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ALGORITHMS FOR MIXED INTEGER PROGRAMMING  

(ORI 391Q.6) 
 
PROFESSOR: J. F. Bard 
 
OFFICE: ETC 5.126, 471-3076 
 
EMAIL: jbard@utexas.edu 
 
PREREQUISITES: Graduate courses in linear programming and integer programming; a working 

knowledge of at least one computer language. 
 
TEXTS  Required: G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, John 

Wiley & Sons, New York, 1988.  (Out of print. Try Internet.) 
 
    Recommended: D. L. Applegate, R. E. Bixby, V. Chvátal and W. J. Cook The Traveling Salesman 

Problem: A Computational Study, Princeton University Press, Princeton, NJ, 2006. 
 

E. L. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, The Traveling Salesman 
Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, New 
York, 1984. 

 
OBJECTIVE: Over the last few years great strides have been made in providing optimal or near-

optimal solutions to large-scale mixed integer programming (MIP) problems.  The 
aim of this course is to investigate many of the techniques that have been 
developed for this purpose.  These include the use of intelligent heuristics, 
decomposition and column generation techniques, polyhedral theory, as well as ad 
hoc procedures.  In fact, it is rare that any one technique can be applied 
successfully to solve MIPs that arise in practice.  What is needed is a strategy that 
combines insights about a particular problem with lower bounding procedures, 
limited enumeration, and simple methods for quickly finding good feasible 
solutions.  Examples taken from industry will serve as a backdrop to the class 
discussion.  Emphasis will be placed on the development of computational 
software. 

 
GRADING:  Homework - 10% 

 Programs - 10% 

 Project - 25% 

 Midterm Exam - 25% 

 Final Exam - 30% 
 
NOTE: Homework that is one class late will be penalized 10%; it will not be accepted after 

that date.  All students must take the exams when scheduled.  There will be NO 
make-up exams and there will be NO incompletes in the course; every student will 
get a grade. 

 
 If you would like to review your final exam, please do so no later than one week 

after the next semester begins (fall, spring, or summer).  After that time, all exams 
and other retrieved class material will be discarded. 

 
EXTRA CREDIT: There will be NO extra assignments for those wishing to try to improve their 

overall grade. 
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DISHONESTY: University policies for academic dishonesty will be strictly followed.  Students 

found cheating on any exam will receive a grade of “F” in the course.  Homework 
and other assignments turned in that do not represent the student’s original work 
will receive a grade of zero. 
 

DISABILITIES:
  

The University of Texas provides upon request academic adjustments for students 
with documented disabilities.  For more information, contact the Division of 
Diversity and Community Engagement, Services for Students with Disabilities, 
512-471-6259, http://diversity.utexas.edu/disability/. 
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  Course Schedule  

Chapter Pages Topic Assignments 

I.1 
 

3-20 Introduction 
 Modeling 
 Preprocessing [4] 
 Computational complexity 
 Commercial codes 

HW #1 (Railcar pumps) 

 Due: September 10 

I.2 

II.3 

II.5 

41-49 

323-337 

409-412 

Lagrangian Relaxation  
 Power plant scheduling [7] 
 Tool switching on an FMS [6] 
 Bundle method [16], [19] 
 Generating multipliers [8], [11] 
 Facility location [13] 
 

HW #2 from N&W page 346, 
Section II.4 (see below): Exercises 
13 (use Eq. (6.1) to find optimal 
multiplier values), 14, 16 (first 
objective function term should be 
preceded by a “−” sign; see note in 
problem statement below) 

 Due: September 24 

II.3 

II.5 

337-341 

412-417 
Benders Decomposition 
 Equipment selection [47] 

HW #3 (handout- Benders) 
 Due: October 15 

†  Column Generation (D-W Decomposition) 
 Vehicle routing [33], [36] 
 Machine scheduling [31] 
 

HW #4 (handout – ODIMCF) 

 Due: October 29 

HW #5 (handout – DW Decomp) 
 Due: November 3 

I.4 

II.1 

II.2 

83-109 

205-217 

259-290 

Polyhedral Theory - Valid Inequalities 
 General integer programs [46] 
 TSP [44], [48] 
 Crew Scheduling [49] 

HW #6 from N&W page 109, 
Section I.4 (see below): Exercises 
1, 2. 
Page 291, Section II.2: Exercise 3 
[part i) should be = mn + n – m] 
 
Due: November 24 

II.5 407-409 Heuristics (GRASP, smoothing) 
 Vehicle routing [25] 
 American Airlines [26] 
 Smoothing [56] 
 Tabu search vs. GRASP [28] 

 

  General Decomposition 
 Personnel scheduling [55] 

 

 
†Chapter 11, L.A. Wolsey, Integer Programming, Wiley & Sons, 1998. 
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