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What is a network"?

A network is a collection of points, which we refer to as
vertices or nodes, with connections between them, called
edges.

In mathematics, these are called graphs.



Why networks?

General yet powerful means of representing patterns of connections between the
parts of a system

Mathematical, computational, and statistical framework for studying scientific
systems:

e Statistically characterize the structure of systems

* Use models in an effort to understand how network properties arise in the first
place

* Examine the interplay between structure and dynamics to predict system
behavior



Siological Networks
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Mathematics of
Networks



Notation and Definitions

Consider an undirected network (graph) G with n vertices

G=(V, E)

V is the set of vertices

E is the set of edges

Edge (u, v) is the edge between vertex u and vertex v

o
°

V={v1, v2, v3, v4, v5}

E = ({v1, v3}, {v1, v4}, {v1, v2}, {v2, v3}, {v2, v4}, {v4, v5})



The Adjacency Matrix

One of the ways to represent a network mathematically

Each matrix entry describes a relationship between the vertices

For an undirected network with n vertices, the adjacency matrix is the n
X n matrix A in which:

A o <’1 if (i,j) €E E vertex j
0 otherwise

vertex |




Multi-edges




Self-edges

Set corresponding diagonal element A to 2
Why 2 and not 1777
Need to count both ends of every edge

Non self-edges appear twice in the adjacency matrix




Sipartite networks

Bipartite networks contain two different types of vertices, and the edges run only
between vertices of unlike types.

Examples: group membership, actor-film, author-paper, metabolites-chemical rxns

g groups

n participants



Sipartite networks

The incidence matrix B for a bipartite network is a g x n matrix with elements Bij:

LY

o 1 if participant j belongs to i
" 7 |0 otherwise

\
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Bipartite roosting C
network. Vertices
represent bats (left)
and trees (right).
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Miguel A. Fortuna, Ana G. Popa-Lisseanu, Carlos Ibanez, and Jordi Bascompte 2009. The roosting spatial
network of a bird-predator bat. Ecology 90:934-944. http://dx.doi.org/10.1890/08-0174.1



http://dx.doi.org/10.1890/08-0174.1

One-mode projections

If we want to work with direct connections of vertices of just one type:
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Adjacency matrix from the incidence matrix
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Adjacency matrix from the incidence matrix
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Weighted Networks

Undirected networks have edges that form simple presence/absence
connections between vertices

However, in some situations, it is useful to represent edges as having a
strength, weight, or value (e.g., frequency of social interaction)

Values can be positive or negative




Directed Networks (Digraphs)

Networks in which each edge has a direction, pointing from an origin
vertex to a destination vertex

Self-edges are given a value of 1

Example: ‘'v1 groomed v2’

1 if there's an edge from j to i vertex j

Aij = -

0 otherwise

vertex |

BOOOO

etric

asym



Directed Acyclic Graphs (DAGS)

A cycle is a path that starts and ends at the same vertex.

Acyclic directed networks have no cycles (i.e., there is no closed loop of edges
with the arrow on each of the edges pointing the same way around the loop).

A self-edge counts as a cycle; therefore, acyclic networks have no self-edges.

Examples: network of citations between papers, gene ontology

new papers @

All edges pointing downwards

No closed cycles of edges

Some vertices have
only incoming edges

old apers



Observed dominance hierarchies in ant networks
(approximate DAGs). Workers are aligned by rank.

Shimoji, Hiroyuki, et al. "Global network structure of dominance hierarchy of ant workers." Journal of The Royal
Society Interface 11.99 (2014): 20140599.



igraph: Network Analysis and Visualization

http://igraph.org

“Routines for simple graphs and network analysis. It can handle large
graphs very well and provides functions for generating random and
regular graphs, graph visualization, centrality methods and much more.”

igraph - 1

igraph is a collection of network analysis tools with the

emphasis on efficiency, portability and ease of use.
igraph is open source and free. igraph can be
programmed in R, Python and C/C++.

igraph R package python-igraph igraph C library




Vertex and edge |1Ds

> g <- graph(c(1,2,1,3,2,3,3,5), n=5 )

° ' Z Q
Vertices are always IGRAPH D--- § 4 --

numbered from + edges:
L [1] 1->2 1->3 2->3 3->5
* Numbering is > summary(g)
continual, from 1 to IGRAPH D--- 5 4 --
V| > 1s.1graph(g)
[1] TRUE
> veount(g)
[1] S
> ecount(g)
[1] 4
> V(g) #vertex sequence
+ 5/5 vertices:
(1] 12345
> E(g) #edge sequence
+ 4/4 edges:
[1] 1-»2 1->3 2->3 3->5



Naming vertices

> V(g)$name <- sample(letters,vcount(g))
> V(g)$name
[1] "ail "b'. " i " " e.. 'ly"

> names(V(g))
[1] "a™ "b™ "i" "e" "y"



Visualization (layout is often arbitrary)

> plot(q)
> plot(g, layout=layout.circle)

O) ®
©,

No meaning attached to edge length



Force directed layouts

> g<- make_tree(n=40, children=2, mode="out")
> plot(g, layout=layout.fruchterman.reingold)
> plot(g, layout=layout.kamada.kawai)
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—xample dataset: animal social network

A social network is any number of individuals interconnected

via social ties (sexual, cooperative, etc.) between them

them

n nearly all animal social networks, each vertex is an individual
Properties of individuals are vertex attributes
Pairs of vertices form a dyad when there is an edge between

> contacts <- read.csV("network_intro.csv", header=TRUE)

> names(contacts) #column names
[1] "Initiator™ "Receiver"
> head(contacts)

"Init.Sex”

Inittiator Receilver Init.Sex Rec.Sex

1 Qu
2 He
3 Py
4 Py
) Ro
b Ca

Gl
Va
Ro
Ro
Py
Fa

M

M M T T ™m

T MM M T M =

"Rec.Sex™ "Behavior™

Behavior
G

AC

AC

G

IG

C0



Create a weighted adjacency matrix

Edges can represent one or several behavior types

In this example, we’re looking at frequency of grooming interactions

#want to look at only grooming behavior (grooming and mutual grooming)
contacts <- contacts[contacts$Behavior=="G" | contacts$Behavior=="MG" ]

#need to do this so that we have a square adjacency matrix

listnames <- levels(as.factor(c(as.character(contacts$Initiator), as.character(contacts$Receiver))))
contacts$Initiator <- factor(contacts$SInitiator, levels=listnames)

contacts$Receiver <- factor(contactsSReceiver, levels=listnames)

#created a weighted adjacency matrix from the edgelist
ml <- table(contacts$Initiator, contactsSReceiver) |

ml

adjl <- as.matrix(ml)

adjl




Weighted adjacency matrix (frequency of contacts)

> adjl
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> lemur.graph <- graph_from_adjacency_matrix(adjl, mode="directed", weighted=TRUE, diag=FALSE, add.colnames=NULL)
> # diag = FALSE (diagonal is zero'd out; no self edges)

> # add.colnames = NULL (if present, column names are added as vertex attribute name)

>

>

summary(lemur.graph)
IGRAPH DNW- 21 80 --
+ attr: name (v/c), weight (e/n)
> #D- Directed; N-Named; W-Weighted; U-Unweighted; B- Bipartite (if the 'type' vertex attribute is set)
> # number of vertices then number of edges
> # Vertex and edge attributes
>

print.igraph(lemur.graph) # if you want to see the edges of the graph also
IGRAPH DNW- 21 8@ --

+ attr: name (v/c), weight (e/n)

+ edges (vertex names):

[1] Ab->As Ab->Xa As->Ab As->Xa Ca->Fa Ca->Pe Ca->Ro Da->Fr Da->Pe Fa->Fr Fa->Pe Fr->Da Fr->Fa Fr->Ro Fr->Ti Gl->He GL->Qu
[18] Gl->Va Gl->Vy He->Gl He->Qu He->Va He->Vy Ki->0Om Ki->Ro Ki->Sa Ki->Za Om->Ki Om->Ro Om->Za Pe->Fa Pe->Ro Py->Da Py->Qu
[35] Py->Ro Py->Ti Qu->Ca Qu->Gl Qu->He Qu->Py Qu->Ti Qu->Va Ro->Fa Ro->Fr Ro->Ki Ro->Om Ro->Pe Ro->Py Ro->Qu Ro->Sa Ro->Ti
[52] Ro->Za Ro->Ze Sa->Ki Sa->Ro Sa->Za Ti->Ab Ti->As Ti->Fa Ti->Fr Ti->Pe Ti->Py Ti->Qu Ti->Xa Va->Gl Va->He Va->Qu Va->Vy
[69] Vy->Gl Vy->He Vy->Va Xa->Ab Xa->As Za->Ki Za->Ro Za->Sa Za->Ze Ze->Om Ze->Ro Ze->Sa

v



—dge list

> get.edgelist(lemur.graph)
Not very helpful [,11 [,2]
1,] "Ab" "As”
2,] "Ab" "Xa"
"As" "Ab"
"As™ "Xa"
"Ca" "Fa"
"Ca™ "Pe”
"ca" "RON
"Dall "Fr'"
I "Da" "Pe”
[10,] "Fa" "Fr"
[11,] "Fa" "Pe"
[12,] "Fr" "Da"
[13,] "Fr" "Fa"
[14,] "Fr" "Ro"
[15,] "Fr™ "T1"
[16,] "GL" "He"
[17,] "GL" "Qu"
[18,] "GL" "Va"
[19,] "GL" "vy"
[20,] "He"™ "GL"

-
-
~

oo~V & W
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Assigning attributes to vertices

> # assign 'sex' attribute
> X <- as.factor(c(as.character(contacts$Initiator),as.character(contacts$Receiver)))
> y <- as.factor(c(as.character(contacts$Init.Sex),as.character(contacts$Rec.Sex)))

> tt <- table(x,y)

> sex <- 1*(tt[,2]>0)

> sex #assign a @ or 1 for sex

Ab As Ca Da Fa Fr GL He K1 Om Pe Py Qu Ro Sa T1 Va Vy Xa Za Ze

@ @ @ 1 0 @ 1 @ @ 1 @ @ 1 1 © 1 @ 1 1 0 1

>

> # change to male "M" and female "F"
> n <- length(sex)

> for (1 1n 1:n){

+ if(sex[1]=="0"){

- sex[1]="F"

+ } else if (sex[1]=="1"){

+ sex[1]="M"

+ }

+ }

> V(lemur.graph)$sex <- sex

> V(lemur.graph)$sex
(11 "F™ "F" "F™ "M™ "F" "F™ "M™ "F" "F™ "M"™ "F™ "F™ "M" "M™ "F" "M"™ "F" "M" "M"™ "F" "M"
> summary(lemur.graph)
IGRAPH DNW- 21 80 --
+ attr: name (v/c), sex (v/c), weight (e/n)



Visualization

> plot(lemur.graph, layout=lay, vertex.label=V(lemur.graph)$name, vertex.color=ifelse(sex=="M","green","purple"),
vertex.size=nodesize)

> nodesize <- degree(lemur.graph) * 2

> plot(lemur.graph, layout=lay, vertex.label=V(lemur.graph)$name, vertex.color=ifelse(sex=="M","green","purple"),
vertex.size=nodesize)

#'fancier' plotting

nodesize <- degree(lemur.graph) * 2

lay <- layout.fruchterman.reingold(lemur.graph)
EClemur.graph)$width <- 2

EClemur.graph) [E(Lemur.graph)$weight > 1@]%$color
EClemur.graph) [E(Lemur.graph)$weight < 1@]%$color
plot(lemur.graph, layout=lay, vertex.label=V(len
vertex.size=nodesize)

VVVVVVY




Vertex Centrality
Vieasures



Vertex Centrality Measures

» Centrality measures are used to differentiate the importance
or iInfluence of individuals In the network

* \What is the most important protein in a metabolic
network’?

* Which individuals should we target for vaccination®?

* \Which are the keystone species in an ecosystem®?



Centrality Rules

* We cannot compare centrality measures for different
networks.

* \We cannot compare different kinds of centrality measures
on the same network.



Degree Centrality

Assumption: The most connected vertices are the most central.

* Degree is the number of edges connected to a vertex.

* [n directed networks, vertices have an in-degree and an out-degree (the number of
edges arriving and leaving, respectively).

» Weighted degree (node strength) is the sum of the edge weights connected to a vertex

(2,1)

3

(1,2)

(1,1)
(2,1)



Path-following centrality measures

Betweenness, closeness, informational centrality, etc.
count paths (between pairs of vertices) that pass through
the vertex of interest

A shortest path (or geodesic) between two vertices is the
minimum number of edges you have to travel across to
move from one vertex to another. There may be multiple
different geodesics, all of the same length.

The length of a shortest path between (u, v) is called the
geodesic distance or graph distance.



Shortest path: min. number of edges between two individuals
Weighted shortest path: if edge weight is strength of interaction, add up

iInverse edge weights

Unweighted
Shortest path = 1

Ry ST
A1 0.1
®)
Weighted
Shortest path = 10

%



Shortest path: min. number of edges between two nodes
Weighted shortest path: add up inverse edge weights

Unweighted

Unweighted Shortest path = 1

Shortest path = 2

0.1
o

Weighted
Shortest path = 10

Weighted
Shortest path = 15 O

%0



Shortest path: min. number of edges between two nodes (“distance”)
Weighted shortest path: add up inverse edge weights

Disconnected
Shortest path = o

%9
¢ O



Closeness Centrality

Closeness centrality measures the mean distance from a
vertex to other vertices.

1 n number of vertices
C- =4 = divided by sum of
l l d geodesic distances
! i ij from /1o |

inverse of mean geodesic
distance

Vertices close to other vertices are important.

SR




Closeness Centrality Example

Epidemiological risk correlates with closeness centrality for Serengeti

||On prldes 0.85 4 (¢) ;. ~ .60
....

(@) ~. Masai Mara (b) B
=00 o
100 %
0.75 + g
L
( - 0.50 =
S0 o =
‘ \ —,f
60 -045 2
0.65 - Z
40F £
- 040 —

20F e W
0554 —14— - 0.35
I | 1
0 0.12 0.22 0.32

, _ _ closeness centrality
The ecosystem and study area in Serengeti National Park

(left) and a simulated lion population based on estimates Craft, Meggan E., et al. "Distinguishing epidemic waves

of territory locations and adjacencies from Serengeti Lion from disease spillover in a wildlife population."
Project data (right). Proceedings of the Royal Society B: Biological Sciences

(2009): rspb-2008.



Betweenness Centrality

Betweenness centrality: measures the extent to which a vertex lies on
shortest paths between other vertices.

Vertices that lie on the shortest paths to other nodes are important
because they control “information” passing between other individuals.

The removal of vertices with high betweenness causes the most
disruption.

o, number of shortest paths between vertices i and j
o, (v) number of those paths that pass through vertex v

6,(v)=0,()/o;

PN
@
\ / C(v) = E | zaij »)



—igenvector Centrality

A vertex’'s importance can be increased by having connections to
other vertices that are themselves important.

The eigenvector centrality of a vertex is proportional to the sum
of the eigenvector centralities of its neighbors.

Works best in the case of undirected networks.

leading eigenvalue

/} of A
A

vector of all

vertex Central|t|es 1 2
K
J

centrality of vertex /



—igenvector Centrality Issues

A directed network has an asymmetric adjacency matrix, and thus
has two sets of eigenvectors (and two leading eigenvalues). Typically

use the right eigenvectors- represents other vertices pointing towards
each vertex.

Vertices with only out-degree have centrality zero.

Only vertices in strongly connected components can have non-zero
eigenvector centrality.

Solutions: Katz centrality (each vertex gets a small amount of
centrality “for free”), PageRank centrality (variation of Katz;
centrality derived from neighbors is proportional to their centrality
divided by their out-degree).



Network-level
measures of structure



Degree Distribution

The degree distribution of a network is the number or fraction of vertices with
each possible degree.

Pk = fraction of nodes in the network with degree k

Pk is also the probability that a randomly chosen node has degree k

ofnodes nodes

Frequency

. | 0.21
4 .\T/‘ 2 6 0.43
3 3 0.21

’ I I I 4 0 0.00
’ 1213 4 :: Degree sequence: 2 | 0.07
(1,1,1,2,2,2,2,2,3,3,3,3,5,6) 6 I 0.07

Degree 1 4 |




Cumulative Degree Distribution

The cumulative degree distribution Pk gives the fraction of vertices with degree
greater than or equal to k.

Px is also the probability that a randomly chosen vertex has degree at least k

Number of | Fraction of Cumulative
Degree
.\X/ nodes nodes Frequency

02 1.00
10 2 6 0.43 0.79
S 2
£ 2 07 3 3 0.2 0.43
S >
E T 03 I 4 0 0.00 0.14
200 . 5 | 0.07 0.14
123456 6 | 0.07 0.07



Mean degree

What is the relationship between the sum of degrees and the number of edges
in the graph?

m: number of edges n n non
. w23k me()3k=()3 3
n: number of vertices 2 2
i=1 i=1 i=1  j=1
ki: degree of vertex i

What is the average degree (c) of the network?

3

@1 c =lEkl’ =(§)(3+3+2+3+1)=2.4

i=1
3 2m
o=

n




Components

Connectivity is the number of independent paths between a pair of vertices.

A connected network is one in which all pairs of vertices can be connected by a
path.

It is possible for there to be no path at all between a given pair of vertices. A
disconnected network consists of disjoint connected components (subgroups).

A complete network is one in which there are edges connecting every pair of
vertices.




Graph Partitioning and Community Detection

Community detection finds the natural fault lines
along with a network separates. The group sizes
and numbers are unspecified.

- Used as a tool to understand the structure of a
network.

A network has modularity or community
structure if its vertices fall into groups which have
high densities of edges within them, and lower
densities of edges between them.

Graph partitioning divides the vertices of a
network into a given number of non-overlapping
groups of given sizes such that the number of
edges between groups is minimized.

- Performed as a way to divide up network into
smaller and more manageable pieces.



Network Density

What is the maximum number of edges in an undirected graph (no multi-
edges or self edges)?

=2 nn -1y |2 L5521y -10
=5 > 75 (5-1)
The density of a graph is the fraction of all possible edges actually present.
m m 2m 12
P 71 oD 20 00
(n) —n(n -1) n(n —1)
9) 2
Q mean degree
) -~
m C
I, =0.6

=n(n—1) =n—1



Dense vs. Sparse Networks

A network for which the density p tends to a constant as n —> « is dense.

A network in which p —> 0 as n —> « is sparse (the case for most networks).

2m C

“an-D n-1

o

Food webs: density
tends to be constant
regardless of size

. internet

_O Qg 0 0 % C
o000 0200
o 0..0.0%0
e O, Pt &

friendShi p G Model of the food web in Litle Rock Lake, Wisconsin wwwIoodwebe.ong




Average Path Length

The average path length is the average shortest path between all pairs of
vertices.

The diameter of a network is the length of the longest shortest path between
two vertices in the network.

dj denotes the geodesic distance from vertex i to vertex |.

=

The mean geodesic is: o1
L= nn+1) Edlj
2

When analyzing disconnected networks, the harmonic mean of the geodesics
(global efficiency) is:

I-

= I

1 1
1— —
n(n+1) Ed,j
2



Network Clustering

Network clustering (or transitivity) is the probability that two neighbors of a
vertex will also connect to each other.

Networks with high transitivity are considered to have local structure.

A connected triple is a set of three nodes A, B, and C, such that A is
connected to both B and C.

A triangle is a set of three nodes A, B, and C, such that all three are connected
to each other.




Clustering coefficient

The clustering coefficient of a network is the fraction of triples that have their
third edge filled to form a triangle:

_ 3x the number of triangles in the network

C
number of connected triples of vertices

An alternative clustering coefficient starts by calculating the clustering at each

node:
number of triangles connected to vertex i

C.
’ number of triples centered on vertex i =
C. =0 for nodes with degree 0 or 1 A
1
Cys = _Eci A

n

weights low degree vertices more heavily



Network Models



—mpirical Data

Recent work on social networks within mathematics and physics
has focused on three distinctive features of network structure

1. The “small world” effect (a combination of short paths and social
structure)

2. The probability that two of your friends know one another is
much greater than the probabillity that two people chosen
randomly from the population know each other (clustering)

3. A skewed degree distribution

Random graph models of social networks can provide a baseline
against which real-world networks can be compared



L attice networks

Homogeneous degree distributions (regular graphs)

Regular graphs in which all vertices have degree k are called
k-regular

Spatially determined - edges link nearby vertices.

o

Relative
Frequency

o 9
© w N

123456

Degree



L attices In nature




—rdos-Rényi random network (1959)
1. Create n vertices

2. For each pair of vertices /i and j, create an edge (;, j) with probability
p. The vertices will remain unconnected with probability 1- p.

Each node has a degree between O and n-1

—1
ST L T

binomial degree distribution



—rd0s-Rényi random network

The structure of the network depends on p.
Random connections are non-spatial.
A large random graph has a Poisson degree distribution.

Its homogeneous degree distribution makes it a poor approximation of real-world
networks but many of its features can be calculated exactly.

increasing p
Figure: http://press.anu.edu.au/cs/html/ch05s03.html



http://press.anu.edu.au/cs/html/ch05s03.html

The Configuration Model

Specify a network size n
For each vertex i:

1. Choose a degree k; (can be selected randomly from a specified degree
distribution)

2. attach k; stubs (edges-to-be) to
Choose pairs of stubs at random and connect them together

This produces a graph with exactly the desired degree distribution, but is in all other
respects random.

The configuration model is the set of networks produced this way, each having equal
weight



The Small World Effect

What is the average distance between two
people?

Stanley Milgram’s experiment (1967):

- 296 arbitrarily-selected letter “senders”
in Boston and Omaha

- Ask “sender” to generate acquaintance
chains to target a person in Boston (“the
small world method”)

- Mean number of intermediaries= 5.2 (“six
degrees of separation”)

- 48% of chains passed through 3 people

Small world effect: most pairs of vertices in
most networks are connected by a short path.




The Small World Model

Watts and Strogatz (1998) developed a simple model for the coexistence of clustering and
small average path length.

Start with a one-dimensional ring lattice with n nodes where every node is connected to all
nodes k or fewer steps away.

Rewire the network: For each edge, move one end to a new random location with
probabillity p,.

rewiring

Figure by L.A. Meyers



The Small World Model

lustering is unaffected by the addition of a few shortcuts

verage path length decreases dramatically with a few shortcuts

High clusterin
= : Short average path length

Lattice —_— Random

o =0.1
/
C=0.6 C=0.30
L =8.8 L=3.1
Figure by L.A. Meyers



Scale Free Networks

C 4 : Y
Scale free networks have power law degree distributions. py ~ K

They are also called power law networks.

The vast majority of vertices have very low degree (spokes) while a small number of vertices
have high degree (hubs).

Quick test for scale free network: make a log-log plot of the CDF and look for a straight

line.
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Barabasi, Albert-Laszlo, and Réka Albert. "Emergence of scaling in random networks." Science 286.5439 (1999): 509-512.



Why are networks scale free”

What natural processes potentially give rise to networks with power law degree

distributions?

“The rich get richer” (Herbert Simon)
A

Cumulative advantage (Derek de Solla Price).
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Barabasi-Albert Model (1999)

The Barabasi-Albert Model of preferential attachments describes a
simple and realistic process that produces scale free networks.

Growth: the network grows by adding vertices as a function of time.

Preferential attachment: edges are attached to existing vertices chosen

at random weighted by the degree of each vertex. older edges
tend to have

R ¥t 3, Nigher degree
\ i

time dIS’[r’Illi)U]’c[IOﬂ becomes
Figure by L.A. Meyers scale free, ysa = 3



Newman, Watts, & Strogatz 2002

We can create random networks in which the degree distributions
are the same as those for real-world networks, but connections
between vertices are otherwise random

If the real-world networks are effectively random, we would expect
the predictions of models to agree well with empirical measurements

When agreement isn’t perfect, there is potentially non-trivial
structure structure in these networks

Discrepancies between the real-world network data and model
predictions indicate nonrandom social phenomena at work in
shaping the network



