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Abstract

Background: The dramatic progress in sequencing technologies offers unprecedented prospects for deciphering
the organization of natural populations in space and time. However, the size of the datasets generated also poses
some daunting challenges. In particular, Bayesian clustering algorithms based on pre-defined population genetics
models such as the STRUCTURE or BAPS software may not be able to cope with this unprecedented amount of
data. Thus, there is a need for less computer-intensive approaches. Multivariate analyses seem particularly
appealing as they are specifically devoted to extracting information from large datasets. Unfortunately, currently
available multivariate methods still lack some essential features needed to study the genetic structure of natural
populations.

Results: We introduce the Discriminant Analysis of Principal Components (DAPC), a multivariate method designed to
identify and describe clusters of genetically related individuals. When group priors are lacking, DAPC uses
sequential K-means and model selection to infer genetic clusters. Our approach allows extracting rich information
from genetic data, providing assignment of individuals to groups, a visual assessment of between-population
differentiation, and contribution of individual alleles to population structuring. We evaluate the performance of our
method using simulated data, which were also analyzed using STRUCTURE as a benchmark. Additionally, we
illustrate the method by analyzing microsatellite polymorphism in worldwide human populations and
hemagglutinin gene sequence variation in seasonal influenza.

Conclusions: Analysis of simulated data revealed that our approach performs generally better than STRUCTURE at
characterizing population subdivision. The tools implemented in DAPC for the identification of clusters and
graphical representation of between-group structures allow to unravel complex population structures. Our
approach is also faster than Bayesian clustering algorithms by several orders of magnitude, and may be applicable
to a wider range of datasets.

Background
The study of the genetic structure of biological popula-
tions has attracted a growing interest from a wide array
of fields, such as population biology, molecular ecology,
and medical genetics. One of the most widely applied
approaches is the inference of population structuring
with Bayesian clustering methods such as STRUCTURE
[1,2] and BAPS [3,4]. These methods are particularly

appealing as they allow for identifying genetic clusters
under an explicit population genetics model. The popu-
larity of these approaches leaves no doubt about their
usefulness for extracting meaningful information from
genetic data.
Unfortunately, the reliance of Bayesian clustering

methods on explicit models also comes at a cost. Model-
based approaches rely on assumptions such as the type of
population subdivision, which are often difficult to verify
and can restrict their applicability. Furthermore, estima-
tion of a large number of parameters [5] can require con-
siderable computational time when analyzing large
datasets. To take full advantage of the increase in size
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and complexity of genetic datasets, fast and flexible
exploratory tools are equally needed.
Multivariate analyses have been used for decades to

extract various types of information from genetic data
and have attracted renewed interest in the field [6-12].
In particular, principal component analysis (PCA)
[13-15] has recently been suggested as an alternative to
Bayesian clustering algorithms [5,11,12,16]. The main
asset of PCA is its ability to identify genetic structures
in very large datasets within negligible computational
time, and the absence of any assumption about the
underlying population genetic model.
However, PCA lacks some essential features for inves-

tigating the genetic structure of biological populations.
First, it does not provide a group assessment, and would
require a priori definition of clusters to study population
structures. But even then, PCA would not be appropri-
ate to obtain a clear picture of between-population var-
iation (Figure 1). PCA aims to summarize the overall
variability among individuals, which includes both the
divergence between groups (i.e., structured genetic varia-
bility), and the variation occurring within groups (‘ran-
dom’ genetic variability). To assess the relationships
between different clusters, an adequate method should
focus on between-group variability, while neglecting
within-group variation.
This is precisely the rationale of Discriminant Analysis

(DA) [17,18]. This multivariate method defines a model
in which genetic variation is partitioned into a between-
group and a within-group component, and yields
synthetic variables which maximize the first while mini-
mizing the second (Figure 1). In other words, DA
attempts to summarize the genetic differentiation
between groups, while overlooking within-group varia-
tion. The method therefore achieves the best discrimina-
tion of individuals into pre-defined groups (Figure 1c).
Interestingly, this method also allows for a probabilistic
assignment of individuals to each group, as in Bayesian
clustering methods.
Unfortunately, DA suffers from considerable restric-

tions which often preclude its application to genetic
data. First, the method requires the number of variables
(alleles) to be less than the number of observations
(individuals). This condition is generally not fulfilled in
Single Nucleotide Polymorphism (SNP) or re-sequencing
datasets. Second, it is hampered by correlations between
variables, which necessarily occur in allele frequencies
due to the constant-row sum constraint [i.e., composi-
tional data, [19,20]]. Moreover, the violation of the
assumption of uncorrelated variables will be even more
blatant in the presence of linkage disequilibrium. There-
fore, the application of DA to genetic data has remained
very limited so far [8,21].

In this paper, we introduce the Discriminant Analysis
of Principal Components (DAPC), a new methodological
approach which retains all assets of DA without being
burdened by its limitations. DAPC relies on data trans-
formation using PCA as a prior step to DA, which
ensures that variables submitted to DA are perfectly
uncorrelated, and that their number is less than that of
analysed individuals. Without implying a necessary loss
of genetic information, this transformation allows DA to
be applied to any genetic data. Like PCA, our approach
can be applied to very large datasets, such as hundreds
of thousands of SNPs typed for thousands of individuals.
Moreover, the contributions of alleles to the structures
identified by DAPC can allow for identifying regions of

Figure 1 Fundamental difference between PCA and DA. (a) The
diagram shows the essential difference between Principal
Component Analysis (PCA) and Discriminant Analysis (DA).
Individuals (dots) and groups (colours and ellipses) are positioned
on the plane using their values for two variables. In this space, PCA
searches for the direction showing the largest total variance (doted
arrow), whereas DA maximizes the separation between groups
(plain arrow) while minimizing variation within group. As a result,
PCA fails to discriminate the groups (b), while DA adequately
displays group differences.
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the genome driving genetic divergence among groups.
Along with the assignment of individuals to clusters,
our method provides a visual assessment of between-
population genetic structures, permitting to infer com-
plex patterns such as hierarchical clustering or clines.
Whenever group priors are unknown, we use K-means

clustering of principal components to identify groups of
individuals [5,16]. K-means relies on the same model as
DA to partition genetic variation into a between-group
and a within-group component, and attempts to find
groups that minimize the latter. Like in STRUCTURE,
we run K-means clustering with different numbers of
clusters, each of which gives rise to a statistical model
and an associated likelihood. As advocated in previous
studies [5,22], we use Bayesian Information Criterion
(BIC) to assess the best supported model, and therefore
the number and nature of clusters.
We apply DAPC to both simulated and empirical

datasets. We use simulations to assess the ability of our
approach to infer the right genetic clusters, and com-
pare our results to those obtained with STRUCTURE
[1,2]. Then, we illustrate the type of information that
can be gathered by DAPC by applying the method to
two empirical datasets. First, we analyse worldwide
structuring of native human populations using the
HGDP-CEPH cell line panel typed for microsatellite
markers [23-25], enriched with additional populations of
Native Americans [26]. Second, we use DAPC to study
the temporal variation in seasonal influenza (H3N2)
hemagglutinin (HA) segments from viruses collected in
the northern hemisphere from 2001 to 2007. Both data-
sets, as well as the implementation of our methodology
are available in the adegenet package [6] for the free
software R [27].

Results
Analysis of simulated datasets
As a benchmark, we first compared the results of DAPC
to those obtained by STRUCTURE using simulations.
Data were simulated with EASYPOP [28] using four
population genetic models (Figure 2): an island model
(Figure 2a), a hierarchical islands model (Figure 2b), a
one-dimensional hierarchical stepping stone (Figure 2c),
and a standard one-dimensional stepping stone (Figure
2d). The number of populations varied from six for the
island and hierarchical island models to 24 for the step-
ping stone model. Parameters of the simulations are pro-
vided in Table 1. They were chosen to ensure moderate
genetic differentiation and realistic gene diversities
(Table 2), and to reflect typical population genetic data-
sets for non-model organisms. All simulations were
run for 3,000 generations. Inspection of summary statis-
tics confirmed equilibrium had been reached in all
simulations.

Ten independent replicates were obtained for each
model. Each dataset was analysed by both STRUCTURE
and DAPC. Accuracy of the results obtained with
STRUCTURE depended critically on the underlying
population genetic model behind the simulated data
(Table 3). For the island model, STRUCTURE identified
the true number of clusters in the majority of cases, and
proved very efficient in assigning individuals to their
actual group. In the hierarchical island model, STRUC-
TURE was less successful at identifying the actual num-
ber of subdivisions, while still providing accurate
assignments. The performance decreased drastically in
the two stepping stone models, where the method sys-
tematically failed to retrieve the true number of clusters.
Moreover, even when enforcing STRUCTURE to parti-
tion individuals into the actual number of populations,
the method largely failed to identify the existing groups.
The same datasets were analysed by DAPC using the

adegenet package [6] for the R software [27]. The number
of clusters was assessed using the function find.clusters,
which runs successive K-means clustering with increas-
ing number of clusters (k). We covered a wide range of
possible clusters from one to 2K, where K was the actual
number of demes in the simulations. Figure 3 illustrates
the procedure for selecting the ‘optimal’ number of clus-
ters. This choice was made on the basis of the lowest
associated BIC (Figure 3a-b). In cases where the optimal
number of clusters was ambiguous, k was increased as
long as it resulted in a noticeable improvement in BIC
(Figure 3c-d). Overall, this procedure recovered well the
actual number of populations (Table 3). The number of
clusters was always better inferred in island-based models

Figure 2 Diagram of migration models used in simulations. The
four panels represent in (a) an island model, (b) a hierarchical island
model, (c) hierarchical stepping stone, and in (d) a stepping stone
with 24 populations. Red disks represent random mating sub-
populations (demes) and arrows the interconnecting migration
routes (black arrows represent greater gene flow than grey ones).
Dotted lines indicate archipelagos (b) or a contact zone (c).
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(Figure 3a-b) than in more continuous population genet-
ics models (Figure 3c-d), where clusters tend to dissolve
into more clinal patterns of genetic differentiation. But
even when the actual K was not identified, the inferred
number of clusters generally remained relatively close to
the true value (Table 3). Interestingly, the estimation of K
by our method was markedly better than that achieved
by STRUCTURE for all the studied models, including the
classical island model for which our approach always
inferred the exact number of clusters (Table 3). This
result is consistent with previous studies which used K-
means on principal components [5,16].
Then, DAPC was performed (function dapc) using

clusters defined by K-means where we specified the
actual number of clusters (i.e., k = K). In all analyses, 50
principal components of PCA were retained in the data

transformation step. The comparison of the final assign-
ments of individuals to groups to the actual group
memberships revealed that DAPC performed remarkably
well. Assignment success varied depending on the popu-
lation genetics model assumed in the simulations but
remained high for all simulated datasets considered
(Table 3). The frequency of correct assignments was
highest in the island models, where DAPC performed
essentially as well as STRUCTURE (Table 3). However,
even in the stepping stone models (Figure 2c-d), suc-
cessful assignment rates remained very satisfying, with
correct assignment rates ranging from 80% to 97%
depending on the replicate.
Successful detection of the correct number of genetic

clusters is undoubtedly a desirable feature. However,
this information alone is not sufficient to describe the
apportionment of genetic diversity within a population.
What is additionally needed to gain real insights about
the system under study is a representation of the relat-
edness between clusters. DAPC is particularly well sui-
ted for this task, as it finds principal components which
best summarize the differences between clusters while
neglecting within-cluster variation (Figure 1). The first
principal components of DAPC can be plotted to obtain
scatterplots, which provide a direct visual assessment of
between-group structures (Figure 4). For instance, the
hierarchical structure is clearly visible on Figure 4b,
where three groups of genetically closer clusters can be
identified ({1}, {2, 4}, and {3, 5, 6}). Results for the step-
ping stone model (Figure 4d) can easily be distinguished
from the island model (Figure 4a) by the clinal arrange-
ment of the clusters. And this model can in turn be dis-
tinguished from the hierarchical stepping stone, for
which the scatterplot distinctly shows two separate
clines (Figure 4c).

Analysis of empirical data
Human microsatellite data
DAPC was applied to the microsatellite genotypes from
the Human Genome Diversity Project-Centre d’Etude

Table 1 Parameters of simulations
Island model Hierarchical island model Hierarchical stepping stone Stepping stone

Number of populations 6 6 (3, 2, 1) 12 (6, 6) 24

Population size 200 200 100 50

Sample size(1) 100 100 50 25

Migration rate 0.005 0.05/0.005(2) 0.01/0.001(2) 0.02

Mutation rate 10-4 10-4 10-4 10-4

Number of loci 30 30 30 30

Possible allelic states 50 50 50 50

This table indicates the parameters used to simulate data under four different models (see Figure 2). (1)Sample size refers to the number of individuals per
population retained in the analyses.
(2)The first migration rate refers to between-population migration, whereas the second refers to migration between the higher hierarchical levels.

Table 2 Summary statistics of the simulations
Median Quantile 5% Quantile 95%

Island model

FST 0.1 0.07 0.13

HS 0.42 0.36 0.46

number of alleles/locus 5 3 8

Hierarchical island model

FST 0.05 0.03 0.08

HS 0.41 0.33 0.49

number of alleles/locus 5 2 8

Hierarchical stepping stone

FST 0.37 0.09 0.56

HS 0.3 0.2 0.38

number of alleles/locus 6 3 9

Stepping stone

FST 0.42 0.12 0.64

HS 0.27 0.13 0.36

number of alleles/locus 6 4 9

This table reports usual genetic summary statistics computed on the
simulated datasets using adegenet. FST refers to the mean pairwise FST
computed using Nei’s estimator [62]. HS refers to the gene diversity (expected
heterozygosity under random mating).
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du Polymorphisme Humain (HGDP-CEPH) [23-25], an
extensive dataset of native human populations distribu-
ted worldwide. This dataset was extended by adding
genotypes from 24 Native American and Siberian popu-
lations [26]. The resulting dataset comprises 1350 indivi-
duals from 79 populations, genotyped for 678
microsatellite markers (8170 alleles).
Two analyses were run for this dataset. First, we used

DAPC to investigate the genetic structure of the 79
sampled populations. We retained 1,000 principal com-
ponents of PCA during the preliminary variable

transformation, which accounted for most (approxi-
mately 94%) of the total genetic variability. It is worth
noting that despite the respectable size of this dataset
(1350 individuals and 8170 alleles), DAPC was run in
less than a minute on a standard desktop computer.
The eigenvalues of the analysis (Figure 5, inset) showed
that the genetic structure was captured by the first three
principal components. These synthetic variables were
mapped using colour coding to unravel patterns in the
population structuring (Figure 5). The results obtained
are remarkably clear and consistent with previous find-
ings [25,26]. The first principal component (red channel,
Figure 5) clearly differentiates Sub Saharan African
populations from the rest of the world. The second
principal component (green channel, Figure 5) displays
a cline of genetic differentiation between Western Eur-
ope and East Asia. The third principal component (blue
channel, Figure 5) highlights the differentiation of
American populations from the rest of the world.
While largely consistent with previous well-established

findings, these results are based on the clustering of
individuals into geographically predefined populations.
This has the possible drawback that higher-level of
genetic clustering could be overlooked. To evaluate this
hypothesis, we looked for the best supported number of
clusters using our approach based on K-means algo-
rithm. Inspection of the BIC values ranging from one to
100 clusters clearly showed that a subdivision into four
clusters should be considered (Figure 6). We then used
DAPC to investigate the genetic structure of the four
newly inferred groups. The resulting colorplot (Figure 7)
defines clear-cut patterns which are strikingly similar to
results previously obtained under a four clusters popula-
tion genetics model with STRUCTURE [25,26,29].
Seasonal influenza (H3N2) hemagglutinin data
To illustrate the versatility of our approach, we selected
a radically different dataset for the second example. We
analysed the population structure of seasonal influenza
A/H3N2 viruses using hemagglutinin (HA) sequences.
Changes in the HA gene are largely responsible for
immune escape of the virus (antigenic shift), and allow
seasonal influenza to persist by mounting yearly

Table 3 Results of the analyses of simulated data
Island Model Hierarchical island model Hierarchical stepping stone Stepping stone

Number of populations (true K) 6 6 12 24

K inferred by DAPC 6 ([6,6]) 6 ([6,8]) 11 (8,12) 17.5 ([13,21])

K inferred by STRUCTURE 6 ([2,7]) 3 ([2,6]) 2 ([2,2]) 2 ([2,5])

% of correct assignment by DAPC 98.2% ([96.3%,99%]) 87.5% ([73.9%,91.2%]) 89.7% ([87.9%,97.2%]) 83.9% ([80%,88.7%])

% of correct assignment by STRUCTURE 98.6% ([98%,99.2%]) 93.1% ([89.2%,95.5%]) NA(1) NA(1)

This table reports the results of analyses of simulated data (see Figure 2) by DAPC and STRUCTURE. K refers to the number of clusters. Inferred numbers of
clusters are reported as medians computed from the 10 replicates, with the range of variation provided within parentheses. (1)NA is indicated when the
percentage of successful assignment could not be computed with STRUCTURE. In these cases, the ‘optimal’ K was very different from the true K, resulting in
meaningless assignments with numerous empty clusters and subsequently very low proportion of correct assignments.

Figure 3 Inference of the number of clusters in simulated data.
These four panel report examples of outputs from single
simulations of the function find.clusters used to identify the number
of clusters in data simulated according to for four different
population genetics models (a: island model; b: hierarchical island
model; c: hierarchical stepping stone and d: stepping stone; see
Figure 2). Bayesian information criterion (BIC) is provided for
different numbers of clusters. The chosen number of clusters is the
minimum number of clusters after which the BIC increases or
decreases by a negligible amount. The actual number of
populations (K) is indicated by the dotted line.
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epidemics peaking in winter [30-32]. These genetic
changes also force influenza vaccines to be updated on a
yearly basis. Influenza A virus genome is organized in
eight segments analogous to chromosomes in eukar-
yotes. While exchanges of segments (genomic reassort-
ment) occasionally happen during the replication of the
virus in multiply infected hosts [30,33,34], we are una-
ware of evidences for within-segment recombination.
Assessing the genetic evolution of a pathogen through

successive epidemics is of considerable epidemiological
interest. In the case of seasonal influenza, we would like

to ascertain how genetic changes accumulate among
strains from one winter epidemic to the next. For this
purpose, we retrieved all sequences of H3N2 hemagglu-
tinin (HA) collected between 2001 and 2007 available
from Genbank [35]. Only sequences for which a location
(country) and a date (year and month) were available
were retained, which allowed us to classify strains into
yearly winter epidemics. Because of the temporal lag
between influenza epidemics in the two hemispheres,
and given the fact that most available sequences were
sampled in the northern hemisphere, we restricted our

Figure 4 Scatterplots of DAPC of simulated data. These scatterplots show the first two principal components of the DAPC of data simulated
according to four different models (a: island model; b: hierarchical islands model; c: hierarchical stepping stone and d: stepping stone; see Figure 2).
Clusters are shown by different colours and inertia ellipses, while dots represent individuals.
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analysis to strains from the northern hemisphere (lati-
tudes above 23.4°north). DNA sequences and meta-
information were retrieved from Genbank using ad-hoc
R scripts. Alignments were obtained for a stretch of 990
bases using ClustalW [36] and further refined manually
using Jalview [37]. Aligned sequences were then
imported in R using the ape package [38], and SNPs
were extracted from the sequences using adegenet [6].
The final dataset included 1903 strains characterized by
125 SNPs which resulted in a total of 334 alleles. All
strains from 2001 to 2007 were classified into six winter
epidemics (2001-2006). This was done by assigning all
strains from the second half of the year with those from
the first half of the following year. For example, the
2005 winter epidemic comprises all strains collected
between the 1st of July 2005 and the 30th of June 2006.
DAPC was used to investigate the pattern of genetic

diversity in these data. We retained 150 principal com-
ponents of PCA in the preliminary data transformation
step, which altogether contained more that 90% of the
total genetic variation. The first two principal compo-
nents of DAPC were sufficient to summarize the tem-
poral evolution of the virus (Figure 8). Epidemics
appeared as clearly differentiated (Figure 8). Strains

were correctly assigned to their winter epidemic in 92%
of cases on average, with variation in correct assignment
probabilities among epidemics ranging from 85% (2002)
to 99% (2001). The first principal component of DAPC
revealed the accumulation of genetic changes across epi-
demics, from 2001 to 2006 (Figure 8, horizontal axis).
Interestingly, the 2006 epidemic was markedly isolated
from the other epidemics on the second principal com-
ponent (Figure 8, vertical axis), suggesting that more
genetic changes had accumulated during 2005-2006
than during previous epidemics.
It has recently been suggested that seasonal influenza

epidemics are seeded each year from a reservoir in
Southeast Asia [31], from only a limited number of
strains. This yearly seeding of epidemics leads to recur-
rent population bottlenecks and the marked differentia-
tion of the 2006 epidemic may point to an unusually
severe population bottleneck. Alternatively, this disconti-
nuity might lie in some selective event affecting 2006
strains. To get some insight into the underlying causes
of the differentiation of the 2006 epidemics, we
inspected the associated allele loadings (Figure 9). The
originality of the 2006 epidemics was largely driven by
two SNPs coding for residue 144 and 318 in the HA

Figure 5 Colorplot of the DAPC of extended HGDP-CEPH data. This colorplot represents the first three principal components (PC) of the
DAPC of extended HGDP-CEPH data, using populations as prior clusters. Each dot corresponds to a sampled population. Each principal
component is recoded as intensities of a given colour channel of the RGB system: red (first PC), green (second PC), and blue (third PC). These
channels are mixed to form colours representing the genetic similarity of populations. The inset indicates the eigenvalues of the analysis, with
colour channels used to represent PCs indicated on the corresponding eigenvalues.
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protein with respective frequencies of 32.1% and 61.6%
in 2006 but virtually absent in previous years. While
such shifts in allele frequencies might be suggestive of
natural selection, only one corresponded to a non-
synonymous mutation from Asparagine to Lysine at
position 144. Irrespective of the underlying mechanism
driving the genetic isolation of the epidemics, DAPC
dealt satisfyingly with the analysis of the influenza data-
set by recovering the evolution over time of seasonal
influenza strains, while also highlighting an interesting
discontinuity between the 2005 and 2006 epidemics.

Discussion and Conclusions
In this paper, we introduced a new multivariate method,
the Discriminant Analysis of Principal Components
(DAPC), for the analysis of the genetic structure of
populations. This approach can be used to define clus-
ters of individuals and to unravel possibly complex
structures existing among clusters, such as hierarchical
clustering and clinal differentiation, while being orders
of magnitude faster than existing Bayesian clustering
methods. For simulated data, DAPC proved as accurate
as STRUCTURE in detecting hidden population clusters
within simple island population models. Moreover,
DAPC was more suited to unravel the underlying struc-
turing in more complex population genetics models.

Another major advantage of DAPC over Bayesian clus-
tering approaches is the possibility to generate a graphi-
cal representation of the relatedness between the
inferred clusters. Applied to two highly contrasted
empirical datasets, our method was able to identify non-
trivial and meaningful biological patterns.
One of the main assets of DAPC is its great versatility.

Indeed, DAPC does not rely on a particular population
genetics model, and is thus free of assumptions about
Hardy-Weinberg equilibrium or linkage disequilibrium. As
such it should be useful for a variety of organisms, irre-
spective of their ploidy and rate of genetic recombination.
Also, contrary to Bayesian clustering methods, DAPC can
be applied to very large datasets within negligible compu-
tational time (all analyses presented in this paper took less
than minute to run on a standard computer). Moreover,
the method is not restrained to genetic data, and can be
applied to any quantitative data such as morphometric
data. This feature is particularly interesting as it allows for
partialling out the effects of undesirable covariates, such as
different sequencing protocols, or trivial genetic structures
that could obscure lesser, more interesting patterns. This
can be achieved by analyzing the residuals of a preliminary
model including the covariates as predictors instead of the
raw data.
A major concern pertaining to all clustering

approaches is the risk of inferring artefactual discrete
groups in populations where genetic diversity is distribu-
ted continuously. Such spurious clusters are particularly
likely to arise under spatially heterogeneous sampling of
populations [39,40]. DAPC is not immune to this bias,
and may indeed erroneously identify clusters within a
cline. However, scatterplots provided by the method
allow for a graphical assessment of the genetic struc-
tures between clusters (Figures 5 and 8), and provide
remarkable insights as to how the genetic variability is
organized. For instance, in our simulations based on
stepping stone models (Figure 2c-d), DAPC clearly
revealed the existence of clines (Figure 4c-d). Therefore,
our approach is by no means restricted to the study of
populations organised in discrete groups, and should be
able to reveal more complex genetic patterns.
We chose to analyse two contrasted datasets to illus-

trate the versatility our approach. The HGDP-CEPH
dataset has been repeatedly analysed using a variety of
methods [29,39,41-47]. The DAPC results support pre-
vious evidence for discontinuities above and beyond the
global clinal pattern in the apportionment of human
genetic variation [29,43,48]. The subdivision inferred by
DAPC is strikingly similar to the four clusters identified
by the STRUCTURE software [25,26,29]. Note however,
that the existence of large-scale clusters is not incompa-
tible with a clinal distribution of genetic diversity and/or
smaller-scale subdivisions [41,43]. These results

Figure 6 Inference of the number of clusters in the extended
HGDP-CEPH data. This graph shows the output of the function
find.clusters used to identify the number of clusters in extended
HGDP-CEPH data. Bayesian information criterion (BIC) is provided for
different numbers of clusters (from one to 100). The chosen number
of clusters (4) is circled in red. The inset indicates the global results
(up to 100 clusters), while the main figure shows the detail of the
results up to 30 clusters.
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illustrate that DAPC can be used as an efficient genetic
clustering tool.
In contrast, the seasonal influenza analysis highlights

features that go beyond simple genetic clustering. The
DAPC scatterplot reveals that the virus is genetically
structured into clusters which are arranged along a tem-
poral cline, and shows a marked discontinuity between
two successive years. Examination of allele loadings
further reveals that this abrupt change is due to the appa-
rition of new alleles in the global population, one of
which induced a change in the amino-acid sequence, and
may have therefore been subject to natural selection.
Although DAPC is a promising tool for the analysis

of genetic data, further methodological developments
should be considered to improve our approach. K-means
has proved very efficient here as in previous studies for
identifying genetic clusters [5], and is moreover consistent
with the variance partition model used in Discriminant
Analysis. However, this algorithm uses a very simple mea-
sure of group differentiation, and might struggle to iden-
tify the correct clusters in the most complex situations
[16]. Would that be the case, useful alternatives to
K-means could be found in more elaborated clustering
algorithms [49]. Another point of interest relates to the

selection of the number of principal components used in
the prior dimension-reduction step. So far, this procedure
is largely ad hoc, and relies on retaining most (more than
80%) of the genetic variance. Objective criteria would be
useful to achieve this task. Unfortunately, there is no con-
sensus on the best strategy for selecting interpretable prin-
cipal components in PCA [50]. In the context of DAPC,
we will have to evaluate a trade-off between the power of
discrimination and the stability of assignments. Retaining
more principal components provides more power for
unravelling genetics structures, but increases the risks of
obtaining ad hoc combinations of alleles which would dis-
criminate perfectly the sampled individuals, whilst per-
forming poorly on newly sampled individuals [51]. This
issue could be addressed using repeated cross-validation,
so that each individual would be assigned to a cluster
based on a model calibrated using other individuals.
Irrespective of these methodological adjustments, we

can see applications of DAPC beyond the mere study of
the genetic structure of populations. One field where
the method may be particularly relevant is association
studies. In this context, population structuring (’popula-
tion stratification’) creates spurious correlations between
genotypes and phenotypes. To circumvent this issue,

Figure 7 Colorplot of the DAPC of extended HGDP-CEPH data based on four inferred clusters. This colorplot represents the three
principal components (PC) of the DAPC of extended HGDP-CEPH data, using the four clusters inferred by find.clusters (see Figure 6). Each dot
corresponds to a sampled population. Each principal component is recoded as intensities of a given colour channel of the RGB system: red (first
PC), green (second PC), and blue (third PC). These channels are mixed to form colours representing the genetic similarity of populations.
Eigenvalues are not indicated, since there are only three PC in a DAPC based on four clusters.
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Price et al. [12] proposed to partial out population
structures by regressing data onto the first principal
components of a PCA. But as explained in the introduc-
tion, PCA focuses on the overall variability, which
includes variation between and within populations. In
this case it would be preferable to remove only
between-population structures from the data. Indeed,
regression onto the first principal components of a PCA
is likely to remove relevant within-population variation,
thereby resulting in a lack of power for detecting signifi-
cant associations. In contrast, DAPC yields principal
components which are meant to reflect between-popula-
tion variability only. Regressing data onto these synthetic
variables would therefore remove the effects of popula-
tion stratification, while preserving relevant variability.
Note that one could achieve the same result by regres-
sing data onto the groups identified by our approach.
Association studies aim at identifying genetic features

that differ between two or more groups of individuals. In
other words, the aim is to identify the alleles that best dis-
criminate a set of pre-defined clusters. DAPC seems

perfectly adapted to this task, as it finds linear combina-
tions of alleles (the discriminant functions) which best
separate the clusters. Alleles with the largest contributions
to this discrimination are therefore those which are the
most markedly different across groups, which could repre-
sent cases and controls. A simple plot of allele contribu-
tions (Figure 9) could therefore be used for a graphical
assessment of alleles of major interest. An additional rea-
son why DAPC may be well suited for this purpose is the
ease with which one can control for covariates, such as
age or sex.
To conclude, DAPC appears as a fast, powerful and

flexible tool to unravel the makeup of genetically
structured populations. However, we have no doubt
that the application of this method goes way beyond
the illustrations provided in this paper. We hope that
its implementation in the free software R [27], which
hosts an ever increasing number of tools for popula-
tion genetics and phylogenetics [38,52-54] will open
new and exciting perspectives for the statistical analy-
sis of genetic data.

Figure 8 Scatterplots of the DAPC of seasonal influenza (H3N2) data. This scatterplot shows the first two principal components of the
DAPC of seasonal influenza (H3N2) hemagglutinin data, using years of sampling as prior clusters. Groups are shown by different colours and
inertia ellipses, while dots represent individual strains.
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Methods
Measuring between-group differentiation
Discriminant Analysis (DA), DAPC, and K-means clus-
tering all rely on the same statistical model to quantify
between-group differentiation, which is in fact a classical
ANOVA model. Below, we introduce this general model
using concepts and notations further used in the specific
presentation of DAPC and K-means clustering.
Let y Î ℝn be the vector of a centred variable with n

observations (y1,...,yn) distributed into g groups, and D
be the diagonal matrix containing uniform weights for
the observations (i.e., all diagonal entries are 1/n, while
off-diagonal entries are 0). We denote H = [hij] the n ×
g matrix containing dummy vectors coding group mem-
bership, so that hij = 1 if observation i belongs to group
j, and hij = 0 otherwise. We define P = H(HTDH)-1HTD
as the projector onto the dummy vectors of H, which
can be used to replace each observation in yi by the

mean value of the group to which i belongs, y i
∧ . The

ANOVA model relies on the decomposition of y:

y Py I P y y y y= + − = + −
∧ ∧

( ) ( ) (1)

where I is the identity matrix of dimension n, y
∧ is

the vector of predictions, and ( )y y−
∧ is the vector of

residuals. Since y is centred, the vectors y
∧ and ( )y y−

∧

are also centred, and their squared norms ( y yD
D

2
2

,
∧

,

and y y
D

−
∧

2

) equate their variances. Moreover, the

Pythagorean theorem ensures that the total variance

( var( )y y D= 2 ) can be decomposed as:

var( ) ( ) ( )y y y= +b w (2)

where b( )y y
D

=
∧

2

is the variance between groups

and w( )y y y
D

= −
∧

2

is the variance within groups. To

measure the extent to which groups possess different
values of y, we use the ratio of between-group and
within-group variances, also known as the F statistic:

F( )
( )
( )

y
y
y

= b
w

(3)

This quantity takes positive values only, with larger
values indicating stronger differences between groups.
Alternatively, one could use the proportion of variance
explained by the model, which is also known as the cor-
relation ratio of y, defined as:

K 2( )
( )

var( )
y

y
y

= b
(4)

In fact, both quantities can be used as a measure of
group separation in DA and DAPC, and would yield iden-
tical results (discriminant functions) up to a constant. In
the remaining, we shall refer to the F statistic only.

Discriminant Analysis of Principal Components
Let X be a n × p genetic data matrix with n individuals
in rows and p relative frequencies of alleles in columns.
For example, in the case of a locus with three alleles
(A1, A2, A3), a homozygote genotype A1/A1 is coded as
[1, 0, 0], while a heterozygote A2/A3 is coded as [0, 0.5,
0.5]. We denote Xj the jth allele-column of X. Missing
data are replaced with the mean frequency of the

Figure 9 Contributions of alleles to the second principal
component of the DAPC of seasonal (H3N2) influenza data. The
height of each bar is proportional to the contribution (Equation 10)
of the corresponding allele to the second principal component of
the analysis, which isolated the strains from the 2006 influenza
epidemic from all others (see Figure 8). Only alleles whose
contribution is above an arbitrary threshold (grey horizontal line) are
indicated for the sake of clarity. Alleles are labeled by their position in
the original alignment, and the corresponding nucleotide, separated
by a dot. Position 384 and 906 correspond respectively to residue
144 and 318 in the complete hemagglutinin (HA) protein CDS.
Polymorphism at position 384 leads to a mutation from Asparagine
to Lysine, present in 32.1% of strains sampled in 2006 while virtually
absent before 2006. Polymorphism at position 906 is synonymous.
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corresponding allele, which avoids adding artefactual
between-group differentiation. Without loss of general-
ity, we assume that each column of X is centred to
mean zero. Classical (linear) discriminant analysis seeks
linear combinations of alleles with the form:

f vj j
j

p

( )v X Xv= =
=

∑
1

(5)

(v = [v1...vp]
T being a vector of p alleles loadings,

known as ‘discriminant coefficients’), showing as well as
possible the separation between groups as measured by
the F statistic (Equation 3). That is, the aim of DA is to
choose v so that F(Xv) is maximum.
Linear combinations of alleles (Equation 5) optimizing

this criterion are called principal components, which in
the case of the discriminant analysis are also called dis-
criminant functions. Discriminant functions are found
by the eigenanalysis of the D-symmetric matrix [51]:

PX W X P D( )−1 T T (6)

where P is the previously defined projector onto the
dummy vectors of H, and W is the matrix of covar-
iances within groups, computed as:

W X I P D I P X= − −T T( ) ( ) (7)

This solution requires W to be invertible, which is not
the case when the number of alleles p is greater than
the number of individuals n. Moreover, this inverse is
numerically unstable (’ill-conditioned’) whenever vari-
ables are correlated, which is always the case in allele
frequencies and can be worsened by the presence of
linkage disequilibrium.
To circumvent this issue, DAPC uses a data transfor-

mation based on PCA prior to DA. Rather than analyz-
ing directly X, we first compute the principal
components of PCA, XU, verifying:

X DXU UT = Λ (8)

where U is a p × r matrix of eigenvectors (in columns)
of XTDX, and Λ the diagonal matrix of corresponding
non-null eigenvalues. Note that when the number of
alleles (p) is larger than the number of individuals (n),
we can alternatively proceed to the eigenanalysis of
XXTD to obtain U and Λ [55], which can save consider-
able computational time. By definition, the number of
principal components (r) cannot exceed the number of
individuals or alleles (r ≤ min(n, p)), which solves the
issue relating to the number of variables used in DA.
Moreover, principal components are, by construction,
uncorrelated, which solves the other issue pertaining to
the presence of collinearity among allele frequencies.

DA is then performed on the matrix of principal com-
ponents. At this step, less-informative principal compo-
nents may be discarded, although this is not mandatory.
Replacing X with XU into Equation 6, the solution of
DAPC is given by the eigenanalysis of the D-symmetric
matrix:

PXU U WU U X P D( )T T T T−1 (9)

The first obtained eigenvector v maximizes b(XUv)
under the constraint that w(XUv) = 1, which amounts
to maximizing the F-statistic of XUv. This maximum is
attained for the eigenvalue g associated to v (i.e., F(XUv)
= g). In other words, the loadings stored in the vector v
can be used to compute the linear combinations of prin-
cipal components of PCA (XU) which best discriminate
the populations in the sense of the F-statistic.
However, it can be noticed that these linear combina-

tions of principal components ((XU)v) can also be inter-
preted as linear combinations of alleles (X(Uv)), in
which the allele loadings are the entries of the vector
Uv. This has the advantage of allowing one to quantify
the contribution of a given allele to a particular struc-
ture. Denoting zj the loading of the jth allele (j = 1,...,p)
for the discriminant function XUv, the contribution of
this allele can be computed as:

z

z

j

j
j

p

2

2

1=
∑ (10)

Prior clustering using K-means
Whenever groups are not known in advance, it is possi-
ble to define them using a clustering algorithm.
K-means is a natural choice to do so since it uses the
same model as DA and a similar measure of group dif-
ferentiation. K-means relies on the model in equation
(1) which decomposes the total variance of a variable
into between-group and within-group components. This
model can be extended to the multivariate case by sum-
ming variance components over the different variables.
To differentiate univariate and multivariate variances,
we use upper case notations for variances of multivariate
data. Note, however, that these quantities are in both
cases squared norms of vectors or matrices (considering
the Frobenius norm in the multivariate case). Applied to
the previously-defined matrix of principal components
of PCA (XU) as in [5,16], this model can be written:

VAR( ) ( ) ( )XU XU XU= +B W (11)

with VAR(X) = tr(Λ), B(XU) = tr(UTXTPTDPXU), and
W(XU) = tr(UTWU). The Bayesian Information
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Criterion (BIC) used to choose the best clustering model
is then defined as:

BIC = +n W g nlog( ( )) log( )X (12)

where W(X) is the residual variance (i.e., variance
within groups, Equation 2) and g is the number of
groups. This criterion quantifies the lack of fit of the
model, while penalising the number of clusters used.
Note that here, g is used as an ad hoc way of avoiding
overfitting, and does not estimate the parametric dimen-
sionality of the model as in the original formulation of
BIC [56]. Several K-means can be run separately with dif-
ferent numbers of groups, and the best runs can be
inferred from the decrease of BIC. In simulated data, BIC
proved more efficient for identifying the correct number
of clusters than other criteria such as Akaike Information
Criterion (AIC) or the adjusted R2 (results not shown).
This result is consistent with previous findings which
advocated the use of BIC for selecting the best number of
groups in K-means clustering of genetic data [5].

Clustering analyses using STRUCTURE
We used STRUCTURE [1,2] as a benchmark for the
performance of DAPC. We analysed all simulated data-
sets with STRUCTURE v2.1, using the admixture model
with correlated allele frequencies to determine the opti-
mal number of genetic clusters and to assign individuals
to groups. Computations were performed on the com-
puter resources of the Computational Biology Service
Unit at Cornell University (http://cbsuapps.tc.cornell.
edu/). For each run, results were based on a Markov
Chain Monte Carlo (MCMC) of 100,000 steps, of which
the first 20,000 were discarded as burn-in. Analyses
were ran with numbers of clusters (k) ranging from 1 to
8 for the island and hierarchical island models (Figure
2a-b), from 1 to 15 for the hierarchical stepping stone
(Figure 2c), and from 1 to 30 for the stepping stone
(Figure 2d). Ten runs were performed for each k value.
We employed the approach of Evanno et al. [57] to
assess the optimal number of clusters. In order to assess
assignment success, STRUCTURE was run by enforcing
k to its true value. Individuals were assigned to clusters
using CLUMPP 1.1.2 [58], which allows to account for
the variability in individual membership probabilities
across the different runs. To obtain results comparable
to DAPC, individuals were assigned to the cluster to
which they had the highest probability to belong.

Implementation and examples
The methodological approach presented in the paper is
implemented in the adegenet package [6] for the R soft-
ware [27]. The function find.clusters runs successive K-
means for a range of k values, and computes the BIC of

the corresponding models. The basic K-means procedure
is implemented by the function kmeans in the stats pack-
age [27]. DAPC is implemented as the function dapc, and
relies on procedures from ade4 [55,59,60] and MASS [61]
to perform PCA (dudi.pca) and DA (lda). Both find.clus-
ters and dapc can be used with any quantitative data, and
have specific implementations for genetic data. The analy-
sis of the four simulated datasets presented in Figures 4
and 5 can be reproduced by executing the example of the
dataset dapcIllus. Similarly, analyses of the extended
HGDP-CEPH and of the seasonal influenza (H3N2) data
can be reproduced by executing the example of the data-
sets eHGDP and H3N2, respectively. Documentation and
support can be found at the adegenet website (http://ade-
genet.r-forge.r-project.org/).
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