
Eigenvalues and Eigenvectors

What is an Eigenvector?

Consider the matrix A and vectors v1, v2, and v3:

A =

(
1 2
2 1

)
, v1 =

(
1
2

)
, v2 =

(
1
−1

)
, v3 =

(
1
1

)
.

We compute Av1,Av2, and Av3:

Av1 =

(
1 2
2 1

)(
1
2

)
=

(
5
4

)
Av2 =

(
1 2
2 1

)(
1
−1

)
=

(
−1
1

)
Av3 =

(
1 2
2 1

)(
1
1

)
=

(
3
3

)
.

The first product, Av1 isn’t too special, but there is something interesting about Av2 and Av3. In each
case, multiplying by A gives a scalar multiple of that vector. In particular, Av2 = −v2, and Av3 = 3v3.

A vector v 6= 0 is an eigenvector for a matrix A if there is some scalar λ, called an eigenvalue, such
that

Av = λv .

Note that we do not count the zero vector, 0, as an eigenvector. We do, however, count 0 as a possible
eigenvalue. Also, each eigenvalue λ can have two or more corresponding linearly independent eigenvectors.
In our example above, v2 and v3 were eigenvectors of A with respective eigenvalues −1 and 3. Eigenvalues
and eigenvectors have myriad applications in Linear Algebra, Differential Equations, and beyond. We will
focus on finding the eigenvalues and eigenvectors from a matrix.

NOTE: It’s better to think of the eigenvalues of a matrix A having associated eigenvectors rather than
of the eigenvectors of a matrix having associated eigenvalues (as we defined it here). When using matrices
to represent linear transformations, the matrix depends on the choice of basis. In such situations, the eigen-
vectors will depend on the basis used, but the eigenvalues won’t.

Finding Eigenvalues

Here we explain the theory behind finding eigenvalues. If you’re not interested in this, then you can
skip ahead to the example. For a given matrix A, each eigenvalue λ has a corresponding eigenvector v(λ).
Don’t confuse this with exponentiation–it doesn’t usually make sense to square a vector. The definition of
an eigenvector and an eigenvalue gives

Av(λ) = λv(λ) = λ
(
Iv(λ)

)
,

where I is the identity matrix. Subtracting λ
(
Iv(λ)

)
from both sides gives

(A− λI)v(λ) = 0 .

This equation and the fact that v(λ) is a nonzero vector imply that the matrix A − λI is singular (or
non-invertible), and so has a determinant of 0. Thus,

det (A− λI) = 0

is the condition we will use to find our eigenvalues. This determinant will give a polynomial in λ, which we
call the characteristic polynomial of the matrix A.

Example 1. Find the eigenvalues of the matrix A described in the introduction.
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We must compute the determinant of A− λI. Here, I is the 2× 2 identity matrix. This gives

A− λI =

(
1 2
2 1

)
− λ

(
1 0
0 1

)
=

(
1− λ 2

2 1− λ

)
.

We now compute the determinant of this matrix:

0 = det(A− λI) =

∣∣∣∣1− λ 2
2 1− λ

∣∣∣∣ = (1− λ)2 − 4 = λ2 − 2λ− 3 .

To solve for λ, we set our characteristic polynomial λ2 − 2λ − 3 equal to 0. We then solve for λ via
factoring:

0 = λ2 − 2λ− 3 = (λ− 3)(λ+ 1) .

This gives us our eigenvalues of λ = −1 and λ = 3.

Finding Eigenvectors

Once we have found our eigenvalues, we want to solve

(A− λI)v(λ) = 0

for each eigenvalue λ. In our example, we must do this for both λ = −1 and λ = 3.

Example 1, continued. Find the eigenvectors of the matrix A described in the introduction.

So far we’ve found that A has two eigenvalues: λ = −1 and λ = 3. For each eigenvalue, we must find
one or more corresponding eigenvectors.

• λ = −1: The matrix equation we must solve is:

(A + I)v(−1) = 0 −→
(

2 2
2 2

)(
v1
v2

)
=

(
0
0

)
.

Row-reduction (subtracting Row 1 from Row 2 and then scaling Row 1 by 1
2 ) gives(

1 1
0 0

)(
v1
v2

)
=

(
0
0

)
,

which gives the single (nontrivial) equation v1 = −v2. Note that we may choose any value we wish for
v1. For simplicity, we set v1 = 1, giving v2 = −1. Notice how this vector was exactly the vector v2 in
the introduction that had eigenvalue −1. Since this equation constrains both v1 and v2, we can’t find
any other linearly independent vectors.

• λ = 3: We must solve

(A− 3I)v(−1) = 0 −→
(
−2 2
2 −2

)(
v1
v2

)
=

(
0
0

)
.

Row-reduction (adding Row 1 to Row 2 and then scaling Row 1 by − 1
2 ) gives(

1 −1
0 0

)(
v1
v2

)
=

(
0
0

)
,

which gives the single (nontrivial) equation v1 = v2. As before, we can choose whatever value we like
for v1, so we choose v1 = v2 = 1. Again, the equation constrains both v1 and v2, so we can’t find any
more linearly independent vectors. Notice how this is the vector v3 from the introduction, which had
eigenvalue 3.
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To conclude, we have found that our matrix A has eigenvalues −1 and 3, with corresponding eigenvectors

v(−1) =

(
1
−1

)
and v(3) =

(
1
1

)
.

Another Example

Example 2. Find the eigenvalues and eigenvectors of the following matrix:

A =

1 4 1
0 2 0
2 0 0


We compute the characteristic polynomial of this matrix:

0 = det(A− λI) =

∣∣∣∣∣∣
1− λ 4 1

0 2− λ 0
2 0 −λ

∣∣∣∣∣∣ = −λ(1− λ)(2− λ)− 2(2− λ) ,

which simplifies to

0 = (2− λ)(−λ(1− λ)− 2) = (2− λ)(−λ+ λ2 − 2)

= (2− λ)(λ− 2)(λ+ 1)

= −(λ− 2)2(λ+ 1) .

λ = −1 and λ = 2 both solve this, so they are our eigenvalues.

• λ = −1: We must solve

(A + I)v(−1) = 0 −→

2 4 1
0 3 0
2 0 1

v1v2
v3

 =

0
0
0

 .

We can row-reduce this (first try subtracting Row 3 from Row 1):0 1 0
0 0 0
2 0 1

v1v2
v3

 =

0
0
0

 ,

which gives v2 = 0 and 2v1 = −v3. We can get an eigenvector by setting v1 = 1, v2 = 0, and v3 = −2.

• λ = 2: We must solve

(A− 2I)v(2) = 0 −→

−1 4 1
0 0 0
2 0 −2

v1v2
v3

 =

0
0
0

 .

We can row-reduce this (Scale Row 3 by 1
2 and then add it to Row 1) to get0 1 0

0 0 0
1 0 −1

v1v2
v3

 =

0
0
0

 ,

This gives v2 = 0 and v1 = v3, so we choose v1 = 1 and v3 = 1.

To sum up, we have eigenvalues −1 and 2 with corresponding eigenvectors

v(−1) =

 1
0
−2

 and v(2) =

1
0
1

 .

Note how even though the matrix is a 3 × 3 matrix, we have only two eigenvalues and two linearly
independent vectors.
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