groups

n participants

A B C D

1 2 3 4 5 6 7



Bipartite networks
The incidence matrix B for a bipartite network is a g x n matrix with elements Bij:

A B C D

1 2 3 4 5 6 7

!
  

€ 

Bij =  
1 if participant j belongs to i
0 otherwise
" 
# 
$ 

1 2 3 4 5 6 7

A 1 1 1 0 0 0 0

B 0 1 1 1 1 0 0

C 0 0 0 1 0 1 0

D 0 0 0 0 1 1 1



Bipartite roosting 
network. Vertices 
represent bats (left) 
and trees (right).

Miguel A. Fortuna, Ana G. Popa-Lisseanu, Carlos Ibáñez, and Jordi Bascompte 2009. The roosting spatial 
network of a bird-predator bat. Ecology 90:934–944. http://dx.doi.org/10.1890/08-0174.1

http://dx.doi.org/10.1890/08-0174.1


One-mode projections
If we want to work with direct connections of vertices of just one type:

A B C D

1 2 3 4 5 6 7

A B

C D

1
2

3 4

5 6

7

Shared participants Common membership



Adjacency matrix from the incidence matrix

1 2 3 4 5 6 7

A 1 1 1 0 0 0 0

B 0 1 1 1 1 0 0

C 0 0 0 1 0 1 0

D 0 0 0 0 1 1 1

A B C D
1 1 0 0 0
2 1 1 0 0
3 1 1 0 0
4 0 1 1 0
5 0 1 0 1
6 0 0 1 1
7 0 0 0 1

B= BT=

!

€ 

P = BTB =

1 1 1 0 0 0 0
1 2 2 1 1 0 0
1 2 2 1 1 0 0
0 1 1 2 1 1 0
0 1 1 1 2 1 1
0 0 0 1 1 2 1
0 0 0 0 1 1 1

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ $ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' ' 

Multiply 
incidence matrix 
by its transpose



Adjacency matrix from the incidence matrix

!

€ 

P = BTB =

1 1 1 0 0 0 0
1 2 2 1 1 0 0
1 2 2 1 1 0 0
0 1 1 2 1 1 0
0 1 1 1 2 1 1
0 0 0 1 1 2 1
0 0 0 0 1 1 1

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ $ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' ' 

set diagonal to zero

set non-zero items to 1

!

€ 

Aij =

0 1 1 0 0 0 0
1 0 1 1 1 0 0
1 1 0 1 1 0 0
0 1 1 0 1 1 0
0 1 1 1 0 1 1
0 0 0 1 1 0 1
0 0 0 0 1 1 0

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ $ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' ' 

unweighted



Weighted Networks
Undirected networks have edges that form simple presence/absence 
connections between vertices 

However, in some situations, it is useful to represent edges as having a 
strength, weight, or value (e.g., frequency of social interaction) 

Values can be positive or negative

v1

v4
v3

v2

v5
v1 v2 v3 v4 v5

v1 0 4 1 1 0

v2 4 0 -0.5 1 0

v3 1 -0.5 0 0 0

v4 1 1 0 0 2

v5 0 0 0 2 0



Directed Networks (Digraphs)
Networks in which each edge has a direction, pointing from an origin 
vertex to a destination vertex  

Self-edges are given a value of 1 

Example: ‘v1 groomed v2’

v1

v4
v3

v2

v5
v1 v2 v3 v4 v5

v1 1 0 1 0 0

v2 1 0 0 1 0

v3 1 1 0 0 0

v4 1 1 0 0 0

v5 0 0 0 1 0

vertex i

vertex j!
  

€ 

Aij =  
1 if there's an edge from j to i
0 otherwise
" 
# 
$ 

asymmetric



Directed Acyclic Graphs (DAGs)
A cycle is a path that starts and ends at the same vertex. 

Acyclic directed networks have no cycles (i.e., there is no closed loop of edges 
with the arrow on each of the edges pointing the same way around the loop).  

A self-edge counts as a cycle; therefore, acyclic networks have no self-edges.  

Examples: network of citations between papers, gene ontology

v4

v2

No closed cycles of edges

All edges pointing downwards

old papers

new papers

time

Some vertices have 
only incoming edges

v9

v5

v1

v7

v4

v3

v8

v6

v2



Observed dominance hierarchies in ant networks 
(approximate DAGs). Workers are aligned by rank.

Shimoji, Hiroyuki, et al. "Global network structure of dominance hierarchy of ant workers." Journal of The Royal 
Society Interface 11.99 (2014): 20140599.



igraph: Network Analysis and Visualization
http://igraph.org 

“Routines for simple graphs and network analysis. It can handle large 
graphs very well and provides functions for generating random and 
regular graphs, graph visualization, centrality methods and much more.”



Vertex and edge IDs

• Vertices are always 
numbered from 1 

• Numbering is 
continual, from 1 to 
|V|



Naming vertices



Visualization (layout is often arbitrary)

No meaning attached to edge length



Force directed layouts



Example dataset: animal social network

• A social network is any number of individuals interconnected 
via social ties (sexual, cooperative, etc.) between them 

• In nearly all animal social networks, each vertex is an individual 
• Properties of individuals are vertex attributes 
• Pairs of vertices form a dyad when there is an edge between 

them



Create a weighted adjacency matrix

Edges can represent one or several behavior types 

In this example, we’re looking at frequency of grooming interactions



Weighted adjacency matrix (frequency of contacts)





Edge list

Not very helpful 



Assigning attributes to vertices



Visualization



Vertex Centrality 
Measures



Vertex Centrality Measures

• Centrality measures are used to differentiate the importance 
or influence of individuals in the network 

• What is the most important protein in a metabolic 
network?  

• Which individuals should we target for vaccination?  

• Which are the keystone species in an ecosystem?



Centrality Rules

• We cannot compare centrality measures for different 
networks.  

• We cannot compare different kinds of centrality measures 
on the same network.



Degree Centrality

Assumption: The most connected vertices are the most central. 

• Degree is the number of edges connected to a vertex.  

• In directed networks, vertices have an in-degree and an out-degree (the number of 
edges arriving and leaving, respectively).  

• Weighted degree (node strength) is the sum of the edge weights connected to a vertex

v1

v4
v3

v2

v5
3

2

3

3

1
v1

v4
v3

v2

v5
(1,2)

(2,1)

(2,1)
(1,1)

v3



Path-following centrality measures

Betweenness, closeness, informational centrality, etc. 
count paths (between pairs of vertices) that pass through 
the vertex of interest


A shortest path (or geodesic) between two vertices is the 
minimum number of edges you have to travel across to 
move from one vertex to another. There may be multiple 
different geodesics, all of the same length.


The length of a shortest path between (u, v) is called the 
geodesic distance or graph distance. 



Shortest path: min. number of edges between two individuals 
Weighted shortest path: if edge weight is strength of interaction, add up 
inverse edge weights 

0.1

Unweighted  
Shortest path = 1

Weighted  
Shortest path = 10



Shortest path: min. number of edges between two nodes 
Weighted shortest path: add up inverse edge weights

0.1
0.1

0.2

Unweighted  
Shortest path = 1Unweighted  

Shortest path = 2

Weighted  
Shortest path = 10

Weighted 
Shortest path = 15  



Shortest path: min. number of edges between two nodes (“distance”) 
Weighted shortest path: add up inverse edge weights

Disconnected
Shortest path = ∞



Closeness Centrality

Closeness centrality measures the mean distance from a 
vertex to other vertices.  

Vertices close to other vertices are important. 


!

€ 

Ci =
1
li

=
n
dijj

∑
number of vertices 
divided by sum of 

geodesic distances 
from i to j

}
inverse of mean geodesic 

distance



Closeness Centrality Example

Epidemiological risk correlates with closeness centrality for Serengeti 
lion prides. 

The ecosystem and study area in Serengeti National Park 
(left) and a simulated lion population based on estimates 
of territory locations and adjacencies from Serengeti Lion 
Project data (right).

Craft, Meggan E., et al. "Distinguishing epidemic waves 
from disease spillover in a wildlife population." 
Proceedings of the Royal Society B: Biological Sciences 
(2009): rspb-2008.



Betweenness Centrality

Betweenness centrality: measures the extent to which a vertex lies on 
shortest paths between other vertices.  

Vertices that lie on the shortest paths to other nodes are important 
because they control “information” passing between other individuals. 

The removal of vertices with high betweenness causes the most 
disruption.

!

  

€ 

σij  number of shortest paths between vertices i and j
σij (v) number of those paths that pass through vertex v
δ ij (v) =σij (v) /σij 

C(v) = δ ij (v)
j> i, j≠v
∑

i≠v
∑



Eigenvector Centrality

A vertex’s importance can be increased by having connections to 
other vertices that are themselves important.  

The eigenvector centrality of a vertex is proportional to the sum 
of the eigenvector centralities of its neighbors.  

Works best in the case of undirected networks. 

!

€ 

Ac =κ1c

ci =
1
κ1

Aijc j
j
∑

vector of all 
vertex centralities

leading eigenvalue 
of A

centrality of vertex i



Eigenvector Centrality Issues

A directed network has an asymmetric adjacency matrix, and thus 
has two sets of eigenvectors (and two leading eigenvalues). Typically 
use the right eigenvectors- represents other vertices pointing towards 
each vertex. 


Vertices with only out-degree have centrality zero. 


Only vertices in strongly connected components can have non-zero 
eigenvector centrality.


Solutions: Katz centrality (each vertex gets a small amount of 
centrality “for free”), PageRank centrality (variation of Katz; 
centrality derived from neighbors is proportional to their centrality 
divided by their out-degree). 



Network-level 
measures of structure



Degree Distribution

The degree distribution of a network is the number or fraction of vertices with 
each possible degree.  

pk = fraction of nodes in the network with degree k  

pk is also the probability that a randomly chosen node has degree k

6

3

5

3

3

2

1

2

2

1

1

2

2

2

Degree Number 
of nodes

Fraction of 
nodes

1 3 0.21
2 6 0.43
3 3 0.21
4 0 0.00
5 1 0.07
6 1 0.07

Total 14 1

Fr
eq

ue
nc

y

0

2

4

6

Degree

1 2 3 4 5 6 Degree sequence: 
(1,1,1,2,2,2,2,2,3,3,3,3,5,6)



Cumulative Degree Distribution

The cumulative degree distribution Pk gives the fraction of vertices with degree 
greater than or equal to k.  

Pk is also the probability that a randomly chosen vertex has degree at least k

6

3

5

3

3

2

1

2

2

1

1

2

2

2

Degree
Number of 

nodes
Fraction of 

nodes
Cumulative
Frequency

1 3 0.21 1.00

2 6 0.43 0.79

3 3 0.21 0.43

4 0 0.00 0.14

5 1 0.07 0.14

6 1 0.07 0.07

Total 14 1

C
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e 
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0.0

0.3

0.7

1.0

Degree

1 2 3 4 5 6



Mean degree
What is the relationship between the sum of degrees and the number of edges 
in the graph? 


m: number of edges


n: number of vertices


ki: degree of vertex i


What is the average degree (c) of the network? 

v1

v4
v3

v2

v5
3

2

3

3

1

!

€ 

m = 1
2( ) ki

i=1

n

∑ = 1
2( )

i=1

n

∑ Aij

j=1

n

∑

!

€ 

c =
1
n

ki
i=1

n

∑
!

  

€ 

=
1
5
" 

# 
$ 
% 

& 
' (3+ 3+2+ 3+1) = 2.4

c =
2m
n

!

€ 

2m = ki
i=1

n

∑



Components

Connectivity is the number of independent paths between a pair of vertices.


A connected network is one in which all pairs of vertices can be connected by a 
path.


It is possible for there to be no path at all between a given pair of vertices. A 
disconnected network consists of disjoint connected components (subgroups).


A complete network is one in which there are edges connecting every pair of 
vertices. 
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Abby

Asterix

Camilla

Dalton

Doughnut
Emily

Fantasia

Frog

GlenHester

Kida

Nancy

Omby

Papay

Petunia

Quincy

Rich

Robert

Rose

Savannah

Titan

Vanilla

Vary

Xavier

Zebra

Zebu

Zena

female
male



Graph Partitioning and Community Detection

Community detection finds the natural fault lines 
along with a network separates. The group sizes 
and numbers are unspecified.  

• Used as a tool to understand the structure of a 
network.  

A network has modularity or community 
structure if its vertices fall into groups which have 
high densities of edges within them, and lower 
densities of edges between them. 

Graph partitioning divides the vertices of a 
network into a given number of non-overlapping 
groups of given sizes such that the number of 
edges between groups is minimized. 

• Performed as a way to divide up network into 
smaller and more manageable pieces. 



Network Density
What is the maximum number of edges in an undirected graph (no multi-
edges or self edges)?


The density of a graph is the fraction of all possible edges actually present.

v1

v4
v3

v2

v5

!

€ 

n
2
" 

# 
$ 
% 

& 
' =

1
2
n(n −1)

!

€ 

5
2
" 

# 
$ 
% 

& 
' =

1
2
5(5 −1) =10

v1

v4
v3

v2

v5

!

€ 

ρ =
m
n
2
# 

$ 
% 
& 

' 
( 

=
m

1
2
n(n −1)

=
2m

n(n −1)
=
12
20

= 0.6

!

€ 

ρ =
2m

n(n −1)
=

c
n −1

= 0.6

mean degree



Dense vs. Sparse Networks
A network for which the density ρ tends to a constant as n —> ∞ is dense. 

A network in which ρ —> 0 as n —> ∞ is sparse (the case for most networks). 

v5

v4

friendship

internet

Food webs: density 
tends to be constant 
regardless of size 

!

€ 

ρ =
2m

n(n −1)
=

c
n −1

= 0.6



Average Path Length

The average path length is the average shortest path between all pairs of 
vertices.


The diameter of a network is the length of the longest shortest path between 
two vertices in the network.


dij denotes the geodesic distance from vertex i to vertex j. 


The mean geodesic is: 


When analyzing disconnected networks, the harmonic mean of the geodesics 
(global efficiency) is: 

!

€ 

L =
1

n(n +1)
2

dij
i≥ j
∑

!

€ 

L−1 =
1

n(n +1)
2

1
diji≥ j

∑



Network Clustering

Network clustering (or transitivity) is the probability that two neighbors of a 
vertex will also connect to each other. 


Networks with high transitivity are considered to have local structure. 


A connected triple is a set of three nodes A, B, and C, such that A is 
connected to both B and C. 


A triangle is a set of three nodes A, B, and C, such that all three are connected 
to each other. 


 A

B

C

A

B

C



Clustering coefficient

The clustering coefficient of a network is the fraction of triples that have their 
third edge filled to form a triangle:


 


An alternative clustering coefficient starts by calculating the clustering at each 
node: 

A

B

C

A

B

C

  
C =

3× the number of triangles in the network
number of connected triples of vertices

!

  

€ 

Ci =
number of triangles connected to vertex i

number of triples centered on vertex i
Ci = 0 for nodes with degree 0 or 1

CWS =
1
n

Ci
i
∑

weights low degree vertices more heavily



Network Models



Empirical Data

Recent work on social networks within mathematics and physics 
has focused on three distinctive features of network structure 

1. The “small world” effect (a combination of short paths and social 
structure) 

2. The probability that two of your friends know one another is 
much greater than the probability that two people chosen 
randomly from the population know each other (clustering) 

3. A skewed degree distribution 

Random graph models of social networks can provide a baseline 
against which real-world networks can be compared



Lattice networks

Homogeneous degree distributions (regular graphs) 

Regular graphs in which all vertices have degree k are called 
k-regular  

Spatially determined - edges link nearby vertices.

Re
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e 
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0.0

0.3

0.7

1.0

Degree

1 2 3 4 5 6



Lattices in nature



Erdös-Rényi random network (1959)

1. Create n vertices 

2. For each pair of vertices i and j, create an edge (i, j) with probability 
p. The vertices will remain unconnected with probability 1- p.  

Each node has a degree between 0 and n-1

!
  

€ 

Pr degree k{ } = Pr Y = k{ } =
n −1
k

# 

$ 
% 

& 

' 
( pk (1− p)n−1−k

binomial degree distribution



Erdös-Rényi random network 

The structure of the network depends on p.  

Random connections are non-spatial. 

A large random graph has a  Poisson degree distribution.  

Its homogeneous degree distribution makes it a poor approximation of real-world 
networks but many of its features can be calculated exactly. 

increasing p
Figure: http://press.anu.edu.au/cs/html/ch05s03.html

http://press.anu.edu.au/cs/html/ch05s03.html


The Configuration Model

Specify a network size n 

For each vertex i: 

1. Choose a degree ki (can be selected randomly from a specified degree 
distribution) 

2. attach ki stubs (edges-to-be) to i 

Choose pairs of stubs at random and connect them together 

This produces a graph with exactly the desired degree distribution, but is in all other 
respects random. 

The configuration model is the set of networks produced this way, each having equal 
weight



The Small World Effect

What is the average distance between two 
people?


Stanley Milgram’s experiment (1967):  

• 296 arbitrarily-selected letter “senders” 
in Boston and Omaha


• Ask “sender” to generate acquaintance 
chains to target a person in Boston (“the 
small world method”)


• Mean number of intermediaries= 5.2 (“six 
degrees of separation”)


• 48% of chains passed through 3 people


Small world effect: most pairs of vertices in 
most networks are connected by a short path. 



The Small World Model

Watts and Strogatz (1998) developed a simple model for the coexistence of clustering and 
small average path length.  

Start with a one-dimensional ring lattice with n nodes where every node is connected to all 
nodes k or fewer steps away. 

Rewire the network: For each edge, move one end to a new random location with 
probability pr.

p = 0.1 p = 1.0

rewiring
Figure by L.A. Meyers



The Small World Model

Clustering is unaffected by the addition of a few shortcuts 

Average path length decreases dramatically with a few shortcuts
High clustering

Short average path length

Lattice Randomp

C = 0.07 
L=2.8

C = 0.6 
L=8.8

C = 0.30 
L=3.1

p = 0.1 p = 1.0

Figure by L.A. Meyers



Scale Free Networks

Scale free networks have power law degree distributions.  pk ∼ k
-γ 

They are also called power law networks.  

The vast majority of vertices have very low degree (spokes) while a small number of vertices 
have high degree (hubs).  

Quick test for scale free network: make a log-log plot of the CDF and look for a straight 
line. 

wwwactor  
collaboration power grid data

Barabási, Albert-László, and Réka Albert. "Emergence of scaling in random networks." Science 286.5439 (1999): 509-512.

CDF

Empirical networks show 
deviations from strict 
mathematical degree 
distributions and are often 
only power law in the tail of 
the distribution.



Why are networks scale free? 

What natural processes potentially give rise to networks with power law degree 
distributions? 

“The rich get richer” (Herbert Simon) 

Cumulative advantage (Derek de Solla Price)

sexual 
contacts C. elegans protein 

interaction network



Barabási-Albert Model (1999)

The Barabási-Albert Model of preferential attachments describes a 
simple and realistic process that produces scale free networks.  

Growth: the network grows by adding vertices as a function of time.  

Preferential attachment: edges are attached to existing vertices chosen 
at random weighted by the degree of each vertex.

time

older edges  
tend to have  

higher degree

distribution becomes 
scale free, γBA = 3Figure by L.A. Meyers



Newman, Watts, & Strogatz 2002

We can create random networks in which the degree distributions 
are the same as those for real-world networks, but connections 
between vertices are otherwise random 

If the real-world networks are effectively random, we would expect 
the predictions of models to agree well with empirical measurements  

When agreement isn’t perfect, there is potentially non-trivial 
structure structure in these networks 

Discrepancies between the real-world network data and model 
predictions indicate nonrandom social phenomena at work in 
shaping the network


