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LINEAR PROGRAMMING  
ORI 391Q.5 (18820) 

 
PROFESSOR: J. F. Bard 

OFFICE: ETC 5.126, 471-3076 

EMAIL: jbard@utexas.edu 

WWW: http://www.me.utexas.edu/~bard/ 

PREREQUISITES: An Introduction to Operations Research course such as ME 366M (OR 
Methods), ME 366L (OR Models) or equivalent; an understanding of linear 
algebra; a working knowledge of at least one computer programming language 
(e.g., C++, VBA, Java).  
 

TEXTS  Required: Dimitris Bertsimas and John N. Tsitsiklis, Introduction to Linear Optimization, 
Athena Scientific, Belmont, MA, 1997. 
http://www.athenasc.com/linoptbook.html 
 

Recommended: Chapter 2, Linear Programming, from Practical Bilevel Programming, by J. F. 
Bard, Kluwer Academic Press, Boston, 1999 
 

Excel Add-Ins: http://www.me.utexas.edu/~jensen/ORMM/ Follow instructions for loading and 
using. 
 

OBJECTIVES: To develop a thorough and complete understanding of linear programming in 
order to be able to undertake more advanced work in optimization.  This will be 
achieved by a detailed presentation of theory, a discussion of applications, and 
the development of related software. 

 
GENERAL COURSE POLICIES 
 
HOMEWORK: Homework and computer assignments can be done in teams of 3 or 4 students. 

Dates will be posted to indicate when these assignments are due.  
 

SOLUTIONS: All solutions to the homework assignments and exams will be posted on the 
Canvas website. 
 

EXAMS:  All exams are open book and open notes.  All students must take the exams when 
scheduled, including the final –– no exceptions (dates on exams 1 and 2 are subject 
to minor changes).  There will be NO make-up exams and there will be NO 
incompletes in the course; every student will get a grade.  If you would like to 
review your final exam, please do so no later than one week after the next semester 
begins (fall, spring, or summer).  After that time, all exams and other unreturned 
class material will be discarded. 
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GRADING: Homework  8% 

Programs  7% 
First Exam  20% 
Second Exam  25% 
Final Exam  40% 

 
Arithmetic errors on exams and homework are usually penalized a few points.  
Conceptual errors or errors in logic are penalized more severely.  On exams, 
always show your computations and logic that led to your solution, label the 
solution, and cross out any work that you do not want graded.  If your exam 
contains erroneous information or computations, even if you have the correct 
solution, you will still be penalized.  
 
Necessary (but not sufficient) conditions for receiving a grade of A in the course 
are either an A on the first two examines or an A on the final and at least a high B 
on the first two exams. An A on the two midterms and a C on the final will likely 
result in a B in the course.  Analogous requirements exist for receiving a grade of 
B and so on.  Grades on the homeworks and programs are used to evaluate 
borderline students.  All students must take the final on the scheduled date. 
 

RE-GRADING: If you feel that you weren't graded fairly on an exam question, first look at the 
solution, then write a note to me explaining how your answer compares to the 
posted solution and why you think that you deserve more credit.  Hand in your 
note and exam to me no later than 2 weeks after the exam is returned. 
 

EXTRA CREDIT: There will be NO extra assignments for those wishing to try to improve their 
overall grade. 
 

DISHONESTY: University policies for academic dishonesty will be strictly followed.  Students 
found cheating on any exam will receive a grade of “F” in the course.  Homework 
and other assignments turned in that do not represent the student’s original work 
will receive a grade of zero. 
 

DISABILITIES:
  

The University of Texas provides upon request academic adjustments for students 
with documented disabilities.  For more information, contact the Division of 
Diversity and Community Engagement, Services for Students with Disabilities, 
512-471-6259, http://diversity.utexas.edu/disability/. 
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LP Homework Assignments 

 

CHAPTER TOPIC PROBLEMS HW # Due† 

1.2 
1.5 

Problem Formulation 
Review of Linear Algebra 

1.9, 1.11, 1.15, 1.16, 1.17 1 9/12 

 
1.3 

 
Piecewise Linear Problems 

 
1.3a 1.4, 1.5, 1.8 

 
2 

 
9/19 

 
2, 3.6 

4.8-4.9 

 
Geometry of the 
Simplex Method 

 
2.2, 2.6(a)b, 2.10c, 2.17, 2.22d  
4.41, 4.42, 4.44e 

 
3 
4 

 
9/28 
10/5 

 
1.1, 3.1-3.3, 3.5 

 
The Simplex Method 

 
3.2, 3.4, 3.12, 3.17, 3.20f 

 
5 

 
10/12 

 
3.3 

 
Revised Simplex Method 

 
3.6, 3.17h, 3.21i, 3.23j 

 
6 

 
10/19 

 
4 

 
Duality 

 
4.1, 4.4, 4.7, 4.9, (4.19a,bg 
optional) 

 
7 

 
10/26 

 
3.3, 3.7 

 
Efficient Procedures for 
Computing Inverse 

 
Handout 

  

 
4.5 

 
Dual Simplex Algorithm 

 
Handoutk 

 
8 

 
11/9 

 
5.1-5.4 

 
Sensitivity Analysis 

 
5.1, 5.2l, 5.6m, 5.8 

 
9 

 
11/21 

 
5.5 

 
Parametric Programming 

 
5.12n, 5.14o 

 
10 

 
 

 
Notes 

 
Bounded Variables 

 
3.25p (optional) 

 
11 

 

 
8.1, 9.4-9.6 

 
Interior Point Methods 

 
9.11, 9.12 (optional), 9.15q 

 
12 

 
11/30 

 
7.1, 7.2, 7.5, 7.9, 7.10 

6.4 

 
Network Flow Programming 

Decomposition Techniques 

   

 

†Due dates may change depending on the material covered each week. 
 
a Note that f(x) = max{1–x,  0,  2x–4}. 
b Make use of the fact that Λ is in standard form and that a BFS must have n active constraints. 
c For part (a), recall that a BFS is a point while a basis is a set of columns. 
d For part (a), let S ≡ P × Q = {(x, y) : x ∈ P, y ∈ Q}, let T ≡ P + Q and make use of Corollary 2.5.  That 
is, let (x,y) be x in Corollary 2.5, let z be y.  (What does the A matrix in the corollary have to be, and what 
are the equivalences of S and T?) For part (b), make use of Definition 2.7, which says that if x is a vertex 
of some polyhedron P ⊂ ℜn, then there exists a c ∈ ℜn for which x is a unique minimizer of cx for all x ∈ 
P.  Consider x for y fixed and vice versa. 
e For part (b) of Exercise 4.44, you cannot use solve the extreme homogeneous problem to find extreme 
rays. Put homogeneous problem in the form Ad ≥ 0, and solve for d.  There are two solutions.  See 
Subsection “Rays and Recession Cones” on page 175. 



 
 

- 4 - 

f Part (b) of Exercise 3.20 should be “second” row of tableau; you have to consider different positive and 
negative values for α and β. 
g Consider the primal problem: Minimize {−xj : x ∈ P} 
h Solve by hand using the revised simplex method.  Check your answer with the Linear/Integer Excel 
Add-in that can be downloaded from: http://www.me.utexas.edu/~jensen/ORMM/ Hand in the computer 
solution as well. All the Jensen add-ins should be on the computers in the undergraduate laboratory in 
ETC 2.126.  If not, you can download them from the above URL and use them for the session.  They are 
in a file called jensen.lib.zip and have to be removed before they can be used. Once you do this, open 
Excel and load the add-in called “add_ormm.xla”.  This should put a tab on the Excel menu called “Add-
ins”.  Click the tab and you should see OR_MM on the left.  Click OR_MM and then click “Add 
ORMM”.  A dialog box should appear. Check the Math Programming and LP/IP Solver boxes and then 
click “OK”. Once this is done, click the OR_MM button again and you should see a line that says 
“_Linear/Integer…” When you click this line you will be presented with a dialog box that let’s you define 
a linear program. 
i Solve by hand using the revised simplex method for part (a).  Also solve with Jensen’s Excel add-in.  
For part (b), use the sensitivity results from the Excel solution to try to find the upper bound on p. Given 
the optimal solution, the sensitivity report tells you how large (upper bound) and how small (lower 
bound) each objective function and right-hand-side coefficient can get without affecting the optimality of 
the current basis. (Although this is all you are expected to do, the calculations will not be correct.  Why?)  
j For part (a) in Exercise 3.23, let x* be the current solution such that the first m variables are basic.  Now 
view the problem from the current point x* and let the m basic variables be slacks.  Offer a logical 
explanation why xn has to be positive, and hence basic, in any optimal solution. 
k For Dual Simplex problem #4, let π , β ,  b ,  z  be respectively the dual basic solution, the basis inverse 
matrix, the current right-hand-side vector, and the objective function value.  Let β r be the rth row of the 
current basis inverse β  ≡ B−

1. In the dual simplex algorithm the current components of row r for the 
nonbasic variables are given by   Ar = β rA.  From the problem statement we know that  Ar ≥ 0 so –β rA ≤ 0. 
Now consider π  − λβ r for scalar λ > 0.  Write the dual constraints in vector form. What can you say about 
the dual feasibility of π  − λβ r?  What is the objective function value at this point?  Unbounded? 

Note that there are other was to solve this problem by considering the full tableau of the primal problem 
being solved and writing out its dual.  
l For Exercise 5.2(a) there are several possible answers. You try to make a reasoned argument that the 
determinant of B + δ E is nonzero. What does this imply? Alternatively, you can show that if the first 
column of B cannot be written as a linear combination of the other columns, then never can the first 
column of B + δ E. 
m Part (d) of Exercise 5.6: consider the offer by Company D to be in addition to the lamps that company A 
already has planned to produce. 

Part (e). Should be “What is the minimum decrease…” 
n For part (b) of Exercise 5.12, try to make up a 2-dimensional example, say, where x1 = (1,0), x2 = (0,0), 
x3 = (0,1).   You will need to introduce constraints such that these vectors are extreme points, and that for 
θ = θ*, they are all optimal. (For what objective function are all feasible points optimal?) To complete the 
example you need to specify c and d in the objective function given by c + θd. 
o For part (a) of Exercise 5.14, let x1 be solution when θ = 10 and x2 the solution with θ = –10.  For part 
(d), try to make up an example with 2 variables such that f(θ) is neither convex nor concave. 
p Replace the last sentence of part (a) with “Also, show that it is nondegenerate if and only if xi ≠ 0 and xi 
≠ ui for every basic variable xi.” 
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q Part (b) should read: ds
k  =    Xk

−1 (vk(µk) – Skdx
k ).  Also for part (b), first verify that the values of dk are 

correct by substitution into the expressions in part (a).  Then try to derive the solution in part (b).  Hint: 
one way to do this is solve for dx

k , then ds
k  and then d p

k  in this order. Take advantage of the fact that 

Adx
k  = 0. 



 
 

- 6 - 

 
General References 

 
1. M. S. Bazaraa, J. J. Jarvis and H. D. Sherali, Linear Programming and Network Flows, Third Edition, 

John Wiley & Sons, New York, 2005. 
 
2. A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User's Guide, The Scientific Press, South San 

Francisco, 1988. http://www.gams.com/ 
 
3. G.B. Dantzig and M.N. Thapa, Linear Programming 1: Introduction, Springer-Verlag, New York, 

1997. 
 
4. G.B. Dantzig and M.N. Thapa, Linear Programming 2: Theory and Extensions, Springer-Verlag, 

New York, 2003. 
 
5. S. Gass, Linear Programming, Fourth Edition, McGraw Hill, New York, 1975. 
 
6. G. Hadley, Linear Algebra, Addison-Wesley, Reading, MA, 1973. 

 
7. K. Martin. COIN-OR: Software for the OR Community, Interfaces, Vol. 40, No. 6, 465-476 (2010). 
 
8. Katta F. Murty, Linear Programming, John Wiley & Sons, New York, 1983. 
 
9. G. Strang, Linear Algebra and its Applications, Third Edition, Harcourt Brace Jovanovich, San 

Diego, CA, 1988. 
 
10. Robert J. Vanderbei, Linear Programming: Foundations and Extensions, Third Edition, Springer-

Verlag, New York, 2008. 
 

Reference List for Interior Point Methods 
 
9. I. Adler, N. Karmarker, M. G. Resende and G. Veiga.Data Structures and Programming Techniques 

for the Implementation of Karmarkar's Algorithm, ORSA Journal on Computing, Vol. 1 No. 2, pp. 
84-106 (1989). 

 
10. I. C. Chow, C. L. Monma, and D. F. Shanno. Further Development of a Primal-Dual Interior Point 

Method, ORSA Journal on Computing, Vol. 2 No. 4, pp. 304-311 (1990). 
 
11. J. N. Hooker. Karmarkar's Linear Programming Algorithm, Interfaces, Vol. 16, No. 4, pp. 75-90 

(1986). 
 
12. I. J. Lustig, R. E. Marsten and D. F Shanno. Computational Experience with a Primal-Dual Interior 

Point Method, Linear Algebra and its Applications, Vol. 152, pp. 191-222 (1991). 
 
13. R. E. Marsten, M. J. Saltzman, D. F. Shanno, G. S. Pierce, and J. F. Ballintijn. Implementation of a 

Dual Affine Interior Point Algorithm for Linear Programming, ORSA Journal on Computing, Vol. 1 
No. 4, pp. 287-297 (1989). 

 
14. R. E. Marsten, R. Subramanian, M. Saltzman, I. Lustig, and D. Shanno. Interior Point Methods for 

Linear Programming: Just Call Newton, Lagrange, and Fiacco and McCormick, Interfaces, Vol. 20, 
No. 4, pp. 105-116 (1990). 

 



 
 

- 7 - 

15. K. A. McShane, C. L. Monma, and D. Shanno. An Implementation of a Primal-Dual Interior Point 
Method for Linear Programming, ORSA Journal on Computing, Vol. 1 No. 2, pp. 70-83 (1989). 

 
16. S. Mehrotra.. Implementations of affine scaling methods: Approximate solutions of systems of linear 

equations using preconditioned conjugate gradient method, ORSA Journal on Computing, Vol. 4, No. 
2, pp. 102-118 (1992). 

 
17. T. Terlaky. Twenty-Five Years of Interior Point Methods, Tutorials in Operations Research, Chapter 

1, pp. 1-33, INFORMS (2009). 
 
 


