IGRINS – QLP (Quick Look Package)

First version 2013.02.27 Updated on 2014.04.02 Huynh Anh

OPERATION SCENARIOS

QUICK LOOK PACKAGE OPERATIONS

Quick Look Overview

Purpose :

During observation, to check the spectra with wavelength

• Required:

- Current observation log file and FITS files
- FLAT image for (optional) flat-fielding
- Predefined function or fine-tuning result

Features:

- Read the current observation log, provide to view the raw image
- Provide de-skewed spectrum image using predefined function
- (Optional) Bad pixel correction and cosmic-ray correction
 - These processes may take long time, relative to others
- Sky subtraction image (A-B mode)

Quick Look GUI

3

Quick Look Operations (1)

Load image

- Load(): click the "LOAD" button
 - · Read the data from the FITS file
 - Load the image to "Load image" frame and FITS information in "Information"

Check options

- Check the display image options
 - Current image: Display the current image from the log file observation.
 - Co-add image: Display the co-add image from the log file observation.
- Check the image processing options
 - Bad-pixel/cosmic-ray correction (optional), flat-fielding, subtracting (A-B), de-skewing
- Input the image processing parameters
 - Bad-pixel mask, flat image file, subtracting image (A-B) file, de-skewing function path

Mode observations

- Manual mode: load log file observation and display image.
- Auto Real time: load log file observation and display image with refresh real time.
- FITS mode: load FITS image and display.

5

Quick Look Operations (1)

View image

- View(): click the "VIEW" button
 - Perform the image processes, that are checked by user
 - ThumbDraw(): Load the result image to "Thumbnail view"

Load the main image

- Check the zoom option (1x, 2x, 5x, ...)
- ThumbClick(): click the area, where user want to examine in more detail
- MainDraw(): load the cropped image to the "Main image"

Quick Look Operations (2)

- View the profiles
 - MainClick() : click the position to draw the vertical/horizontal profiles
 - VProfDraw(): draw the vertical (column) profile of image
 - HProfDraw(): draw the horizontal (line) profile of image
 - If de-skew option is checked, the x-axis of the horizontal profile view is in wavelength scale by µm
 - View the position of mouse-pointer
 - VProfHover(), VProfHover():
 - Show the values of (x, y) at the mouse-pointe
 - Scaling bar to change the scale display of images

Function Processes in QL-Pkg

_

Process Flow (Based on ZEMAX Analysis)

9

Process Overview (Based on ZEMAX Analysis)

1. Extract the FITTING DATA from ZEMAX Analysis Data

- fitting.fit_ech_xy()
- Perform polynomial fitting of ZEMAX data
- Find the coefficients of polynomial functions
 - (x, y) position on the focal plane from (wavelength, field position)

2. Find MAPPING DATA

- mapping.mapping_ap()
- Mapping parameters
 - Convert the coordinate on the focal plane into pixel positions
- Rotation position angle, offsets, pixel scale (convert mm unit into pixel)

3. Aperture Extraction

- extract.extract_ap()
- Apply FITTING/MAPPING DATA to the raw image
- Fit the aperture (X, Y) pixel positions with polynomial function
- Fit the wavelength of each pixel with polynomial function
- Extract the strip image from the raw image

1. Extract the FITTING DATA from ZEMAX Analysis Data

Inputs

- fp (field position along the slit)
- λ (wavelength)
- [5,3] = polynomial orders for wavelength and field position

Outputs

- fitting functions : $f_{X,ORDER}$ / $f_{Y,ORDER}$
- x-positions on (λ, fp) domain; mx = $f_{X,ORDER}(\lambda, fp)$
- y-positions on (λ, fp) domain; my = $\mathbf{f}_{Y,ORDER}(\lambda, fp)$

Coefficient output in fitting folder, filename (eg, mx_H099_05_03.dat ...) mx, my are coefficient fitting from Zemax data for each order. This output file will be used in mapping function.

2. Find MAPPING DATA (Extract strip image)

Inputs

- mx, my coefficient from Zemax fitting
- $-\lambda$ (wavelength), field position

Function

[5,3] = polynomial orders for wavelength and field position

- $ax = (\lambda, field, mx)$
- $ay = (\lambda, field, my)$

Convert [mm] to pixel units (ax, ay) \rightarrow (px, py)

Outputs

Coefficient = 1D polynomial fitting of (px, py, ap-degree)

- Coefficient output file is in mapdata folder, filename (eg, apmap_H_07.000.dat ...) The output coefficient is used for extracting strip image from the raw image.

11

Find MAPPING DATA (Interpolate of wavelength)

• Inputs

- mx, my coefficient from Zemax fitting
- iλ (wavelength), i-field position (2D-strip)

• Function

[5,3] = polynomial orders for wavelength and field position

- $oxx = (i\lambda, i-field, mx)$
- oyy = $(i\lambda, i\text{-field}, my)$

Convert [mm] to pixel units (oxx, oyy) \rightarrow (pxx, pyy)

- Grid data for interpolate, xx, yy = (ap_width, ap_length)

$$ap_x x = xx$$

ap_yy = yy + 1D polynomial fitting (xx, apmap-coefficient)

Outputs

- wave = interpolate from (points = [pxx, pyy], value = iwave, griddata = [ap_xx, ap_yy])
- Coefficient = 2D polynomial fitting (xx, yy, wave)
 Coefficient output file is in mapdata folder, filename (eg, apwav_H_03_02.001.dat ...)
 The output coefficient is used for transform wavelength from the raw image.

Quick Look GUI

Function Mapping Diagram of QL-PKG

Function in QL-PKG

Function	Parameter	Explanation	Source	Destination
Load	None	Display the object image in the load image view	QL-PKG	QL-PKG
View	None	Display the load image object	QL-PKG	QL-PKG
QL-ImageProcess	master	Function to choose the options for image processing	QL-PKG	QL-PKG
ThumbDraw	None	Display the load image in the thumbnail view	QL-PKG	QL-PKG
ThumbClick	event	Click on the thumbnail image view to see the zoom image in the main image view	QL-PKG	QL-PKG
MainDraw	None	Display the zoom image from the thumbnail image	QL-PKG	QL-PKG
MainClick	event	Click on the main image view to see the vertical and horizon profile of zoom image	QL-PKG	QL-PKG
VProfDraw	None	Drawing the vertical profile of the zoom image	QL-PKG	QL-PKG
HProfDraw	None	Drawing the horizon profile of the zoom image	QL-PKG	QL-PKG
VProfHover	event	Display y-position and value from the vertical profile spectrum	QL-PKG	QL-PKG
HProfHover	event	Display x-position and value from the vertical profile spectrum	QL-PKG	QL-PKG
Save	None	Save the final image	QL-PKG	Storage

Variable primitives in QL-PKG

Variable name	Explanation	Туре
self.band	Band observation H- or K-band	String
self.filepath	File path folder	String
self.object	Object name	String
self.exptime	Exposure time	String
self.cosmicray_flag	Correction Cosmicray task	Int
self.badpixel_flag	Correction badpixel task	Int
self.badpixel_path	File path folder for bad pixel task	String
self.deskew_flag	Correction de-skew task	Int
self.deskew_path	File path folder for de-skew task	String
self.flatcor_flag	Correction flat correction task	Int
self.flatcor_path	File path folder for flat correction task	String
self.imgsub_flag	Subtraction A-B mode	Int
self.imgsub_path	File path folder for subtraction A-B mode	String
self.x	X-position value in main image	String
self.y	Y-position value in main image	String
self.zoom	Zoom image	Int
self.scaling	Scaling image	String
self.scaleMin	Minimum scale	String
self.scaleMax	Maximum scale	String
self.vx	X-value at mouse-pointer of vertical profile spectrum	String
self.vy	Y-value at mouse-pointer of vertical profile spectrum	String
self.hx	X-value at mouse-pointer of horizon profile spectrum	String
self.hy	Y-value at mouse-pointer of horizon profile spectrum	String

Appendix. Interface QLP-DTP

Operation Scenario Mapping Diagram of QL-Pkg and DT-Pkg

Initial QL-Pkg

- 1. Create socket connection between DT-Pkg and SC-Pkg
 - DT-Pkg send RA_offset and DEC_offset values to SC-Pkg
- 2. Image taking
 - SC-Pkg taking images from the observer
 - The taking images will store to storage
- 3. Create socket connection between DT-Pkg and QL-Pkg
 - Open QL-Pkg (H- and K-band) from DT-Pkg
 - QL-Pkg open images from storage, analysis image and define for next exposure observation

Initial QL-Pkg

