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Introduction 

A workshop on the application of Statistical NLP Methods to Software Artifacts was 
held at Microsoft Research during Oct 25, 26, and 27th. The goals of the workshop were 
to explore current research and future directions on the following topics:  
 

1. “Big Code” data, such as Gigatoken Code Corpora (with change history, bug 
reports,  Q&A, comments) are now available. The statistics in these corpora 
resemble those of NL Corpora. How can this be exploited? 
 

2. How can NLP approaches aimed at generating formal representations of natural 
language be exploited in software? 

 
The expected outcomes of the workshop were a report summarizing the discussions, 
and a “wish list” of things to help impulse research in the area, including datasets, 
competitions, collaborations, etc.  
 
While there has been considerable interest in applying NLP methods to software in the 
past, to our knowledge, this was the first time that a significant, large number of NLP 
researchers with a strong statistical focus had a chance to interact closely with 
software engineering researchers, and hear first-hand the problems that are faced in 
this area.  
 
This workshop was jointly sponsored by Microsoft Research and the U.S. National 
Science Foundations. There were 43 attendees, including 6 students, and 8 
international participants.  

Warm-up: Tutorials 
This was a “first contact” workshop. For many of the Software Engineering and NLP 
researchers, this was the first time that they directly interacted with researchers from 
the other discipline. To facilitate the interaction, we arranged two broad, introductory 
tutorials. One tutorial covered methods in statistical language processing and language 
modeling by Dr. Ashish Vaswani from USC/ISI. The other, on Software data and 
software mining, was presented by Prof. Tao Xie from University of Illinois.  The 
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tutorials were very well attended. Slides from both Tao Xie’s and Ashish Vaswani’s 
lectures are available. Videos (Vaswani, Xie) are also available.  

Software Tools and Processes 
(Organizers: Premkumar Devanbu & Chris Quirk) 
(Scribe: Jennifer D’Souza) 

This early session was aimed at setting the theme for the workshop; it began with a 
keynote presentation by Prof. Charles Sutton, a leading researcher in this area. Slides 
and video for this presentation are kindly made available by Prof. Sutton, under the 
auspices of Microsoft Research. The presentation covered the beginnings of research in 
the area, as well as a round-up of the current research, and presented a vision for 
future work. This was followed by a discussion, which was scribed by Dr Jennifer 
D’Souza. There were several main topics touched on in the discussion.  

Talk Summary 

Prof Sutton’s tak introduced the area with the claim that “Source code is a means of 
human communication”: code is an intentional act of one developer to communicate 
with another, about design, rationale, usability etc. With this “speech act”, a developer 
aims to make their code more maintainable, reusable etc. Certainly, 
developer-to-developer communication occurs over a variety of online media, 
including version control systems, email, chat-groups, on-line fora, social coding 
websites, and such. 

The talk then listed some analogies between a wide range of NLP-related tasks and 
corresponding software engineering talks. A full list is best viewed in the video, but 
representative analogies include NLP translation to  Code porting, and spelling and 
grammar correction to code patching.  
 
The middle part of the talk surveyed a range of current research achievements in the 
application of NLP methods to code, including research at Edinburgh (Sutton, 
Allamanis), UCL (Earl Barr), UC Davis (Devanbu), ETH (Vechev)  and Alberta (Hindle).  
 
The talk concluded with a call for a more empirical, data-driven perspective on 
software engineering problems: rather than exclusively focusing on formal abstraction 
as a means of retreating from the “undecidability bottleneck” of deriving sound & 
complete program properties, Sutton suggests a “statistical retreat” based on models 
estimated from large corpora, that use inductive bias to capture the typical, “natural” 
patterns latent in large corpora. He also suggested another view of “naturalness”: that 
code in which latent, deep, semantic properties are evident from surface-level 
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properties are easier for humans to read and understand, and perhaps also are more 
amenable to hybrid statistical-formal methods analysis.  
 
Following the keynote, there was a wide-ranging discussion on the general area, which 
we group into topics as follows.  

Problems Yet to be Explored 

The discussion began with a call for interesting future topics for study. A number of 
topics arose.  
 

1. Surpassing Humans. Tao Xie speculated whether (statistical) AI methods could 
surpass human performance, specifically, in the area of constructing revealing 
test cases that could expose defects.  
 

2. Program Repair/Fault Localization. Abram Hindle mentioned that language 
models can locate the precise source of syntax errors in programs, which 
compilers can often find difficult to diagnose. There was also discussion about 
how language models might promote the discovery of more “natural” repairs to 
errors, both syntactic and otherwise.  
 

3. The “Essence” of Programs. Zhendong Su asked if  statistical models be used to 
identify the “essence” of programs, by enabling the culling of those parts which 
are repetitive, formulaic, or redundant (such as variable names). The relevance 
of the “sloppy programming” project was discussed, where the scaffolding of 
programs could be automatically generated around some human-supplied 
essentials.  
 

4. Specification-conformant programs. Graham Neubig wondered whether a 
program generated from a natural language specification could somehow be 
checked against the natural language specification for correctness, perhaps by 
also generating a formal specification from the natural language description.  

The Creation of Datasets 

There was considerable interest in the challenges and availability of datasets. There 
were two main topics that were discussed: parallel code/NL datasets, and the use of 
Mechanical Turk to create data. 
  
Parallel, aligned corpora of Code & Natural Language. There was strong interest in 
the possible availability of aligned code/natural language corpora, where “the code 
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does exactly what the natural language says” (Graham Neubig). Several possible 
sources of such data were suggested:  
 

1. RosettaCode. A “chrestomathy” of code, in different languages, accompanied by 
english descriptions.  

2. JPetStore. A particularly well-documented and commented 3-tier system.  
3. iPython notebooks. These are a very popular platform for literate programming, 

where code is accompanied by descriptions of its function, and sample inputs 
and outputs.  
 

Mechanical Turk for dataset creation. While the utility of some these corpora was 
acknowledged, there was interest in a broader set of more closely aligned sources. This 
gave rise to a discussion on creating/curating datasets with manual effort; thus 
Mechanical Turk arose as a natural option, and considerable discussion ensued.  
 

1. Several researchers (Dawn Lawrie, Collin McMillan, Nate Kushman) described 
difficulties with using Turkers, specially in finding people qualified for 
code-related tasks.  

2. Kushman noted that the direction of the task (code->English vs. English->Code) 
matters. The summarizing task (Code->English) gave rise to unnatural 
annotations, whereas the reverse (Code from english descriptions) proved quite 
amenable to this setting; they had good luck with the ODesk Platform in this 
setting, relative to Amazon’s mTurk. Movshovitz-Attias also reported good 
experience with using mTurk for relation labeling  

3. Luke Zettlemoyer noted that task-definition when involving humans to produce 
a supervisory dataset is critical:  e.g.,  for the code->English task, the word-count 
budget given to human Turker would be critical.  

4. The question of qualifying Turkers was viewed as critical, to avoid spamming; 
Chris Quirk speculated that educational settings might be a better way for 
low-cost supervisory data creation. Nate Kushman observed that providing 
enhanced incentives might motivate people to the aquire a higher-level of skill 
required for high-fidelity task completion.  

 
  
Software Dataset Challenges. Danny Tarlow noted the challenges non-experts in 
software engineering face when accessing richer forms of representation of code. He 
mentioned that if one knew how to query static analysis tools, compilers and such 
other tools that could produce different representations of software, the resulting data 
could be used to facilitate machine learning and the building of machine learning 
models. However, he mentioned that the know-how around using these tools was one 
area of entry that kept non-experts in software engineering from attacking software 
engineering problems and from using more sophisticated methods than just 
token-level information. So he said that along with releasing the source code, it might 
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also be useful to consider releasing other kinds of information along with it. It was 
observed that the BOA data server might help with these challenges.  

The Challenges and Value of Competitions.  

The criticality of competitions (a well-curated dataset, a well-defined task, and a 
challenging baseline performance criterion) to rapid advances was noted by the NLP 
colleagues; the relative unpopularity of such competitions in software engineering was 
recognized by the SE colleagues. Chris Quirk noted that substantial benefits could be 
gained with introducing competitions in software engineering. For instance, 
researchers could gain access to a large language modeling dataset and all systems 
could be compared on a benchmark evaluation such as perplexity. Potentially, the best 
model for predicting the naturalness of Java code could result from an organized 
competition. Tao Xie noted that the task should be considered practically relevant by 
software engineers. A few categories of tasks were discussed.  
 

1. Code cloning: a few datasets already exist; although no “golden” set is available, 
precision could be estimated by sampling.  (Abram Hindle) 

2. Code completion: arbitrarily many benchmarks could be created by sampling 
from existing code bases, pull requests etc. (Hindle) 

3. Traceability:  There was considerable discussion on this topic, concerning the 
difficulties of creating datasets at scale. Cleland-Huang’s   TraceLab is a 
noteworthy example of such a traceability dataset. 

4. Bug Localization: This is the task of localizing defects given passing and failing 
test sets.  

Summary 

The need for datasets, benchmarks  and competitions is seen as vital to the vibrancy of 
this community; there is considerable incentive for creating benchmarks and 
competition datasets, since these will have a great deal of impact.  
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Data repositories (Boa briefing) 
(Scribe:  Zhilin Yang zhiliny@cs.cmu.edu) 
(Organizers: Premkumar Devanbu & Chris Quirk) 
(Presenter: Dr. Tien N. Nguyen, Iowa State University) 

A general introduction to Boa was provided, slides and video are available. Mining 
software repositories (MSR) at a large-scale is important for more generalizable 
research results. Therefore, a number of recent studies in the MSR area have been 
conducted using corpus sizes that are much larger compared to the corpus size used by 
studies in the previous decade. Such a large collection of software artifacts is openly 
available for analysis, e.g., SourceForge has 350k+ projects, GitHub has 10M+ projects, 
and Google Code has 250K+ projects. This is an enormous collection of software and 
software-related metadata.  
 
Using  this vast amount of information to conduct MSR studies can be challenging. 
Specifically, large scale MSR studies (e.g., finding instances of bugs and bug fixes at 
scale) requires expertise in programmatic APIs for version control systems, database 
management, data mining, and parallelization.  These four requirements significantly 
increase the cost of scientific research in this area. Moreover, building analysis 
infrastructure to process such ultra-large-scale data efficiently can be very difficult. 
Efficiency is another issue. Due to the large amount of available software repositories, 
it is nontrivial to set up parallel architecture for data processing and repository 
mining. 
 
A domain specific language and infrastructure for code mining, Boa, was presented in 
the workshop. The fundamental goal of Boa is usability and simplicity. Boa hides the 
low-level details of repository mining from the users. Boa provides a parallelization 
framework and all user queries are executed on Hadoop transparently, which makes it 
easy to write scalable and efficient user programs. 
 
Boa Infrastructure: The Boa infrastructure is designed to diminish the barrier to 
entry for ultra-large scale MSR studies. Boa consists of a domain-specific language, its 
compiler, a data set that contains almost 700k open-source projects as of this writing, a 
backend based on map-reduce to effectively analyze this dataset, and a web-based 
frontend for writing code for MSR-related research. 
 
Boa downloads and replicates the software repositories from various source code hosts 
such as SourceForge and GitHub. It translates the data into a custom format necessary 
for efficient querying. The translated data is then stored as a cache onto Boa's cluster 
of servers. This forms the data infrastructure for Boa and abstracts many of the details 
of how to send, store, update, and query such a large volume of data. Boa transforms 
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the original data into structured representation such as abstract syntax trees, and 
stores the the data . Users send queries to the system by writing user programs in the 
Boa query language. The user programs are compiled to Hadoop programs by Boa. Boa 
further deploys and executes the Hadoop programs on the cluster, and returns the 
results to the users. 
 
Boa currently supports user queries through the Web interface on 
http://Boa.cs.iastate.edu. Users submit a query written in Boa's domain-specific query 
language to the website. User programs in Boa are concise and do not require external 
libraries. Once a user writes their query, they then select the dataset to use as input. 
Boa provides snapshots of the input data, marked with a timestamp. Boa periodically 
produces these datasets (at least yearly, in the future perhaps even monthly). Once a 
dataset is created it, is immutable and permanently available. This enables researchers 
to easily reproduce previous research results, by simply providing the same query and 
selecting the same input dataset. 
 
For each submitted query, Boa creates a job. All jobs have a unique identifier and 
allow users to control them, such as stopping the job, resubmitting the job, and viewing 
the results of the job. The servers compile that query and translate it into a Hadoop 
map-reduce program. This program is then deployed onto the cluster and executes in a 
highly parallel, distributed manner. All of this is transparent to the users. The job page 
will show if compilation passed and any error messages. It will also show the status of 
executing the query. Once finished, it provides information about how long it took to 
execute and links for viewing and downloading the output. Once a job has completed 
without error, the output of the Boa program is available from the job's page. There 
are two options: users may view up to the first 64k of the output online or they may 
download the results as a text file. 
 
When Boa executes a program, it first instantiates a separate program for each code 
project. Statistics are computed on each node of the cluster, and results are sent back 
to the aggregator with an aggregator function. The aggregator defines the operation to 
apply on the collected results, including sum, mean, top, bottom, and set operations. 
 
Boa Language: Since Boa is a domain-specific language, it defines various 
domain-specific types, including types for projects, code repositories, and abstract 
syntax tree roots. Besides the predefined domain specific types, Boa supports 
user-defined functions. User can define custom functions, either in Boa language or 
Java.  Boa also provides a type called time to represent unix-like timestamps. All 
date/time values are represented using this type. There are many built-in functions for 
working with time values, including obtaining specific date-related parts (such as day 
of month, month, year, etc), adding to the time by day, month, year, etc, and truncating 
to specific granularities. Strings in Boa are arrays of Unicode characters. Strings can be 
indexed to retrieve single characters. Strings can be concatenated together using the 
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plus (+) operator. There are also many built-in functions for working with strings to 
upper/lowercase them, get substrings, match against regular expressions, etc. Boa also 
provides several compound types. These types include arrays, maps, stacks, and sets 
and are composed of elements of basic type. Arrays can be initialized to a set of 
comma-delimited values surrounded by curly braces. 
 
Boa provides a notion of output variables. Output variables declare an output 
aggregation function to use on the output. All aggregators can optionally take indices. 
Indices act as grouping operators. All output is sorted and grouped by the same index. 
Then the aggregation is applied to each group. It is also possible to have multiple 
indices in which case the grouping is performed left to right. The collection aggregator 
provides a way to simply collect some output without applying any aggregation to the 
values. A value emitted to this aggregator will appear directly in the results. 
 
The VISITOR design pattern is a built-in feature in Boa. Users can perform depth-first 
traversal through abstract syntax trees by calling the VISITOR APIs. Boa also supports 
custom traversals over trees. Users can customize the stop criteria and traversal order. 
 
Current Status and Future Work: An Eclipse plug-in will be released soon after the 
workshop, which aims to support integrated debugging and testing in Eclipse IDE. Boa 
is backed by 8 million projects, 23 million revision and 146 million unique files 
downloaded from the Web and stored on the cluster. Boa parses the source code and 
produces 71 billion abstract syntax tree nodes. 
 
Boa now has more than 300 users from over 20 countries. In the future, Boa plans to 
include more advanced features, such as domain specific types for security, integration 
improvement of Eclipse plug-in, query reuse from the crowd, more advanced support 
for debugging and testing, and result sharing and collaboration. 
 
Boa is going to support code mining research of studying the naturalness of software, 
including language modeling in code, code completion, recommendation, code 
synthesis, and statistical machine translation for code (language migration). 
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Code and Program Modeling  
(Organizers: Charles Sutton & Tien Nguyen) 
(Scribe: Vincent Hellendoorn, vhellendoorn@live.nl) 

The goal of the session (Videos and slides) was to discuss models of code and programs 
that are based on data. The session had two invited speakers, one coming from a 
software engineering perspective and from a machine learning perspective. The 
software engineering speaker was Prof. Earl Barr, an associate professor at University 
College London, and the machine learning speaker was Dr Daniel Tarlow, a research at 
Microsoft Research in Cambridge, UK. Both speakers have done some of the early 
influential work in this area. 

Talk by Earl Barr, University College London: 
Inference Problems in Software Engineering 

1. Inferring programmer’s intents and traceability 

Inferring intent is a core problem in SE. Given finished project, we have some 
requirements,  and a codebase. Traceability between the requirements and the 
codebase is important because it can tell us what the code is intended to do. Most large 
projects have thousands of unfixed bugs, because they only have finite resources. If we 
knew which requirements were bound to which bugs, we could explore this space 
more effectively, because they allow us to check the implementation. 
 
A Code base is just a snapshot of version history. Requirements come from somewhere 
else: stakeholders. Many  problems in projects happen when obtaining requirements 
from stakeholders. Complete  requirements may be difficult to obtain.  Thus, both 
requirements themselves, and  links between requirements and artifacts, are partial 
(and noisy). There is additional data: issue trackers, mailing lists, documentation, logs. 
Problem of SE is: requirements are great and we’d like them, but mostly we have no 
requirements available. 
 
Machine learning can help in relation extraction. Where could this be useful? You can 
recover these links and thus give features that can be used to build tools to check 
whether the features hold or not on new data. Furthermore, this can be interesting to 
the ML and NLP communities because all of this data is relatively structured (source 
code; requirements with semi-formal English/mixed); i.e., more structured than 
arbitrary text on the web. This structure may be used to improve performance 
(accuracy, resistance to noise, performance) of tools that attempt to recover 
traceability links.  
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2. Testing 

Test suites are often informed by requirements, and are potentially a good way to 
obtain traceability links; but there are many complications.  They tend to capture some 
under-approximation of the true intent thereof. The relationship can be ambiguous; 
we often do not know what aspect of requirements a given test case is supposed to test. 
NL people might think that strange; just look at the execution path. The problem with 
this is: in order to test some code, a test case may for instance need to traverse the file 
system of the OS, traverse code that opens/closes files. It does not intend to, but it must. 
Finding what paths a test is specifically  intended to test is non-trivial. 
 
Developers tend to create tests.  We do have lots of tests; modern, Agile methods tend 
to emphasize testings, thus increasing test availability.  
 
There are two lines of work in SE that exploit test suites. Test suites are normally 
designed for regression testing – give confidence that you can make changes without 
breaking existing functionality. Another area is automated program repair, which 
requires something that localizes the bug. Here, the goal is to synthesize a fix that 
passes test suite. The underlying assumption is that there is a correct test suite for a 
buggy program. 
 
Another possible problem: although programmers do write test suites, they do not 
write enough (writing them is tedious & difficult). It would be nice if we could help 
them write test-suites. If you just randomly sample input domain, most test cases will 
be useless and redundant. We also do not know if the output is correct for samples test. 
This problem is often neglected in automated test generation. This may be a good place 
for machine learning: Given a test,  we may use the observed behaviour and the query 
program’s other concrete behavior to infer likely correct behavior, and perhaps even 
(if the answer is numerical) confidence intervals for correctness. This technique may 
help address Oracle problem. 

3. Natural language, invariants, program by contract 

We can think about other ways of recording and capturing programmer intent: 
programming by contract. No requirements are written in stakeholder format, but at a 
much lower level: embedded in code. Example: Eiffel, which supports 
design-by-contract. The code specifies preconditions and post-condition given 
parameters and returns. 
 
Let us consider simple assertions: just having code annotated with a couple of asserts 
allows us to verify some properties, at least locally; it enables program validation. 
Problem with this is a context switch: not an easy shift to make. You first think 
empirically, as a flow of values, then you must think declaratively, in a universal, 
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quantified way, to come up with assertions. Loop invariants is a hard problem. 
Recently, work by Alex Aiken’s group  using PAC learning (learning geometric 
concepts) makes good progress on that. 
 
Code contracts are used in OSS; developers tend to write pre-conditions, which are 
easier to specify; postconditions are more difficult. Our take: it’s like writing unit tests, 
but writing specifications. 
 
The challenge here, where NLP might help, is in suggesting asserts, to alleviate the 
annotation task. Daikon was mentioned a few times (a dynamic invariant Detector): It 
invalidates invariants through dynamic executions. For this tool, invariant templates 
were created by experts. We may use ML to learn possible invariants that are bespoke 
for code base, and thus more likely to be interesting. A problem with Daikon is that it 
finds many vacuous invariants (irrelevant to actual behavior of function). Another 
issue is to suggest where to place them. They are probes to the state space; there may 
be more natural places to put them than others. Places that are dominators in CFG for 
instance; not necessarily obvious to human developers, but easy to find by compilers. 

Talk by Daniel Tarlow - Microsoft Research in Cambridge, UK 
Textual models of code: neural network probabilistic models 

There is a specific class of language models that Tarlow had been trying on code that 
seem to strike a balance between being relatively simple (hopefully) and flexible and 
powerful enough to provide the  benefits of NNLMs (neural network language models), 
and also allow us to input some information specifically from source code (e.g. 
tree-structure). 
 
So why build models of source code? To create more “natural-looking” code. There are 
often a great many solutions to a given programming problem,  and we want the most 
natural one. Any time you want to generate code that people will look at, you care 
about generating natural code (obey conventions). We want to build models that 
produce probability distributions of code that match real code. 
 
To build good models, we should combine sample signals from programming text, 
associated natural language,  and dynamic  program executions (a la Daikon). 
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Ontologies and understanding of software 
semantics  
(Scribe: Zhilin Yang, (zhiliny@cs.cmu.edu)) 
(Organizers: Dana Movshovitz-Attias  & Tao Xie) 

Brief of Topic 

The goal of this session (Slides, Video) was to discuss methodology for understanding 
software semantics, with an emphasis on building structured data repositories for the 
software domain, such as ontologies. The aim was to understand both the needs of the 
Software Engineering community for structured understanding of software semantics, 
as well as the available Machine Learning methods and their relevance to the SE 
research needs. The long-term vision is that the multitude of existing data sources in 
the software domain can benefit from structured semantic resources, and ultimately 
also contribute to the development of improved structured learning methods. 
 
The session was opened with a talk by Prof. Jane Cleland-Huang from DePaul 
University, who introduced an approach for building an ontology which was used to 
improve a traceability tool, DoCIT.  The talk was followed by a discussion, which was 
scribed by Zhilin Yang. There were several main topics touched on in the discussion.  
 
The main talk presented a natural language interface for software questions, TiQi, a 
traceability tool, DoCIT, and an ontology building method. TiQi processes natural 
language and classifies tokens into predefined lexicons, and synthesizes SQL queries 
based on the lexicons. DoCIT uses a transmissive-receptive heuristic to determine 
whether a trace link exists between two software artifacts. The ontology building 
approach leverages a trace matrix as distant supervision between software artifacts 
and domain documents, and uses a classifier to combine results from various 
extraction tools including topic models and association rules. 

Topics from general discussion 

Current use of ontologies in SE. Ontologies are currently being using in the SE 
domain as a means of constraining the space search for specially-tailored SE tasks. The 
ontologies that are commonly in use are very basic, for example, they do not include 
an entity hierarchy, and are only used to assess pairwise, entity-to-entity subclass 
relations. No other relations are currently explored. In comparison, richer ontologies 
have been explored by NLP researchers, which include entity and concept hierarchies 
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and a varied set of entity and concept pairwise relations, as well as general statistics of 
the use of entities in relevant domain corpora. 
 
Motivation for using ontologies. We had a discussion on the motivation for using 
ontologies in the SE domain. Participants presented a preference for using flat 
probabilistic relations (such as subclass, or similarity), rather than hierarchical ones. 
However, while probabilistic relations can be used for finding statistically related 
information, when we try to answer questions or provide decision support, we need 
relations and formalism. This is where ontology building can be helpful. This 
motivation needs to be reiterated and better demonstrated through task-based 
examples. In other words, a collaboration between NLP and SE researchers is required, 
in order to better demonstrate where ontologies can be helpful for SE tasks. 
 
Paraphrasing. A critical challenge of ontology building is that people usually tend to 
use different words even if they are referring to the same meaning. To address this 
challenge during ontology building, we can apply paraphrasing between different 
ontologies and expressions. Fuzzy matching can also be helpful. Word mismatch is a 
common problem. For example, when we do question answering based on Freebase, 
we need to reason over different representations of the same meaning. 
 
Evolving terminology. A claim was made that code repositories and terminology are 
evolving faster than natural language. Additionally, people in different organization, in 
different contexts, use different terms for the same meaning. An important resource is 
the discussion in forums such as StackOverflow, which we can use to track the 
evolving terminology. We can look at the new terms to capture the underlying evolved 
nature of software terminology. 
 
Using NELL as an SE ontology. NELL operates on top of a manually-built input 
ontology, and adds new facts to the existing ontology. The original ontology must be 
initiated by a human. We need a good ontology to start, which requires expertise in 
defining the relevant SE entities and relations. Once we have that, it is possible to use 
NELL for growing the ontology. It is also very likely, that a single SE ontology will not 
be relevant for all SE tasks. 
 
Possible future directions. It is important to develop tools for ontology building for 
the software domain. Since software engineering is a highly technical domain, a lot of 
future tasks can benefit from the ontology. However, at this point in time, work on 
automatic ontology development is only being done as part of NLP research. 
Ontologies as a whole are not commonly used in SE and therefore no specific future 
tasks has been enumerated, that can accommodate the future use on richer ontological 
structures. 
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Summary and Recommendations 

There is currently minimal use of ontologies for addressing SE tasks. The ontologies 
being used are, in fact, pairwise subclass relations identified over software entities. 
Meanwhile, NLP research provides the means for constructing richer ontologies, 
including entity and concept hierarchies, a multitude of software relations, and 
additional domain relevant statistics.  
 
Importantly, there is a gap between the SE and NLP community in terms of the 
motivation for using ontologies. Unfortunately, in this workshop, we did not fully 
determine what are SE tasks that can directly benefit from the use of ontologies. This 
seems to be an important starting point, necessary for moving this area forward. Once 
specific tasks can be enumerated, then the needs and requirement of SE ontologies will 
surface additional challenges in ontology construction and use. These can be a basis 
for collaborations that will further both SE and NLP future research in semantic 
understanding through ontologies.  
 
Open ended challenges. The following is a summary of challenges that have been 
identified with regards to ontology construction for the software domain: 

- Identify SE tasks that can benefit the use of an ontology. 
- Learning a set of rich entity-to-entity relations, beyond subclass relations. 
- Using an automatically built ontology. 
- What are the domains for which it is more appropriate to use ontologies over SE 

entities (such as short nouns and noun phrases) versus longer phrases and 
terms. 

- Can NELL be used to build an SE ontology? 
- Paraphrasing and soft-matching of ontology entities, during ontology generation 

and use. 
- Using StackOverflow to determine the evolving nature of software terminology.  
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Information Retrieval 
(Organizers Denys Poshyvanyk & Dana Movshovitz-Attias) 
(Scribe: Martin White, mgwhite@email.wm.edu) 

Brief of Topic  

The goal of this session (Slides, Video) was to discuss the use of  Information Retrieval 
(IR) technology in Software Engineering. The aim was to understand both the needs of 
the Software Engineering community for handling unstructured data (e.g., text) 
embedded in a multitude of software artifacts as well as the available Information 
Retrieval and NLP methods and their relevance to the SE research needs. The 
long-term vision is that the multitude of existing data sources in the software domain 
can benefit from Information Retrieval and NLP techniques. 

The session was opened with a talk by Prof. Andrian Marcus from the University of 
Texas at Dallas, titled as “Using Text Retrieval in Software Engineering: An Overview”. 
The talk overviewed major SE tasks currently supported by text retrieval (TR) methods 
as well as the detailed description on how TR methods are currently used in SE 
context.  The talk concluded with an overview of crosscutting research problems and 
open challenges. The talk was followed by a discussion, which was scribed by Martin 
White.  

The main talk started with a brief history of IR applications for SE tasks. Then the talk 
reviewed a number of applications of text retrieval techniques for SE problems such as 
restructuring and refactoring, software categorization, licensing analysis, clone 
detection, effort estimation, use case analysis, traceability link recovery, feature 
location, code reuse, bug triage, program comprehension, test case generation and 
others. The talk highlighted two main uses of text retrieval techniques for SE tasks: (1) 
formulate the SE task as a TR problem and (2) formulate the SE task as a text analysis 
problem.  The first option includes the following steps: (a) building a corpus from 
software artifacts; (b) indexing a corpus using a given TR model; (c) formulating a 
query (manual or automatic); (d) computing similarities between the query and the 
documents in the corpus; (e) ranking the documents based on the similarities; (f) 
returning the top N as the result list; (g) inspecting the results; (h) going back to (c) if 
needed or stop. The second model, which involves formulating SE task as a text 
analysis problem, includes the following steps: (a) building a corpus, (b) indexing a 
corpus using a given TR method, (c) computing similarities between the documents in 
the corpus, (d) defining the measures/metrics based on the similarities; and (e) 
performing the analysis based on the obtained measures. The talk also presented 
detailed examples of applying TR for SE tasks, such as concept location and conceptual 
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cohesion measurement. The talk concluded with the discussion of crosscutting 
research problems related to corpus building (identifier splitting, synonyms, 
abbreviation expansion, using n-grams, term boosting), comparing and selecting TR 
models (VSM, LDA, LSI, BM25, as well as configuration selection), incremental indexing 
and vocabulary analysis, query formulation/reformulation, results presentation as well 
as information integration with other sources of information such as structural (e.g., 
dependencies), dynamic (e.g., execution traces), process information. There were 
several main topics touched on in the discussion. 

Topics from general discussion 

Information Retrieval (IR) metrics in SE research. The metrics are something that 
we need to consider as a community rather than continue to see patterns of papers 
that simply say “we used these metrics because these three papers used them too.” 
There generally needs to be more context when settling on metrics for a particular 
approach. 

IR versus information extraction in SE research. There was a comment that what 
we call IR in Software Engineering (SE) research is really information extraction. 
Moreover, viewing SE problems as information extraction problems rather than 
retrieval problems may yield new insights. Two possible explanations for this were 
provided. First, the confusion between retrieval and extraction was due in part to 
being ill-educated which the group generalized as a bias in SE research because SE 
researchers have not had formal education in natural language processing (NLP). 
Incidentally, this was a theme throughout the workshop. The second problem was 
because SE researchers initially were concerned with distinguishing search and 
retrieval when IR was first applied in SE contexts 15 years ago. There was no 
consensus on whether the type of extraction we do in SE research is equivalent to 
retrieval in the true NLP understanding. 

Canonical methods versus formal methods. There was a question as to whether IR 
in SE research as we know it is even the right problem formulation. Do we need a new 
formalism, e.g., formal methods? However, the participants did not suggest any 
alternative problem formulations.  

FDA rules and regulations. The discussion was also steered toward understanding 
specific SE problems where NLP can be brought to bear. One example was the FDA and 
their rules and regulations for fusion pumps. How do they know whether they 
extracted all of them? How do they know if two of them contradict each other? Can we 
look at our arsenal to approach this research? These questions sparked the discussion 
on the topics outlined below.  
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Requirements. A claim was made that requirements are still declarative and that 
requirements and code are two different classes of text. Code describes the running 
system, which is completely different text than requirements. Methods, which may be 
a property of requirements analysis, may not be good for analyzing text.  

Requirements documentation. Commenting on specific tasks, there was a suggestion 
on the problem of ambiguity in requirements documents, however, it is still unknown 
how statistical NLP would be able to tell when something in the requirements 
documents does not mean what you think it means. A follow up discussion highlighted 
that this is vagueness rather than ambiguity and then it was emphasized that the issues 
are with interpreting different requirements. Another question was posed about 
informal/formal requirements: Have theorem provers been applied to requirements 
documentation to build a formal representation such that a prover can be run over it? 
However, general discussion was that writing requirements in formal ways just does 
not happen in industry; in other words industry prioritizes talking to the customer 
over documentation. A follow up question about whether we can leverage formal 
specifications so we can approximate the supervision signal was left open-ended.  

Operational data. A claim was made that documentation is essentially operational 
data. This is data that was left behind and not intended to support things like formal 
methods whatsoever. In fact, we are in the text retrieval domain because we are 
dealing with scraps. Our text is not necessarily for any of these tasks.  

Grounded language. A remark was made that it is useful to think about grounded 
language. Most NLP techniques will understand a sentence in isolation. It is worth 
considering what a sentence means in a particular context. There are a lot of 
opportunities between natural language understanding and the structure that code 
provides.  

What propagates to industry? A comment was made that performance is key but 
understandability is also important. Moreover, statistical NLP is not completely 
handcuffed in its ability to ease understanding. For a programmer, it may not be 
necessary. However, most of the existing applications are generally tool-chains that not 
only tell you what to change but also tell you how to change in the case of an impact 
analysis problem. In other words, statistics will get you in the neighborhood and static 
analysis will get you to where you need to go.  

Summary and Recommendation 

There is currently a serious interest in adapting Information Retrieval approaches for 
solving SE problems. We had an active discussion that spanned a number of issues and 
open-ended questions. The following is a summary of challenges and opportunities 
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that have been identified with regards to applications of Information Retrieval for 
Software Engineering tasks:  

● Combination with NLP; 
● Matching tools/techniques to the task; 
● Better evaluation mechanisms/research community standards; 
● Data availability; 
● Tool integration, optimization and user studies; 
● Education and Infrastructure building. 
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Language Generation from Code  
(Organizers: Dawn Lawrie & Graham Neubig) 
(Scribe: Vincent Hellendoorn, vhellendoorn@live.nl)  

Brief of Topic 

This session (slides, video) covered methods to generate natural language descriptions 
of source code. These methods have been the subject of study within the SE 
community, and are often called “code summarization” methods, as they can create a 
concise natural language description of a body of code for more efficient developer 
perusal. Recently there have also been a few methods based on machine 
learning-based natural language processing techniques. This session discussed the 
current state of these methods, and where they should be going in the future. 
 
The session was opened with a talk by Graham Neubig from the Nara Institute of 
Science and Technology, who did a survey of the state of the art in this field, followed 
by an open discussion. The session was scribed by Vincent Hellendoorn. 

State of the Art in Code->NL Generation 

The main talk presented a survey of the state of the art in the field, and the slides and 
video are openly available online. It covered approaches in the scientific literature to 
the generation of natural language from code and included a number of distinctions 
that can be made between the various methods. 

● Type of generated language: Most natural language generation focuses on 
“code summarization,” attempting to generate concise summaries of code blocks 
to make them easier to understand quickly. There is also work on pseudocode 
generation for beginner programmers, or method name generation. 

● Level of granularity of code: There are methods to generate descriptions for 
variables, lines of code, functions, classes, commits, and multiple-file code 
concerns. 

● Generation methods: Many methods are rule-based, but there are also 
data-driven methods based on information retrieval, machine translation, or 
neural networks. 

● Evaluation methods: We can evaluate how good the summary is itself (intrinsic 
evaluation), or how much it helps with an external task. 

● Available data sources: For data-driven methods, data is necessary. There have 
been some works harvesting data from stack overflow, or from comments 
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within code. There is also a set of line-by-line code/comment pairs created by 
hand. 

Discussion Topics 

Task-specificity: It is very important to think of what we’ll use a code summary for 
when generating it. Collin McMillan noted that descriptions written for programmers 
and descriptions written for end-users will be very different, and Dawn Lawrie noted 
that even for programmers there are different roles such as testers or API users. 
 
Example tasks: Some specific uses of code summaries were discussed. Moving beyond 
a line-by-line summary, there was discussion of generating summaries for developers 
versus end-users. The first line of a git commit can be an example of a natural 
language summary that describes the differences contained in the commit, as noted by 
Abram Hindle. An example of a summary where models do not currently exist is a 
tool-tip for method summaries in an IDE like Eclipse. Earl Barr notes that summaries 
could help developers build mental models of code more quickly. Automatically 
generating comments for code is also important because, as noted by Denys 
Poshyvanyk, code is modified much more frequently then the associated comments; 
thus, they decay quickly. Turning to the end-user, one type of useful summary is 
release notes. Andrian Marcus noted that new features, permissions, and licensing 
might all be summarized. Baishakhi Ray commented that code summarization could 
have a big effect on security policy, referencing a 2015 ICSE paper on information flow, 
which tracked Android applications to see how processes communicate and whether 
they may violate policy. 

Other methods for achieving similar goals: Prem Devanbu noted that Charles 
Sutton’s group has proposed methods for auto-folding uninteresting methods in source 
code, Collin McMillan noted methods for generating API usage patterns, and Abram 
Hindle noted code diffs. These do not require natural language, but can achieve similar 
goals and are interesting in their own right. Also, Sol Greenspan noted that in MDSD 
environments, if the model is specified properly comments may not be necessary. 
 
Can we discriminate between good and bad natural language descriptions?: There 
was some interested on the software engineering side expressed by Collin McMillan 
about ways to discriminate whether a software description was a good one or a bad 
one. Nate Kushman said that our standard tool here would be language models, and 
Graham Neubig and Chris Quirk noted that there are many types of features you can 
use in language models depending on what you want to capture. Denys Poshyvanyk 
noted that one problem is that comments tend to go stale, so it would be nice if we 
could verify them. 
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What kinds of context do we need to condition on?: Sol Greenspan noted that 
domain knowledge is extremely important when generating documents. 
 
How could we get data for training machine learning models?: Andrian Marcus 
noted that there are many source for data, including descriptions of methods, stack 
overflow, and release notes. Many people noted that some projects have excellent 
comments, such as the aTunes project, parts of the Linux Kernel, and Google projects 
that have been open sourced. Graham Neubig notes that the data often needs to be 
“clean”, in the sense that most of the content must be reflected in both the code and the 
natural language, and Dana Movshovitz-Attias noted that “clean” is still difficult to 
define and perhaps task specific. Sonia Haduc noted that there is a new stack overflow 
project “Warriors of Documentation” that may be very useful for this. 
 
Can we handle edge/corner cases?: Nate Kushman noted that cases that are unusual 
may actually be of more value to document, but it’s not easy to generate these. 

Summary and Recommendations 

In short, the main topics of discussion focused on “why we generate language from 
code,” “how we obtain data for training models,” “whether there are other methods to 
achieve the same goal,” and “whether existing natural language descriptions can be 
verified.” Based on the discussion, we can make the following recommendations: 

●  It is important to keep the task in mind when generating data from code, in 
particular whether the descriptions will be generated for developers or end 
users, and adjust the strategy based on this. 

● We can also consider other methods for achieving the same goal, such as hiding 
pieces of code that are not relevant, or showing usage patterns. 

● Many noted the potential of stack overflow or comments to generate data, but 
many other forms of developer activity are interesting as potential targets. 

● It will be best to think about not only language generation, but also language 
verification, particularly in the case of stale or incomplete comments.  
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Natural Language Programming and Semantic 
Parsing  
(Organizers: Ray Mooney & Chris Quirk) 
(Scribe: Gagan Bansal  bansalg@cs.washington.edu) 

Brief of Topic  

This session (Slides, Video, Second Part) discussed progress and future work on the 
challenging problem of translating user instructions in natural language to executable 
computer code. In NLP, the subarea of semantic parsing has studied the problem of 
mapping natural language to a formal representation of its meaning. The majority of 
the work in this area has been on understanding database queries; however, there has 
been relatively little work on other types of programs.  The session was organized as a 
series of short 5 minute talks by all panel members, including Ray Mooney, Chris 
Quirk, Gagan Bansal, Yoav Artzi, Percy Liang, Srini Iyer, Nate Kushman, and Yi Wei. 
  
Mooney briefly introduced the NLP work on semantic parsing, focusing on the role of 
using machine learning methods to induce semantic parsers from corpora of natural 
language sentences paired with their formal language translations. Quirk described a 
recent project with Mooney and Michel Galley on mapping natural language 
descriptions of  simple “If This Then That” scripts to code, using a corpus of over 100K 
examples collected from ifttt.com. Bansal discussed his on-going work with Dan Weld 
on this same corpus, exploiting text from the IFTTT API documentation to improve the 
interpretation of these short program descriptions.  Artzi and Liang briefly described 
their work on semantic parsing, which has mostly focussed on interpreting natural 
language queries to FreeBase. Iyer discussed approaches to generate natural language 
descriptions of SQL queries. Kushman described his work on interpreting operating 
system instructions and regular-expression descriptions, focusing on the importance of 
handling non-compositionality, in which there is no direct mapping from words and 
phrases to program constructs. Wei discussed methods for searching over code 
snippets and synthesizing code snippets given natural language descriptions. 

Other items from discussion 

There was discussion of what application domains were most suited for natural 
language programming. End-user development of short programs such as scripts for 
spreadsheets or data analytics was considered a good application.  For for more 
professional programmers, areas such as model-driven engineering and generation of 
program assertions for use in verification and debugging were discussed. 
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Programmers may write more assertions and other annotations useful for program 
analysis if they are provided with a natural language input mechanism. 
 
Training natural language programming systems requires relevant large “parallel 
corpora” of NL descriptions and programs, which can be difficult to find or construct. 
Unsupervised approaches such as Unsupervised Semantic Parsing may be useful in 
reducing the amount of supervision required. Alternate supervision signals such as 
input/output examples may also help; NL programming can be combined with 
programming by demonstration. 
 
Most current approaches use single user inputs. Often a single turn is insufficient to 
describe program intent. Using dialog strategies for correcting and refining intent will 
likely be important, but poses difficulties for data driven settings as the problem space 
becomes larger. On a related note, users must often check and correct the resulting 
code. Systems must provide some representation of the program for the user to 
inspect, and likely provide debugging tools. 
 
To address the issue that programs may not be directly compositional from natural 
language, it might be best to first map natural language into a domain-independent 
formal logical language, and then separately learn to map this intermediate 
representation into a final program. One candidate language is Abstract Meaning 
Representation (AMR), a recent focus in the NLP community. 
 
Automatic evaluation is a major consideration. NL approaches like BLEU are attractive 
for speed of evaluation and tool availability, but do not measure syntactic 
well-formedness, much less semantic correctness. That said, fast but imperfect 
measure helped drive some of the largest progress in a number of NLP areas over the 
past decade. 

Summary and Recommendations 

Research in mapping language to code (and code to language) is made more difficult by 
the lack of annotated data resources. Syntactic parsing, semantic parsing, and machine 
translation all made great strides as more data became available. That said, it is not 
obvious which domains will be tractable and see the greatest gains in the short to 
medium term. 
 
We encourage the creation of curated resources that are suitable for pilot studies. 
Rather than annotating millions of instances, many projects can be explored with only 
hundreds or thousands of training instances. The GEOQUERY dataset spurred a broad 
range of research even though it had approximately one thousand natural and formal 
language pairs. As a starting point, the community could construct parallel sets of code 
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assertions and their descriptions, or natural language descriptions of formal 
requirements. 
 
Additionally, we might curate a small set of comment-code pairs. The relationship 
between the code and the comment could be identified (is the comment explanatory, 
redundant, inconsistent, etc.). Building accurate classifiers of comment intent is an 
interesting problem itself, and could also lead to better parallel code/comment data. 
 
Given a few benchmark tasks, the community next needs to standardize on evaluation 
metrics. Ideally there would be both fast automatic metrics amenable to optimization, 
and slow but accurate metrics potentially with a human in the loop. This combination 
allows for fast daily progress and incremental research while retaining a long term 
focus on utility. 
 
Deeper annotation of these resources could also be useful. The natural language 
utterances could be annotated with gold standard syntactic or even semantic parses 
(according to the Abstract Meaning Representation specification, for instance). 
Performing this annotation on a few thousand sentences would allow domain 
adaptation and evaluation work. Likewise the code could be annotated with abstract 
syntax trees, program analysis information, or whatever resources are readily 
available. 
 
Finally, we need a good means of disseminating information to the community. There 
are already several important resources, such as the Stack Overflow data. We should 
maintain a website or wiki that allows community members to identify and update 
datasets, benchmarks, and key implementations.  
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Closing Session  

The closing session was dominated by a discussion of available, as well as desirable 
resources, datasets and challenges that are  available to researchers interested to 
explore this area further.  
 
The full spreadsheet is publicly available. 

Conclusion and Acknowledgements 

Recent research has exposed the repetitive, predictable nature of software, and the 
utility of statistical models in both improving the performance of traditional software 
tools, and in facilitating new types of tools. This interdisciplinary research program 
requires deep skills in both software engineering and statistical natural language 
processing. This workshop was organized to bring together two communities that in 
the past have had limited interactions. The workshop began with two tutorials, one by 
an SE researcher on “big-data” approaches in software engineering, and another, by an 
NLP researcher, on the foundations and achievements of statistical NLP. Over two 
following days, a variety of topics were discussed by the attendees over several 
sessions. Each session began with a “mood setting” talk, and was followed by active 
and vigorous discussions. The document above provides links to slides and videos 
(graciously made available by the speakers, and recorded and made available through 
the auspices of Microsoft Research).  
 
The organizers of the workshop gratefully acknowledge support from Microsoft 
Research for the use of their excellent conference facilities, and also generous support 
provided for meals, local transportation, and refreshments for attendees. We gratefully 
acknowledge support from the National Science Foundation (Award Number: 1551318) 
which provided travel support for all attendees.  
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