

NL+SE Workshop Final Report
Prem Devanbu, Dana Movshovitz-Attias, and Chris Quirk

April 21, 2016

Introduction

A workshop on the application of Statistical NLP Methods to Software Artifacts was
held at Microsoft Research during Oct 25, 26, and 27th. The goals of the workshop were
to explore current research and future directions on the following topics:

1. “Big Code” data, such as Gigatoken Code Corpora (with change history, bug
reports, Q&A, comments) are now available. The statistics in these corpora
resemble those of NL Corpora. How can this be exploited?

2. How can NLP approaches aimed at generating formal representations of natural
language be exploited in software?

The expected outcomes of the workshop were a report summarizing the discussions,
and a “wish list” of things to help impulse research in the area, including datasets,
competitions, collaborations, etc.

While there has been considerable interest in applying NLP methods to software in the
past, to our knowledge, this was the first time that a significant, large number of NLP
researchers with a strong statistical focus had a chance to interact closely with
software engineering researchers, and hear first-hand the problems that are faced in
this area.

This workshop was jointly sponsored by Microsoft Research and the U.S. National
Science Foundations. There were 43 attendees, including 6 students, and 8
international participants.

Warm-up: Tutorials
This was a “first contact” workshop. For many of the Software Engineering and NLP
researchers, this was the first time that they directly interacted with researchers from
the other discipline. To facilitate the interaction, we arranged two broad, introductory
tutorials. One tutorial covered methods in statistical language processing and language
modeling by Dr. Ashish Vaswani from USC/ISI. The other, on Software data and
software mining, was presented by Prof. Tao Xie from University of Illinois. The

http://www.cs.ucdavis.edu/~devanbu/
http://www.cs.cmu.edu/~dmovshov/
http://research.microsoft.com/en-us/people/chrisq/
http://www.isi.edu/~avaswani/
http://taoxie.cs.illinois.edu/

NL+SE Workshop Final Report

tutorials were very well attended. Slides from both Tao Xie’s and Ashish Vaswani’s
lectures are available. Videos (Vaswani, Xie) are also available.

Software Tools and Processes
(Organizers: Premkumar Devanbu & Chris Quirk)
(Scribe: Jennifer D’Souza)

This early session was aimed at setting the theme for the workshop; it began with a
keynote presentation by Prof. Charles Sutton, a leading researcher in this area. Slides
and video for this presentation are kindly made available by Prof. Sutton, under the
auspices of Microsoft Research. The presentation covered the beginnings of research in
the area, as well as a round-up of the current research, and presented a vision for
future work. This was followed by a discussion, which was scribed by Dr Jennifer
D’Souza. There were several main topics touched on in the discussion.

Talk Summary

Prof Sutton’s tak introduced the area with the claim that “Source code is a means of
human communication”: code is an intentional act of one developer to communicate
with another, about design, rationale, usability etc. With this “speech act”, a developer
aims to make their code more maintainable, reusable etc. Certainly,
developer-to-developer communication occurs over a variety of online media,
including version control systems, email, chat-groups, on-line fora, social coding
websites, and such.

The talk then listed some analogies between a wide range of NLP-related tasks and
corresponding software engineering talks. A full list is best viewed in the video, but
representative analogies include NLP translation to Code porting, and spelling and
grammar correction to code patching.

The middle part of the talk surveyed a range of current research achievements in the
application of NLP methods to code, including research at Edinburgh (Sutton,
Allamanis), UCL (Earl Barr), UC Davis (Devanbu), ETH (Vechev) and Alberta (Hindle).

The talk concluded with a call for a more empirical, data-driven perspective on
software engineering problems: rather than exclusively focusing on formal abstraction
as a means of retreating from the “undecidability bottleneck” of deriving sound &
complete program properties, Sutton suggests a “statistical retreat” based on models
estimated from large corpora, that use inductive bias to capture the typical, “natural”
patterns latent in large corpora. He also suggested another view of “naturalness”: that
code in which latent, deep, semantic properties are evident from surface-level

2

http://taoxie.cs.illinois.edu/publications/softmining-tutorial-nlse2015.pdf
http://www.languageandcode.org/nlse2015/LANGUAGE_MODELING.pdf
http://research.microsoft.com/apps/video/dl.aspx?id=257984
http://research.microsoft.com/apps/video/dl.aspx?id=257983
http://homepages.inf.ed.ac.uk/csutton/
http://research.microsoft.com/apps/video/default.aspx?id=258149
https://miltos.allamanis.com/
http://earlbarr.com/
http://www.cs.ucdavis.edu/~devanbu/
http://www.srl.inf.ethz.ch/vechev.php
http://softwareprocess.es/

NL+SE Workshop Final Report

properties are easier for humans to read and understand, and perhaps also are more
amenable to hybrid statistical-formal methods analysis.

Following the keynote, there was a wide-ranging discussion on the general area, which
we group into topics as follows.

Problems Yet to be Explored

The discussion began with a call for interesting future topics for study. A number of
topics arose.

1. Surpassing Humans. Tao Xie speculated whether (statistical) AI methods could
surpass human performance, specifically, in the area of constructing revealing
test cases that could expose defects.

2. Program Repair/Fault Localization. Abram Hindle mentioned that language
models can locate the precise source of syntax errors in programs, which
compilers can often find difficult to diagnose. There was also discussion about
how language models might promote the discovery of more “natural” repairs to
errors, both syntactic and otherwise.

3. The “Essence” of Programs. Zhendong Su asked if statistical models be used to
identify the “essence” of programs, by enabling the culling of those parts which
are repetitive, formulaic, or redundant (such as variable names). The relevance
of the “sloppy programming” project was discussed, where the scaffolding of
programs could be automatically generated around some human-supplied
essentials.

4. Specification-conformant programs. Graham Neubig wondered whether a
program generated from a natural language specification could somehow be
checked against the natural language specification for correctness, perhaps by
also generating a formal specification from the natural language description.

The Creation of Datasets

There was considerable interest in the challenges and availability of datasets. There
were two main topics that were discussed: parallel code/NL datasets, and the use of
Mechanical Turk to create data.

Parallel, aligned corpora of Code & Natural Language. There was strong interest in
the possible availability of aligned code/natural language corpora, where “the code

3

http://taoxie.cs.illinois.edu/
http://softwareprocess.es/
http://www.cs.ucdavis.edu/~su/
https://groups.csail.mit.edu/uid/other-pubs/sloppy-programming.pdf
http://www.phontron.com/
http://www.phontron.com/
http://www.phontron.com/

NL+SE Workshop Final Report

does exactly what the natural language says” (Graham Neubig). Several possible
sources of such data were suggested:

1. RosettaCode. A “chrestomathy” of code, in different languages, accompanied by
english descriptions.

2. JPetStore. A particularly well-documented and commented 3-tier system.
3. iPython notebooks. These are a very popular platform for literate programming,

where code is accompanied by descriptions of its function, and sample inputs
and outputs.

Mechanical Turk for dataset creation. While the utility of some these corpora was
acknowledged, there was interest in a broader set of more closely aligned sources. This
gave rise to a discussion on creating/curating datasets with manual effort; thus
Mechanical Turk arose as a natural option, and considerable discussion ensued.

1. Several researchers (Dawn Lawrie, Collin McMillan, Nate Kushman) described
difficulties with using Turkers, specially in finding people qualified for
code-related tasks.

2. Kushman noted that the direction of the task (code->English vs. English->Code)
matters. The summarizing task (Code->English) gave rise to unnatural
annotations, whereas the reverse (Code from english descriptions) proved quite
amenable to this setting; they had good luck with the ODesk Platform in this
setting, relative to Amazon’s mTurk. Movshovitz-Attias also reported good
experience with using mTurk for relation labeling

3. Luke Zettlemoyer noted that task-definition when involving humans to produce
a supervisory dataset is critical: e.g., for the code->English task, the word-count
budget given to human Turker would be critical.

4. The question of qualifying Turkers was viewed as critical, to avoid spamming;
Chris Quirk speculated that educational settings might be a better way for
low-cost supervisory data creation. Nate Kushman observed that providing
enhanced incentives might motivate people to the aquire a higher-level of skill
required for high-fidelity task completion.

Software Dataset Challenges. Danny Tarlow noted the challenges non-experts in
software engineering face when accessing richer forms of representation of code. He
mentioned that if one knew how to query static analysis tools, compilers and such
other tools that could produce different representations of software, the resulting data
could be used to facilitate machine learning and the building of machine learning
models. However, he mentioned that the know-how around using these tools was one
area of entry that kept non-experts in software engineering from attacking software
engineering problems and from using more sophisticated methods than just
token-level information. So he said that along with releasing the source code, it might

4

http://rosettacode.org/wiki/Rosetta_Code
https://en.wikipedia.org/wiki/Chrestomathy
https://github.com/mybatis/jpetstore-6
http://ipython.org/notebook.html
https://www.mturk.com/mturk/welcome
http://www.cs.loyola.edu/~lawrie/
http://www.cse.nd.edu/~cmc/
http://people.csail.mit.edu/nkushman/
https://www.upwork.com/
http://www.cs.cmu.edu/~dmovshov/
http://www.cs.cmu.edu/~wcohen/postscript/acl-2015-dana.pdf
https://www.cs.washington.edu/people/faculty/lsz
http://research.microsoft.com/en-us/people/chrisq/
http://people.csail.mit.edu/nkushman/
http://research.microsoft.com/en-us/people/dtarlow/
http://research.microsoft.com/en-us/people/dtarlow/
http://research.microsoft.com/en-us/people/dtarlow/

NL+SE Workshop Final Report

also be useful to consider releasing other kinds of information along with it. It was
observed that the BOA data server might help with these challenges.

The Challenges and Value of Competitions.

The criticality of competitions (a well-curated dataset, a well-defined task, and a
challenging baseline performance criterion) to rapid advances was noted by the NLP
colleagues; the relative unpopularity of such competitions in software engineering was
recognized by the SE colleagues. Chris Quirk noted that substantial benefits could be
gained with introducing competitions in software engineering. For instance,
researchers could gain access to a large language modeling dataset and all systems
could be compared on a benchmark evaluation such as perplexity. Potentially, the best
model for predicting the naturalness of Java code could result from an organized
competition. Tao Xie noted that the task should be considered practically relevant by
software engineers. A few categories of tasks were discussed.

1. Code cloning: a few datasets already exist; although no “golden” set is available,
precision could be estimated by sampling. (Abram Hindle)

2. Code completion: arbitrarily many benchmarks could be created by sampling
from existing code bases, pull requests etc. (Hindle)

3. Traceability: There was considerable discussion on this topic, concerning the
difficulties of creating datasets at scale. Cleland-Huang’s TraceLab is a
noteworthy example of such a traceability dataset.

4. Bug Localization: This is the task of localizing defects given passing and failing
test sets.

Summary

The need for datasets, benchmarks and competitions is seen as vital to the vibrancy of
this community; there is considerable incentive for creating benchmarks and
competition datasets, since these will have a great deal of impact.

5

http://boa.cs.iastate.edu/
http://research.microsoft.com/en-us/people/chrisq/
http://taoxie.cs.illinois.edu/
http://softwareprocess.es/
http://www.cdm.depaul.edu/about/Pages/People/FacultyInfo.aspx?id=342
http://www.coest.org/index.php/tracelab

NL+SE Workshop Final Report

Data repositories (Boa briefing)
(Scribe: Zhilin Yang zhiliny@cs.cmu.edu)
(Organizers: Premkumar Devanbu & Chris Quirk)
(Presenter: Dr. Tien N. Nguyen, Iowa State University)

A general introduction to Boa was provided, slides and video are available. Mining
software repositories (MSR) at a large-scale is important for more generalizable
research results. Therefore, a number of recent studies in the MSR area have been
conducted using corpus sizes that are much larger compared to the corpus size used by
studies in the previous decade. Such a large collection of software artifacts is openly
available for analysis, e.g., SourceForge has 350k+ projects, GitHub has 10M+ projects,
and Google Code has 250K+ projects. This is an enormous collection of software and
software-related metadata.

Using this vast amount of information to conduct MSR studies can be challenging.
Specifically, large scale MSR studies (e.g., finding instances of bugs and bug fixes at
scale) requires expertise in programmatic APIs for version control systems, database
management, data mining, and parallelization. These four requirements significantly
increase the cost of scientific research in this area. Moreover, building analysis
infrastructure to process such ultra-large-scale data efficiently can be very difficult.
Efficiency is another issue. Due to the large amount of available software repositories,
it is nontrivial to set up parallel architecture for data processing and repository
mining.

A domain specific language and infrastructure for code mining, Boa, was presented in
the workshop. The fundamental goal of Boa is usability and simplicity. Boa hides the
low-level details of repository mining from the users. Boa provides a parallelization
framework and all user queries are executed on Hadoop transparently, which makes it
easy to write scalable and efficient user programs.

Boa Infrastructure: The Boa infrastructure is designed to diminish the barrier to
entry for ultra-large scale MSR studies. Boa consists of a domain-specific language, its
compiler, a data set that contains almost 700k open-source projects as of this writing, a
backend based on map-reduce to effectively analyze this dataset, and a web-based
frontend for writing code for MSR-related research.

Boa downloads and replicates the software repositories from various source code hosts
such as SourceForge and GitHub. It translates the data into a custom format necessary
for efficient querying. The translated data is then stored as a cache onto Boa's cluster
of servers. This forms the data infrastructure for Boa and abstracts many of the details
of how to send, store, update, and query such a large volume of data. Boa transforms

6

http://kimiyoung.github.io/
http://home.eng.iastate.edu/~tien/
http://research.microsoft.com/apps/video/dl.aspx?id=257981
http://boa.cs.iastate.edu/

NL+SE Workshop Final Report

the original data into structured representation such as abstract syntax trees, and
stores the the data . Users send queries to the system by writing user programs in the
Boa query language. The user programs are compiled to Hadoop programs by Boa. Boa
further deploys and executes the Hadoop programs on the cluster, and returns the
results to the users.

Boa currently supports user queries through the Web interface on
http://Boa.cs.iastate.edu. Users submit a query written in Boa's domain-specific query
language to the website. User programs in Boa are concise and do not require external
libraries. Once a user writes their query, they then select the dataset to use as input.
Boa provides snapshots of the input data, marked with a timestamp. Boa periodically
produces these datasets (at least yearly, in the future perhaps even monthly). Once a
dataset is created it, is immutable and permanently available. This enables researchers
to easily reproduce previous research results, by simply providing the same query and
selecting the same input dataset.

For each submitted query, Boa creates a job. All jobs have a unique identifier and
allow users to control them, such as stopping the job, resubmitting the job, and viewing
the results of the job. The servers compile that query and translate it into a Hadoop
map-reduce program. This program is then deployed onto the cluster and executes in a
highly parallel, distributed manner. All of this is transparent to the users. The job page
will show if compilation passed and any error messages. It will also show the status of
executing the query. Once finished, it provides information about how long it took to
execute and links for viewing and downloading the output. Once a job has completed
without error, the output of the Boa program is available from the job's page. There
are two options: users may view up to the first 64k of the output online or they may
download the results as a text file.

When Boa executes a program, it first instantiates a separate program for each code
project. Statistics are computed on each node of the cluster, and results are sent back
to the aggregator with an aggregator function. The aggregator defines the operation to
apply on the collected results, including sum, mean, top, bottom, and set operations.

Boa Language: Since Boa is a domain-specific language, it defines various
domain-specific types, including types for projects, code repositories, and abstract
syntax tree roots. Besides the predefined domain specific types, Boa supports
user-defined functions. User can define custom functions, either in Boa language or
Java. Boa also provides a type called time to represent unix-like timestamps. All
date/time values are represented using this type. There are many built-in functions for
working with time values, including obtaining specific date-related parts (such as day
of month, month, year, etc), adding to the time by day, month, year, etc, and truncating
to specific granularities. Strings in Boa are arrays of Unicode characters. Strings can be
indexed to retrieve single characters. Strings can be concatenated together using the

7

http://boa.cs.iastate.edu/

NL+SE Workshop Final Report

plus (+) operator. There are also many built-in functions for working with strings to
upper/lowercase them, get substrings, match against regular expressions, etc. Boa also
provides several compound types. These types include arrays, maps, stacks, and sets
and are composed of elements of basic type. Arrays can be initialized to a set of
comma-delimited values surrounded by curly braces.

Boa provides a notion of output variables. Output variables declare an output
aggregation function to use on the output. All aggregators can optionally take indices.
Indices act as grouping operators. All output is sorted and grouped by the same index.
Then the aggregation is applied to each group. It is also possible to have multiple
indices in which case the grouping is performed left to right. The collection aggregator
provides a way to simply collect some output without applying any aggregation to the
values. A value emitted to this aggregator will appear directly in the results.

The VISITOR design pattern is a built-in feature in Boa. Users can perform depth-first
traversal through abstract syntax trees by calling the VISITOR APIs. Boa also supports
custom traversals over trees. Users can customize the stop criteria and traversal order.

Current Status and Future Work: An Eclipse plug-in will be released soon after the
workshop, which aims to support integrated debugging and testing in Eclipse IDE. Boa
is backed by 8 million projects, 23 million revision and 146 million unique files
downloaded from the Web and stored on the cluster. Boa parses the source code and
produces 71 billion abstract syntax tree nodes.

Boa now has more than 300 users from over 20 countries. In the future, Boa plans to
include more advanced features, such as domain specific types for security, integration
improvement of Eclipse plug-in, query reuse from the crowd, more advanced support
for debugging and testing, and result sharing and collaboration.

Boa is going to support code mining research of studying the naturalness of software,
including language modeling in code, code completion, recommendation, code
synthesis, and statistical machine translation for code (language migration).

8

NL+SE Workshop Final Report

Code and Program Modeling
(Organizers: Charles Sutton & Tien Nguyen)
(Scribe: Vincent Hellendoorn, vhellendoorn@live.nl)

The goal of the session (Videos and slides) was to discuss models of code and programs
that are based on data. The session had two invited speakers, one coming from a
software engineering perspective and from a machine learning perspective. The
software engineering speaker was Prof. Earl Barr, an associate professor at University
College London, and the machine learning speaker was Dr Daniel Tarlow, a research at
Microsoft Research in Cambridge, UK. Both speakers have done some of the early
influential work in this area.

Talk by Earl Barr, University College London:
Inference Problems in Software Engineering

1. Inferring programmer’s intents and traceability

Inferring intent is a core problem in SE. Given finished project, we have some
requirements, and a codebase. Traceability between the requirements and the
codebase is important because it can tell us what the code is intended to do. Most large
projects have thousands of unfixed bugs, because they only have finite resources. If we
knew which requirements were bound to which bugs, we could explore this space
more effectively, because they allow us to check the implementation.

A Code base is just a snapshot of version history. Requirements come from somewhere
else: stakeholders. Many problems in projects happen when obtaining requirements
from stakeholders. Complete requirements may be difficult to obtain. Thus, both
requirements themselves, and links between requirements and artifacts, are partial
(and noisy). There is additional data: issue trackers, mailing lists, documentation, logs.
Problem of SE is: requirements are great and we’d like them, but mostly we have no
requirements available.

Machine learning can help in relation extraction. Where could this be useful? You can
recover these links and thus give features that can be used to build tools to check
whether the features hold or not on new data. Furthermore, this can be interesting to
the ML and NLP communities because all of this data is relatively structured (source
code; requirements with semi-formal English/mixed); i.e., more structured than
arbitrary text on the web. This structure may be used to improve performance
(accuracy, resistance to noise, performance) of tools that attempt to recover
traceability links.

9

http://research.microsoft.com/apps/video/dl.aspx?id=258146

NL+SE Workshop Final Report

2. Testing

Test suites are often informed by requirements, and are potentially a good way to
obtain traceability links; but there are many complications. They tend to capture some
under-approximation of the true intent thereof. The relationship can be ambiguous;
we often do not know what aspect of requirements a given test case is supposed to test.
NL people might think that strange; just look at the execution path. The problem with
this is: in order to test some code, a test case may for instance need to traverse the file
system of the OS, traverse code that opens/closes files. It does not intend to, but it must.
Finding what paths a test is specifically intended to test is non-trivial.

Developers tend to create tests. We do have lots of tests; modern, Agile methods tend
to emphasize testings, thus increasing test availability.

There are two lines of work in SE that exploit test suites. Test suites are normally
designed for regression testing – give confidence that you can make changes without
breaking existing functionality. Another area is automated program repair, which
requires something that localizes the bug. Here, the goal is to synthesize a fix that
passes test suite. The underlying assumption is that there is a correct test suite for a
buggy program.

Another possible problem: although programmers do write test suites, they do not
write enough (writing them is tedious & difficult). It would be nice if we could help
them write test-suites. If you just randomly sample input domain, most test cases will
be useless and redundant. We also do not know if the output is correct for samples test.
This problem is often neglected in automated test generation. This may be a good place
for machine learning: Given a test, we may use the observed behaviour and the query
program’s other concrete behavior to infer likely correct behavior, and perhaps even
(if the answer is numerical) confidence intervals for correctness. This technique may
help address Oracle problem.

3. Natural language, invariants, program by contract

We can think about other ways of recording and capturing programmer intent:
programming by contract. No requirements are written in stakeholder format, but at a
much lower level: embedded in code. Example: Eiffel, which supports
design-by-contract. The code specifies preconditions and post-condition given
parameters and returns.

Let us consider simple assertions: just having code annotated with a couple of asserts
allows us to verify some properties, at least locally; it enables program validation.
Problem with this is a context switch: not an easy shift to make. You first think
empirically, as a flow of values, then you must think declaratively, in a universal,

10

NL+SE Workshop Final Report

quantified way, to come up with assertions. Loop invariants is a hard problem.
Recently, work by Alex Aiken’s group using PAC learning (learning geometric
concepts) makes good progress on that.

Code contracts are used in OSS; developers tend to write pre-conditions, which are
easier to specify; postconditions are more difficult. Our take: it’s like writing unit tests,
but writing specifications.

The challenge here, where NLP might help, is in suggesting asserts, to alleviate the
annotation task. Daikon was mentioned a few times (a dynamic invariant Detector): It
invalidates invariants through dynamic executions. For this tool, invariant templates
were created by experts. We may use ML to learn possible invariants that are bespoke
for code base, and thus more likely to be interesting. A problem with Daikon is that it
finds many vacuous invariants (irrelevant to actual behavior of function). Another
issue is to suggest where to place them. They are probes to the state space; there may
be more natural places to put them than others. Places that are dominators in CFG for
instance; not necessarily obvious to human developers, but easy to find by compilers.

Talk by Daniel Tarlow - Microsoft Research in Cambridge, UK
Textual models of code: neural network probabilistic models

There is a specific class of language models that Tarlow had been trying on code that
seem to strike a balance between being relatively simple (hopefully) and flexible and
powerful enough to provide the benefits of NNLMs (neural network language models),
and also allow us to input some information specifically from source code (e.g.
tree-structure).

So why build models of source code? To create more “natural-looking” code. There are
often a great many solutions to a given programming problem, and we want the most
natural one. Any time you want to generate code that people will look at, you care
about generating natural code (obey conventions). We want to build models that
produce probability distributions of code that match real code.

To build good models, we should combine sample signals from programming text,
associated natural language, and dynamic program executions (a la Daikon).

11

http://theory.stanford.edu/~aiken/publications/papers/sas13.pdf

NL+SE Workshop Final Report

Ontologies and understanding of software
semantics
(Scribe: Zhilin Yang, (zhiliny@cs.cmu.edu))
(Organizers: Dana Movshovitz-Attias & Tao Xie)

Brief of Topic

The goal of this session (Slides, Video) was to discuss methodology for understanding
software semantics, with an emphasis on building structured data repositories for the
software domain, such as ontologies. The aim was to understand both the needs of the
Software Engineering community for structured understanding of software semantics,
as well as the available Machine Learning methods and their relevance to the SE
research needs. The long-term vision is that the multitude of existing data sources in
the software domain can benefit from structured semantic resources, and ultimately
also contribute to the development of improved structured learning methods.

The session was opened with a talk by Prof. Jane Cleland-Huang from DePaul
University, who introduced an approach for building an ontology which was used to
improve a traceability tool, DoCIT. The talk was followed by a discussion, which was
scribed by Zhilin Yang. There were several main topics touched on in the discussion.

The main talk presented a natural language interface for software questions, TiQi, a
traceability tool, DoCIT, and an ontology building method. TiQi processes natural
language and classifies tokens into predefined lexicons, and synthesizes SQL queries
based on the lexicons. DoCIT uses a transmissive-receptive heuristic to determine
whether a trace link exists between two software artifacts. The ontology building
approach leverages a trace matrix as distant supervision between software artifacts
and domain documents, and uses a classifier to combine results from various
extraction tools including topic models and association rules.

Topics from general discussion

Current use of ontologies in SE. Ontologies are currently being using in the SE
domain as a means of constraining the space search for specially-tailored SE tasks. The
ontologies that are commonly in use are very basic, for example, they do not include
an entity hierarchy, and are only used to assess pairwise, entity-to-entity subclass
relations. No other relations are currently explored. In comparison, richer ontologies
have been explored by NLP researchers, which include entity and concept hierarchies

12

mailto:zhiliny@cs.cmu.edu
http://research.microsoft.com/apps/video/dl.aspx?id=258055
http://www.cdm.depaul.edu/about/Pages/People/FacultyInfo.aspx?id=342
http://kimiyoung.github.io/

NL+SE Workshop Final Report

and a varied set of entity and concept pairwise relations, as well as general statistics of
the use of entities in relevant domain corpora.

Motivation for using ontologies. We had a discussion on the motivation for using
ontologies in the SE domain. Participants presented a preference for using flat
probabilistic relations (such as subclass, or similarity), rather than hierarchical ones.
However, while probabilistic relations can be used for finding statistically related
information, when we try to answer questions or provide decision support, we need
relations and formalism. This is where ontology building can be helpful. This
motivation needs to be reiterated and better demonstrated through task-based
examples. In other words, a collaboration between NLP and SE researchers is required,
in order to better demonstrate where ontologies can be helpful for SE tasks.

Paraphrasing. A critical challenge of ontology building is that people usually tend to
use different words even if they are referring to the same meaning. To address this
challenge during ontology building, we can apply paraphrasing between different
ontologies and expressions. Fuzzy matching can also be helpful. Word mismatch is a
common problem. For example, when we do question answering based on Freebase,
we need to reason over different representations of the same meaning.

Evolving terminology. A claim was made that code repositories and terminology are
evolving faster than natural language. Additionally, people in different organization, in
different contexts, use different terms for the same meaning. An important resource is
the discussion in forums such as StackOverflow, which we can use to track the
evolving terminology. We can look at the new terms to capture the underlying evolved
nature of software terminology.

Using NELL as an SE ontology. NELL operates on top of a manually-built input
ontology, and adds new facts to the existing ontology. The original ontology must be
initiated by a human. We need a good ontology to start, which requires expertise in
defining the relevant SE entities and relations. Once we have that, it is possible to use
NELL for growing the ontology. It is also very likely, that a single SE ontology will not
be relevant for all SE tasks.

Possible future directions. It is important to develop tools for ontology building for
the software domain. Since software engineering is a highly technical domain, a lot of
future tasks can benefit from the ontology. However, at this point in time, work on
automatic ontology development is only being done as part of NLP research.
Ontologies as a whole are not commonly used in SE and therefore no specific future
tasks has been enumerated, that can accommodate the future use on richer ontological
structures.

13

NL+SE Workshop Final Report

Summary and Recommendations

There is currently minimal use of ontologies for addressing SE tasks. The ontologies
being used are, in fact, pairwise subclass relations identified over software entities.
Meanwhile, NLP research provides the means for constructing richer ontologies,
including entity and concept hierarchies, a multitude of software relations, and
additional domain relevant statistics.

Importantly, there is a gap between the SE and NLP community in terms of the
motivation for using ontologies. Unfortunately, in this workshop, we did not fully
determine what are SE tasks that can directly benefit from the use of ontologies. This
seems to be an important starting point, necessary for moving this area forward. Once
specific tasks can be enumerated, then the needs and requirement of SE ontologies will
surface additional challenges in ontology construction and use. These can be a basis
for collaborations that will further both SE and NLP future research in semantic
understanding through ontologies.

Open ended challenges. The following is a summary of challenges that have been
identified with regards to ontology construction for the software domain:

- Identify SE tasks that can benefit the use of an ontology.
- Learning a set of rich entity-to-entity relations, beyond subclass relations.
- Using an automatically built ontology.
- What are the domains for which it is more appropriate to use ontologies over SE

entities (such as short nouns and noun phrases) versus longer phrases and
terms.

- Can NELL be used to build an SE ontology?
- Paraphrasing and soft-matching of ontology entities, during ontology generation

and use.
- Using StackOverflow to determine the evolving nature of software terminology.

14

NL+SE Workshop Final Report

Information Retrieval
(Organizers Denys Poshyvanyk & Dana Movshovitz-Attias)
(Scribe: Martin White, mgwhite@email.wm.edu)

Brief of Topic

The goal of this session (Slides, Video) was to discuss the use of Information Retrieval
(IR) technology in Software Engineering. The aim was to understand both the needs of
the Software Engineering community for handling unstructured data (e.g., text)
embedded in a multitude of software artifacts as well as the available Information
Retrieval and NLP methods and their relevance to the SE research needs. The
long-term vision is that the multitude of existing data sources in the software domain
can benefit from Information Retrieval and NLP techniques.

The session was opened with a talk by Prof. Andrian Marcus from the University of
Texas at Dallas, titled as “Using Text Retrieval in Software Engineering: An Overview”.
The talk overviewed major SE tasks currently supported by text retrieval (TR) methods
as well as the detailed description on how TR methods are currently used in SE
context. The talk concluded with an overview of crosscutting research problems and
open challenges. The talk was followed by a discussion, which was scribed by Martin
White.

The main talk started with a brief history of IR applications for SE tasks. Then the talk
reviewed a number of applications of text retrieval techniques for SE problems such as
restructuring and refactoring, software categorization, licensing analysis, clone
detection, effort estimation, use case analysis, traceability link recovery, feature
location, code reuse, bug triage, program comprehension, test case generation and
others. The talk highlighted two main uses of text retrieval techniques for SE tasks: (1)
formulate the SE task as a TR problem and (2) formulate the SE task as a text analysis
problem. The first option includes the following steps: (a) building a corpus from
software artifacts; (b) indexing a corpus using a given TR model; (c) formulating a
query (manual or automatic); (d) computing similarities between the query and the
documents in the corpus; (e) ranking the documents based on the similarities; (f)
returning the top N as the result list; (g) inspecting the results; (h) going back to (c) if
needed or stop. The second model, which involves formulating SE task as a text
analysis problem, includes the following steps: (a) building a corpus, (b) indexing a
corpus using a given TR method, (c) computing similarities between the documents in
the corpus, (d) defining the measures/metrics based on the similarities; and (e)
performing the analysis based on the obtained measures. The talk also presented
detailed examples of applying TR for SE tasks, such as concept location and conceptual

15

mailto:mgwhite@email.wm.edu
http://research.microsoft.com/apps/video/dl.aspx?id=258139
http://www.utdallas.edu/~amarcus/
http://www.cs.wm.edu/~mgwhite/
http://www.cs.wm.edu/~mgwhite/

NL+SE Workshop Final Report

cohesion measurement. The talk concluded with the discussion of crosscutting
research problems related to corpus building (identifier splitting, synonyms,
abbreviation expansion, using n-grams, term boosting), comparing and selecting TR
models (VSM, LDA, LSI, BM25, as well as configuration selection), incremental indexing
and vocabulary analysis, query formulation/reformulation, results presentation as well
as information integration with other sources of information such as structural (e.g.,
dependencies), dynamic (e.g., execution traces), process information. There were
several main topics touched on in the discussion.

Topics from general discussion

Information Retrieval (IR) metrics in SE research. The metrics are something that
we need to consider as a community rather than continue to see patterns of papers
that simply say “we used these metrics because these three papers used them too.”
There generally needs to be more context when settling on metrics for a particular
approach.

IR versus information extraction in SE research. There was a comment that what
we call IR in Software Engineering (SE) research is really information extraction.
Moreover, viewing SE problems as information extraction problems rather than
retrieval problems may yield new insights. Two possible explanations for this were
provided. First, the confusion between retrieval and extraction was due in part to
being ill-educated which the group generalized as a bias in SE research because SE
researchers have not had formal education in natural language processing (NLP).
Incidentally, this was a theme throughout the workshop. The second problem was
because SE researchers initially were concerned with distinguishing search and
retrieval when IR was first applied in SE contexts 15 years ago. There was no
consensus on whether the type of extraction we do in SE research is equivalent to
retrieval in the true NLP understanding.

Canonical methods versus formal methods. There was a question as to whether IR
in SE research as we know it is even the right problem formulation. Do we need a new
formalism, e.g., formal methods? However, the participants did not suggest any
alternative problem formulations.

FDA rules and regulations. The discussion was also steered toward understanding
specific SE problems where NLP can be brought to bear. One example was the FDA and
their rules and regulations for fusion pumps. How do they know whether they
extracted all of them? How do they know if two of them contradict each other? Can we
look at our arsenal to approach this research? These questions sparked the discussion
on the topics outlined below.

16

NL+SE Workshop Final Report

Requirements. A claim was made that requirements are still declarative and that
requirements and code are two different classes of text. Code describes the running
system, which is completely different text than requirements. Methods, which may be
a property of requirements analysis, may not be good for analyzing text.

Requirements documentation. Commenting on specific tasks, there was a suggestion
on the problem of ambiguity in requirements documents, however, it is still unknown
how statistical NLP would be able to tell when something in the requirements
documents does not mean what you think it means. A follow up discussion highlighted
that this is vagueness rather than ambiguity and then it was emphasized that the issues
are with interpreting different requirements. Another question was posed about
informal/formal requirements: Have theorem provers been applied to requirements
documentation to build a formal representation such that a prover can be run over it?
However, general discussion was that writing requirements in formal ways just does
not happen in industry; in other words industry prioritizes talking to the customer
over documentation. A follow up question about whether we can leverage formal
specifications so we can approximate the supervision signal was left open-ended.

Operational data. A claim was made that documentation is essentially operational
data. This is data that was left behind and not intended to support things like formal
methods whatsoever. In fact, we are in the text retrieval domain because we are
dealing with scraps. Our text is not necessarily for any of these tasks.

Grounded language. A remark was made that it is useful to think about grounded
language. Most NLP techniques will understand a sentence in isolation. It is worth
considering what a sentence means in a particular context. There are a lot of
opportunities between natural language understanding and the structure that code
provides.

What propagates to industry? A comment was made that performance is key but
understandability is also important. Moreover, statistical NLP is not completely
handcuffed in its ability to ease understanding. For a programmer, it may not be
necessary. However, most of the existing applications are generally tool-chains that not
only tell you what to change but also tell you how to change in the case of an impact
analysis problem. In other words, statistics will get you in the neighborhood and static
analysis will get you to where you need to go.

Summary and Recommendation

There is currently a serious interest in adapting Information Retrieval approaches for
solving SE problems. We had an active discussion that spanned a number of issues and
open-ended questions. The following is a summary of challenges and opportunities

17

NL+SE Workshop Final Report

that have been identified with regards to applications of Information Retrieval for
Software Engineering tasks:

● Combination with NLP;
● Matching tools/techniques to the task;
● Better evaluation mechanisms/research community standards;
● Data availability;
● Tool integration, optimization and user studies;
● Education and Infrastructure building.

18

NL+SE Workshop Final Report

Language Generation from Code
(Organizers: Dawn Lawrie & Graham Neubig)
(Scribe: Vincent Hellendoorn, vhellendoorn@live.nl)

Brief of Topic

This session (slides, video) covered methods to generate natural language descriptions
of source code. These methods have been the subject of study within the SE
community, and are often called “code summarization” methods, as they can create a
concise natural language description of a body of code for more efficient developer
perusal. Recently there have also been a few methods based on machine
learning-based natural language processing techniques. This session discussed the
current state of these methods, and where they should be going in the future.

The session was opened with a talk by Graham Neubig from the Nara Institute of
Science and Technology, who did a survey of the state of the art in this field, followed
by an open discussion. The session was scribed by Vincent Hellendoorn.

State of the Art in Code->NL Generation

The main talk presented a survey of the state of the art in the field, and the slides and
video are openly available online. It covered approaches in the scientific literature to
the generation of natural language from code and included a number of distinctions
that can be made between the various methods.

● Type of generated language: Most natural language generation focuses on
“code summarization,” attempting to generate concise summaries of code blocks
to make them easier to understand quickly. There is also work on pseudocode
generation for beginner programmers, or method name generation.

● Level of granularity of code: There are methods to generate descriptions for
variables, lines of code, functions, classes, commits, and multiple-file code
concerns.

● Generation methods: Many methods are rule-based, but there are also
data-driven methods based on information retrieval, machine translation, or
neural networks.

● Evaluation methods: We can evaluate how good the summary is itself (intrinsic
evaluation), or how much it helps with an external task.

● Available data sources: For data-driven methods, data is necessary. There have
been some works harvesting data from stack overflow, or from comments

19

http://www.cs.loyola.edu/~lawrie/
http://www.phontron.com/
http://research.microsoft.com/apps/video/dl.aspx?id=258062
http://www.phontron.com/

NL+SE Workshop Final Report

within code. There is also a set of line-by-line code/comment pairs created by
hand.

Discussion Topics

Task-specificity: It is very important to think of what we’ll use a code summary for
when generating it. Collin McMillan noted that descriptions written for programmers
and descriptions written for end-users will be very different, and Dawn Lawrie noted
that even for programmers there are different roles such as testers or API users.

Example tasks: Some specific uses of code summaries were discussed. Moving beyond
a line-by-line summary, there was discussion of generating summaries for developers
versus end-users. The first line of a git commit can be an example of a natural
language summary that describes the differences contained in the commit, as noted by
Abram Hindle. An example of a summary where models do not currently exist is a
tool-tip for method summaries in an IDE like Eclipse. Earl Barr notes that summaries
could help developers build mental models of code more quickly. Automatically
generating comments for code is also important because, as noted by Denys
Poshyvanyk, code is modified much more frequently then the associated comments;
thus, they decay quickly. Turning to the end-user, one type of useful summary is
release notes. Andrian Marcus noted that new features, permissions, and licensing
might all be summarized. Baishakhi Ray commented that code summarization could
have a big effect on security policy, referencing a 2015 ICSE paper on information flow,
which tracked Android applications to see how processes communicate and whether
they may violate policy.

Other methods for achieving similar goals: Prem Devanbu noted that Charles
Sutton’s group has proposed methods for auto-folding uninteresting methods in source
code, Collin McMillan noted methods for generating API usage patterns, and Abram
Hindle noted code diffs. These do not require natural language, but can achieve similar
goals and are interesting in their own right. Also, Sol Greenspan noted that in MDSD
environments, if the model is specified properly comments may not be necessary.

Can we discriminate between good and bad natural language descriptions?: There
was some interested on the software engineering side expressed by Collin McMillan
about ways to discriminate whether a software description was a good one or a bad
one. Nate Kushman said that our standard tool here would be language models, and
Graham Neubig and Chris Quirk noted that there are many types of features you can
use in language models depending on what you want to capture. Denys Poshyvanyk
noted that one problem is that comments tend to go stale, so it would be nice if we
could verify them.

20

http://www.cse.nd.edu/~cmc/
http://softwareprocess.es/
http://earlbarr.com/
http://www.cs.wm.edu/~denys/
http://www.cs.wm.edu/~denys/
http://www.utdallas.edu/~amarcus/
http://rayb.info/
https://www.nsf.gov/mobile/staff/staff_bio.jsp?lan=sgreensp&org=CCF&from_org=

NL+SE Workshop Final Report

What kinds of context do we need to condition on?: Sol Greenspan noted that
domain knowledge is extremely important when generating documents.

How could we get data for training machine learning models?: Andrian Marcus
noted that there are many source for data, including descriptions of methods, stack
overflow, and release notes. Many people noted that some projects have excellent
comments, such as the aTunes project, parts of the Linux Kernel, and Google projects
that have been open sourced. Graham Neubig notes that the data often needs to be
“clean”, in the sense that most of the content must be reflected in both the code and the
natural language, and Dana Movshovitz-Attias noted that “clean” is still difficult to
define and perhaps task specific. Sonia Haduc noted that there is a new stack overflow
project “Warriors of Documentation” that may be very useful for this.

Can we handle edge/corner cases?: Nate Kushman noted that cases that are unusual
may actually be of more value to document, but it’s not easy to generate these.

Summary and Recommendations

In short, the main topics of discussion focused on “why we generate language from
code,” “how we obtain data for training models,” “whether there are other methods to
achieve the same goal,” and “whether existing natural language descriptions can be
verified.” Based on the discussion, we can make the following recommendations:

● It is important to keep the task in mind when generating data from code, in
particular whether the descriptions will be generated for developers or end
users, and adjust the strategy based on this.

● We can also consider other methods for achieving the same goal, such as hiding
pieces of code that are not relevant, or showing usage patterns.

● Many noted the potential of stack overflow or comments to generate data, but
many other forms of developer activity are interesting as potential targets.

● It will be best to think about not only language generation, but also language
verification, particularly in the case of stale or incomplete comments.

21

https://www.cs.fsu.edu/~shaiduc/

NL+SE Workshop Final Report

Natural Language Programming and Semantic
Parsing
(Organizers: Ray Mooney & Chris Quirk)
(Scribe: Gagan Bansal bansalg@cs.washington.edu)

Brief of Topic

This session (Slides, Video, Second Part) discussed progress and future work on the
challenging problem of translating user instructions in natural language to executable
computer code. In NLP, the subarea of semantic parsing has studied the problem of
mapping natural language to a formal representation of its meaning. The majority of
the work in this area has been on understanding database queries; however, there has
been relatively little work on other types of programs. The session was organized as a
series of short 5 minute talks by all panel members, including Ray Mooney, Chris
Quirk, Gagan Bansal, Yoav Artzi, Percy Liang, Srini Iyer, Nate Kushman, and Yi Wei.

Mooney briefly introduced the NLP work on semantic parsing, focusing on the role of
using machine learning methods to induce semantic parsers from corpora of natural
language sentences paired with their formal language translations. Quirk described a
recent project with Mooney and Michel Galley on mapping natural language
descriptions of simple “If This Then That” scripts to code, using a corpus of over 100K
examples collected from ifttt.com. Bansal discussed his on-going work with Dan Weld
on this same corpus, exploiting text from the IFTTT API documentation to improve the
interpretation of these short program descriptions. Artzi and Liang briefly described
their work on semantic parsing, which has mostly focussed on interpreting natural
language queries to FreeBase. Iyer discussed approaches to generate natural language
descriptions of SQL queries. Kushman described his work on interpreting operating
system instructions and regular-expression descriptions, focusing on the importance of
handling non-compositionality, in which there is no direct mapping from words and
phrases to program constructs. Wei discussed methods for searching over code
snippets and synthesizing code snippets given natural language descriptions.

Other items from discussion

There was discussion of what application domains were most suited for natural
language programming. End-user development of short programs such as scripts for
spreadsheets or data analytics was considered a good application. For for more
professional programmers, areas such as model-driven engineering and generation of
program assertions for use in verification and debugging were discussed.

22

https://www.cs.utexas.edu/~mooney/
http://research.microsoft.com/en-us/people/chrisq/
https://www.linkedin.com/in/gaganbansal
http://research.microsoft.com/apps/video/dl.aspx?id=258139
http://yoavartzi.com/
http://cs.stanford.edu/~pliang/
http://sviyer.cs.washington.edu/
http://people.csail.mit.edu/nkushman/
http://research.microsoft.com/jump/141729

NL+SE Workshop Final Report

Programmers may write more assertions and other annotations useful for program
analysis if they are provided with a natural language input mechanism.

Training natural language programming systems requires relevant large “parallel
corpora” of NL descriptions and programs, which can be difficult to find or construct.
Unsupervised approaches such as Unsupervised Semantic Parsing may be useful in
reducing the amount of supervision required. Alternate supervision signals such as
input/output examples may also help; NL programming can be combined with
programming by demonstration.

Most current approaches use single user inputs. Often a single turn is insufficient to
describe program intent. Using dialog strategies for correcting and refining intent will
likely be important, but poses difficulties for data driven settings as the problem space
becomes larger. On a related note, users must often check and correct the resulting
code. Systems must provide some representation of the program for the user to
inspect, and likely provide debugging tools.

To address the issue that programs may not be directly compositional from natural
language, it might be best to first map natural language into a domain-independent
formal logical language, and then separately learn to map this intermediate
representation into a final program. One candidate language is Abstract Meaning
Representation (AMR), a recent focus in the NLP community.

Automatic evaluation is a major consideration. NL approaches like BLEU are attractive
for speed of evaluation and tool availability, but do not measure syntactic
well-formedness, much less semantic correctness. That said, fast but imperfect
measure helped drive some of the largest progress in a number of NLP areas over the
past decade.

Summary and Recommendations

Research in mapping language to code (and code to language) is made more difficult by
the lack of annotated data resources. Syntactic parsing, semantic parsing, and machine
translation all made great strides as more data became available. That said, it is not
obvious which domains will be tractable and see the greatest gains in the short to
medium term.

We encourage the creation of curated resources that are suitable for pilot studies.
Rather than annotating millions of instances, many projects can be explored with only
hundreds or thousands of training instances. The GEOQUERY dataset spurred a broad
range of research even though it had approximately one thousand natural and formal
language pairs. As a starting point, the community could construct parallel sets of code

23

NL+SE Workshop Final Report

assertions and their descriptions, or natural language descriptions of formal
requirements.

Additionally, we might curate a small set of comment-code pairs. The relationship
between the code and the comment could be identified (is the comment explanatory,
redundant, inconsistent, etc.). Building accurate classifiers of comment intent is an
interesting problem itself, and could also lead to better parallel code/comment data.

Given a few benchmark tasks, the community next needs to standardize on evaluation
metrics. Ideally there would be both fast automatic metrics amenable to optimization,
and slow but accurate metrics potentially with a human in the loop. This combination
allows for fast daily progress and incremental research while retaining a long term
focus on utility.

Deeper annotation of these resources could also be useful. The natural language
utterances could be annotated with gold standard syntactic or even semantic parses
(according to the Abstract Meaning Representation specification, for instance).
Performing this annotation on a few thousand sentences would allow domain
adaptation and evaluation work. Likewise the code could be annotated with abstract
syntax trees, program analysis information, or whatever resources are readily
available.

Finally, we need a good means of disseminating information to the community. There
are already several important resources, such as the Stack Overflow data. We should
maintain a website or wiki that allows community members to identify and update
datasets, benchmarks, and key implementations.

24

NL+SE Workshop Final Report

Closing Session

The closing session was dominated by a discussion of available, as well as desirable
resources, datasets and challenges that are available to researchers interested to
explore this area further.

The full spreadsheet is publicly available.

Conclusion and Acknowledgements

Recent research has exposed the repetitive, predictable nature of software, and the
utility of statistical models in both improving the performance of traditional software
tools, and in facilitating new types of tools. This interdisciplinary research program
requires deep skills in both software engineering and statistical natural language
processing. This workshop was organized to bring together two communities that in
the past have had limited interactions. The workshop began with two tutorials, one by
an SE researcher on “big-data” approaches in software engineering, and another, by an
NLP researcher, on the foundations and achievements of statistical NLP. Over two
following days, a variety of topics were discussed by the attendees over several
sessions. Each session began with a “mood setting” talk, and was followed by active
and vigorous discussions. The document above provides links to slides and videos
(graciously made available by the speakers, and recorded and made available through
the auspices of Microsoft Research).

The organizers of the workshop gratefully acknowledge support from Microsoft
Research for the use of their excellent conference facilities, and also generous support
provided for meals, local transportation, and refreshments for attendees. We gratefully
acknowledge support from the National Science Foundation (Award Number: 1551318)
which provided travel support for all attendees.

25

https://docs.google.com/spreadsheets/d/1d6S2JO-AtNpvTwClbvUs_MgfyChvc-mIDb4AHygPDQU/edit?usp=sharing

NL+SE Workshop Final Report

Bibliography of the Area
[1] A. Aiken. MOSS. Accessed 2015/05/31.
[2] Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. Lafferty, D. Melamed, F.-J. Och, D.

Purdy, N. A. Smith, and D. Yarowsky. Statistical machine translation. In Final
Report, JHU Summer Workshop, volume 30, 1999.

[3] M. Allamanis and E. AC. Bimodal modelling of source code and natural language. In
Proceedings of The 32nd International Conference on Machine Learning, pages
2123–2132, 2015.

[4] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning natural coding
conventions. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2014, pages 281–293, New York, NY,
USA, 2014. ACM.

[5] M. Allamanis and C. Sutton. Mining source code repositories at massive scale using
language modeling. In Mining Software Repositories (MSR), 2013 10th IEEE
Working Conference on, pages 207–216. IEEE, 2013.

[8] M. Allamanis and C. Sutton. Mining idioms from source code. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 472–483, New York, NY, USA, 2014. ACM.

[9] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro. The plastic surgery
hypothesis. In 22nd ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE 2014), Hong Kong, volume 16, 2014.

[10] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language
model. The Journal of Machine Learning Research, 3:1137–1155, 2003.

[11] S. Bird, E. Klein, and E. Loper. Natural language processing with Python. ” O’Reilly
Media, Inc.”, 2009.

[12] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. The mathematics of
statistical machine translation: Parameter estimation. Computational linguistics,
19(2):263–311, 1993.

[13] M. Bruch, M. Monperrus, and M. Mezini. Learning from examples to improve code
completion systems. In Proceedings of the the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC/FSE ’09, pages 213–222, New York, NY,
USA, 2009. ACM.

[14] J. C. Campbell, A. Hindle, and J. N. Amaral. Python: Where the mutants hide or,
corpus-based coding mistake location in dynamic languages.

[15] J. C. Campbell, A. Hindle, and J. N. Amaral. Syntax errors just aren’t natural:
improving error reporting with language models. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pages 252–261. ACM, 2014.

26

https://theory.stanford.edu/~aiken/moss/

NL+SE Workshop Final Report

[16] D. Cer, M. Galley, D. Jurafsky, and C. D. Manning. Phrasal: A statistical machine
translation toolkit for exploring new model. Proceedings of the NAACL HLT 2010
Demonstration Session, pages 9–12, 2010.

[17] C. Chelba and F. Jelinek. Exploiting syntactic structure for language modeling. In
Proceedings of the 36th Annual Meeting of the Association for Computational
Linguistics and 17th International Conference on Computational
Linguistics-Volume 1, pages 225–231. Association for Computational Linguistics,
1998.

[18] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for
language modeling. In Proceedings of the 34th Annual Meeting on Association for
Computational Linguistics, ACL ’96, pages 310–318, Stroudsburg, PA, USA, 1996.
Association for Computational Linguistics.

[19] D. Chollak. Software bug detection using the n-gram language model. 2015.
[20] R. Collobert and J. Weston. A unified architecture for natural language processing:

Deep neural networks with multitask learning. In Proceedings of the 25th
international conference on Machine learning, pages 160–167. ACM, 2008.

[23] A. Dekhtyar and J. H. Hayes. Good benchmarks are hard to find: Toward the
benchmark for information retrieval applications in software engineering. 2006.

[24] S. Della Pietra, V. Della Pietra, R. L. Mercer, and S. Roukos. Adaptive language
modeling using minimum discriminant estimation. In Proceedings of the
workshop on Speech and Natural Language, pages 103–106. Association for
Computational Linguistics, 1992.

[26] J.-M. Favre, D. Gasevic, R. L¨ammel, and E. Pek. Empirical language analysis in
software linguistics. In Software Language Engineering, pages 316–326. Springer,
2011.

[28] J. Fowkes, R. Ranca, M. Allamanis, M. Lapata, and C. Sutton. Autofolding for source
code summarization. arXiv preprint arXiv:1403.4503, 2014.

[29] C. Franks, Z. Tu, P. Devanbu, and V. Hellendoorn. Cacheca: A cache language
model based code suggestion tool. ICSE Demonstration Track, 2015.

[30] M. Gabel and Z. Su. A study of the uniqueness of source code. In SIGSOFT FSE,
pages 147–156, 2010.

[31] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On the use of automated text
summarization techniques for summarizing source code. In Reverse Engineering
(WCRE), 2010 17th Working Conference on, pages 35–44. IEEE, 2010.

[33] S. Han, D. R. Wallace, and R. C. Miller. Code completion from abbreviated input. In
Automated Software Engineering, 2009. ASE’09. 24th IEEE/ACM International
Conference on, pages 332–343. IEEE, 2009.

[34] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and J. A. Clark. The
gismoe challenge: Constructing the pareto program surface using genetic
programming to find better programs (keynote paper). In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2012, pages 1–14, New York, NY, USA, 2012. ACM.

27

NL+SE Workshop Final Report

[35] V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli. Will they like this? evaluating
code contributions with language models. MSR, 2015,

[36] R. Hill and J. Rideout. Automatic method completion. In Automated Software
Engineering, 2004. Proceedings. 19th International Conference on, pages 228–235.
IEEE, 2004.

[37] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu. On the naturalness of
software. In Proceedings of ICSE 2012 (34th International Conference on Software
Engineering), pages 837–847, 2012.

[38] R. Holmes and G. C. Murphy. Using structural context to recommend source code
examples. In Proceedings of the 27th international conference on Software
engineering, pages 117–125. ACM, 2005.

[39] C.-H. Hsiao, M. Cafarella, and S. Narayanasamy. Using web corpus statistics for
program analysis. In Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA ’14,
pages 49–65, New York, NY, USA, 2014. ACM.

[40] F. Jacob and R. Tairas. Code template inference using language models. In
Proceedings of the 48th Annual Southeast Regional Conference, page 104. ACM,
2010.

[41] F. Jelinek, J. D. Lafferty, and R. L. Mercer. Basic methods of probabilistic context
free grammars. Springer, 1992.

[42] D. Jurafsky and H. James. Speech and language processing an introduction to
natural language processing, computational linguistics, and speech. 2000.

[43] S. Karaivanov, V. Raychev, and M. Vechev. Phrase-based statistical translation of
programming languages. In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software, pages 173–184. ACM, 2014.

[44] G. Karypis. Evaluation of item-based top-n recommendation algorithms. In
Proceedings of the tenth international conference on Information and knowledge
management, pages 247–254. ACM, 2001.

[45] B. Kitchenham. Procedures for performing systematic reviews. Keele, UK, Keele
University, 33(2004):1–26, 2004.

[46] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman.
Systematic literature reviews in software engineering a systematic literature
review. Information and Software Technology, 51(1):7 – 15, 2009. Special Section -
Most Cited Articles in 2002 and Regular Research Papers.

[47] B. A. Kitchenham, T. Dyba, and M. Jorgensen. Evidence-based software
engineering. In Proceedings of the 26th international conference on software
engineering, pages 273–281. IEEE Computer Society, 2004.

[48] R. Kneser and H. Ney. Improved backing-off for m-gram language modeling. In
Acoustics, Speech, and Signal Processing, 1995. ICASSP- 95., 1995 International
Conference on, volume 1, pages 181–184. IEEE, 1995.

[49] K. Knight. A statistical mt tutorial workbook, 1999.
[50] P. Koehn. Statistical machine translation. Cambridge University Press, 2009.

28

NL+SE Workshop Final Report

[51] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method for
automatic software repair. Software Engineering, IEEE Transactions on,
38(1):54–72, 2012.

[52] K.-F. Lee, H.-W. Hon, and R. Reddy. An overview of the sphinx speech recognition
system. Acoustics, Speech and Signal Processing, IEEE Transactions on, 38(1):35–45,
1990.

[53] C. J. Maddison and D. Tarlow. Structured generative models of natural source
code. arXiv preprint arXiv:1401.0514, 2014.

[54] K. Mao, L. Capra, M. Harman, and Y. Jia. A survey of the use of crowdsourcing in
software engineering. RN, 15:01, 2015.

[55] A. Marcus and J. I. Maletic. Recovering documentation-to-sourcecode traceability
links using latent semantic indexing. In Software Engineering, 2003. Proceedings.
25th International Conference on, pages 125–135. IEEE, 2003.

[56] M. Martinez, W. Weimer, and M. Monperrus. Do the fix ingredients already exist?
an empirical inquiry into the redundancy assumptions of program repair
approaches. In Companion Proceedings of the 36th International Conference on
Software Engineering, pages 492–495. ACM, 2014.

[57] T. Mikolov, M. Karafi´at, L. Burget, J. Cernock`y, and S. Khudanpur. Recurrent
neural network based language model. In INTERSPEECH 2010, 11th Annual
Conference of the International Speech Communication Association, Makuhari,
Chiba, Japan, September 26-30, 2010, pages 1045–1048, 2010.

[58] L. D. Misek-Falkoff. The new field of “software linguistics”: An earlybird view. In
Selected Papers of the 1982 ACM SIGMETRICS Workshop on Software Metrics: Part
1, SCORE ’82, pages 35–51, New York, NY, USA, 1982. ACM.

[59] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang. Tbcnn: A tree-based convolutional
neural network for programming language processing. arXiv preprint
arXiv:1409.5718, 2014.

[60] L. Mou, G. Li, Y. Liu, H. Peng, Z. Jin, Y. Xu, and L. Zhang. Building program vector
representations for deep learning. arXiv preprint arXiv:1409.3358, 2014. 2014.

[61] D. Movshovitz-Attias and W. W. Cohen. Natural language models for predicting
programming comments. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 35–40,
Sofia, Bulgaria, August 2013. Association for Computational Linguistics.

[62] H. Murakami, K. Hotta, Y. Higo, and S. Kusumoto. Predicting next changes at the
fine-grained level.

[63] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. Statistical learning
approach for mining api usage mappings for code migration. In Proceedings of the
29th ACM/IEEE International Conference on Automated Software Engineering, ASE
’14, pages 457–468, New York, NY, USA, 2014. ACM.

[64] A. T. Nguyen and T. N. Nguyen. Graph-based statistical language model for code.
[65] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen, J. Al-Kofahi,

and T. N. Nguyen. Graph-based pattern-oriented, context-sensitive source code

29

NL+SE Workshop Final Report

completion. In Proceedings of the 34th International Conference on Software
Engineering, pages 69–79. IEEE Press, 2012.

[66] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Lexical statistical machine
translation for language migration. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pages 651–654. ACM, 2013.

[67] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan. A study of
repetitiveness of code changes in software evolution. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, pages
180–190. IEEE, 2013.

[68] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic
language model for source code. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pages 532–542. ACM, 2013.

[69] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen.
Graph-based mining of multiple object usage patterns. In Proceedings of the the
7th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pages 383–392.
ACM, 2009.

[70] E. Nilsson. Abstract syntax tree analysis for plagiarism detection. 2012.
[71] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia. How

to effectively use topic models for software engineering tasks? an approach based
on genetic algorithms. In Proceedings of the 2013 International Conference on
Software Engineering, pages 522–531. IEEE Press, 2013.

[72] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on
association for computational linguistics, pages 311–318. Association for
Computational Linguistics, 2002.

[73] A. Pauls and D. Klein. Large-scale syntactic language modeling with treelets. In
Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1, pages 959–968. Association for Computational
Linguistics, 2012.

[74] J. Y. Poon, K. Sugiyama, Y. F. Tan, and M.-Y. Kan. Instructor-centric source code
plagiarism detection and plagiarism corpus. In Proceedings of the 17th ACM
annual conference on Innovation and technology in computer science education,
pages 122–127. ACM, 2012.

[75] M. Post and D. Gildea. Bayesian learning of a tree substitution grammar. In
Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 45–48.
Association for Computational Linguistics, 2009.

[76] B. Ray, V. Hellendoorn, Z. Tu, C. Nguyen, S. Godhane, A. Bacchelli, and P. Devanbu.
On the “naturalness” of buggy code. 2015 (in submission).

[77] B. Ray, M. Nagappan, C. Bird, N. Nagappan, and T. Zimmermann. The uniqueness
of changes: Characteristics and applications. Technical report, Microsoft Research
Technical Report, 2014.

30

NL+SE Workshop Final Report

[78] V. Raychev, M. Vechev, and A. Krause. Predicting program properties from big
code. In Proceedings of the 42nd Annual ACM SIGPLANSIGACT Symposium on
Principles of Programming Languages, pages 111–124. ACM, 2015.

[79] V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical language
models. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, page 44. ACM, 2014.

[80] R. Robbes and M. Lanza. How program history can improve code completion. In
Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM International
Conference on, pages 317–326. IEEE, 2008.

[81] R. Rosenfeld. A maximum entropy approach to adaptive statistical language
modelling. Computer Speech & Language, 10(3):187–228, 1996.

[82] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for
document fingerprinting. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 76–85. ACM, 2003.

[83] P. Schulam, R. Rosenfeld, and P. Devanbu. Building statistical language models of
code. In Data Analysis Patterns in Software Engineering (DAPSE), 2013 1st
International Workshop on, pages 1–3. IEEE, 2013.

[84] C. Shah and W. B. Croft. Evaluating high accuracy retrieval techniques. In
Proceedings of the 27th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 2–9. ACM, 2004.

[85] Y. Shi, P. Wiggers, and C. M. Jonker. Towards recurrent neural networks language
models with linguistic and contextual features. In INTERSPEECH, 2012.

[86] S. E. Sim, S. Easterbrook, and R. C. Holt. Using benchmarking to advance research:
A challenge to software engineering. In Proceedings of the 25th International
Conference on Software Engineering, pages 74–83. IEEE Computer Society, 2003.

[87] J. ´ Sliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In
MSR, pages 1–5, 2005.

[88] G. Sridhara, V. S. Sinha, and S. Mani. Naturalness of natural language artifacts in
software. In Proceedings of the 8th India Software Engineering Conference, ISEC
’15, pages 156–165, New York, NY, USA, 2015. ACM.

[89] A. Stolcke, C. Chelba, D. Engle, V. Jimenez, L. Mangu, H. Printz, E. Ristad, R.
Rosenfeld, et al. Dependency language modeling. 1997.

[90] A. Stolcke et al. Srilm-an extensible language modeling toolkit. In INTERSPEECH,
2002.

[91] P. Tonella, R. Tiella, and C. D. Nguyen. Interpolated n-grams for model based
testing. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 562–572, New York, NY, USA, 2014. ACM.

[92] Z. Tu, Z. Su, and P. Devanbu. On the localness of software. In Proceedings of FSE
2012 (20th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering), pages 269–280. ACM, 2014.

[93] M. Velez, D. Qiu, Y. Zhou, E. T. Barr, and Z. Su. A study of” wheat” and” chaff” in
source code. arXiv preprint arXiv:1502.01410, 2015.

31

NL+SE Workshop Final Report

[94] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk. Toward Deep
Learning Software Repositories. In Mining Software Repositories (MSR), 2015 12th
IEEE Working Conference on, volume 1, page 1, 2015.

[95] A. T. Ying and M. P. Robillard. Selection and presentation practices for code
example summarization. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 460–471. ACM, 2014.

[96] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Mining api mapping
for language migration. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages 195–204. ACM, 2010.

[97] Movshovitz-Attias, Dana, and William W. Cohen. "KB-LDA: Jointly Learning a
Knowledge Base of Hierarchy, Relations, and Facts."

[98] Oda, Yusuke, et al. "Learning to Generate Pseudo-code from Source Code using
Statistical Machine Translation."

[99] Drummond, Anna, et al. "Learning to Grade Student Programs in a Massive Open
Online Course." Data Mining (ICDM), 2014 IEEE International Conference on. IEEE,
2014.

[100] Piech, Chris, et al. "Learning program embeddings to propagate feedback on
student code." arXiv preprint arXiv:1505.05969 (2015).

32

