Differentiation Formulas, Rules, and Examples

Rules

Here, k is a constant, and f, g, and h are differentiable functions.

1. Derivative of a constant:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[k]=0
$$

2. Constant-multiple Rule:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[k f(x)]=k f^{\prime}(x)
$$

3. Sum-difference Rule:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)
$$

4. Power Rule
$\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{k}\right]=k x^{k-1}$
5. Product Rule:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[f(x) g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
$$

6. Product Rule (three functions):
$\frac{\mathrm{d}}{\mathrm{d} x}[f(x) g(x) h(x)]=f g h^{\prime}+f g^{\prime} h+f^{\prime} g h$
7. Quotient Rule:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{(g(x))^{2}}
$$

8. Reciprocal Rule:
$\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{1}{g(x)}\right]=-\frac{g^{\prime}(x)}{(g(x))^{2}}$
9. Chain Rule:
$\frac{\mathrm{d}}{\mathrm{d} x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Derivatives of Common Functions

Here, a is a constant.

1. $\frac{\mathrm{d}}{\mathrm{d} x}\left[e^{x}\right]=e^{x}$
2. $\frac{\mathrm{d}}{\mathrm{d} x}[\ln x]=\frac{1}{x}, \quad x>0$
3. $\frac{\mathrm{d}}{\mathrm{d} x}\left[a^{x}\right]=(\ln a) \cdot a^{x}$
4. $\frac{\mathrm{d}}{\mathrm{d} x}\left[\log _{a} x\right]=\frac{1}{x \ln a}$
5. $\frac{\mathrm{d}}{\mathrm{d} x}[\sin x]=\cos x$
6. $\frac{\mathrm{d}}{\mathrm{d} x}[\cos x]=-\sin x$
7. $\frac{\mathrm{d}}{\mathrm{d} x}[\tan x]=\sec ^{2} x$
8. $\frac{\mathrm{d}}{\mathrm{d} x}[\sec x]=\sec x \tan x$
9. $\frac{\mathrm{d}}{\mathrm{d} x}[\csc x]=-\csc x \cot x$
10. $\frac{\mathrm{d}}{\mathrm{d} x}[\cot x]=-\csc ^{2} x$
11. $\frac{\mathrm{d}}{\mathrm{d} x}\left[\sin ^{-1} x\right]=\frac{1}{\sqrt{1-x^{2}}},|x|<1$
12. $\frac{\mathrm{d}}{\mathrm{d} x}\left[\tan ^{-1} x\right]=\frac{1}{1+x^{2}}$
13. $\frac{\mathrm{d}}{\mathrm{d} x}\left[\sec ^{-1} x\right]=\frac{1}{|x| \sqrt{x^{2}-1}},|x|>1$
14. $\frac{\mathrm{d}}{\mathrm{d} x}\left[\cos ^{-1} x\right]=-\frac{1}{\sqrt{1-x^{2}}},|x|<1$
15. $\frac{\mathrm{d}}{\mathrm{d} x}\left[\cot ^{-1} x\right]=-\frac{1}{1+x^{2}}$
16. $\frac{\mathrm{d}}{\mathrm{d} x}\left[\csc ^{-1} x\right]=-\frac{1}{|x| \sqrt{x^{2}-1}},|x|>1$

The conditions on $|x|$ in (11), (13), (14), and (16) are so that the values under the square roots are positive.

Differentiation Formulas, Rules, and Examples

Example 1. Using the Product Rule, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{x} \cos x\right]=e^{x} \frac{\mathrm{~d}}{\mathrm{~d} x}[\cos x]+\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{x}\right] \cos x=-e^{x} \sin x+e^{x} \cos x
$$

Example 2. Using the Chain Rule, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\tan ^{-1}\left(\frac{x}{2}\right)\right]=\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\frac{x}{2}\right]=\frac{\frac{1}{2}}{1+\frac{x^{2}}{4}}=\frac{2}{4+x^{2}}
$$

To obtain the last equality, multiply the numerator and denominator by 4 .
Example 3. Using the Product Rule for three functions, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[x e^{x} \cos x\right]=x e^{x}(-\sin x)+x\left(e^{x}\right) \cos x+(1) e^{x} \cos x=-x e^{x} \sin x+x e^{x} \cos x+e^{x} \cos x
$$

Example 4. We can use the Quotient Rule to get the derivative of $\tan x$ as follows:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}[\tan x]=\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{\sin x}{\cos x}\right] & =\frac{(\cos x) \cos x-(-\sin x) \sin x}{(\cos x)^{2}} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x
\end{aligned}
$$

Example 5. Using the Chain Rule, we compute

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{x^{3}}\right]=\left(e^{x^{3}}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\left[x^{3}\right]\right)=3 x^{2} e^{x^{3}}
$$

Note that the derivative of e^{x} is just e^{x}, so that's why $e^{x^{3}}$ doesn't appear to change here.
Example 6. Again, using the Chain Rule gives us

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\cos \left(e^{x}\right)\right]=\left(-\sin \left(e^{x}\right)\right)\left(e^{x}\right)=-e^{x} \sin \left(e^{x}\right)
$$

