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Exact Equations

In this handout, our equations will be of the form
M(t,y)+ N(t,y)y =0.
The above equation is exact if the following condition holds:
My (t,y) = Ne(t,y)

where M, denotes the partial derivative of M with respect to y, and N; denotes the partial derivative of N
with respect to t. We choose to show that method for dealing with exact equations through examples.

Ezample 1. Solve 6y + 3t> + 6ty’ = 0.

For this first example, we’ll touch on the theory behind the method for solving exact equations. Let’s
identify M (t,y) and N(t,y) first. N(t,y) is the part that is multiplied by ¢, so here N(¢,y) = 6t. M(t,y)
is the rest of the equation, 6y + 3t2. To check whether this equation is exact, we compute

My(t,y) = [6y+362] Ny(t,y) = [61],
6 - 6.

The differential equation is indeed exact. Now, let’s suppose that there is a function v (¢,y) such that
wt<t7 y) = M(t7 y) , and wy(tv y) = N(t’ y) .

In fact, such a v exists whenever the differential equation is exact, but we won’t discuss why. Then, by
writing y = y(t) and ¥(t,y) = ¥(t, y(t)), the Chain Rule for partial derivatives gives us

Uy + ¢yy/ =0
< ity =0
w(t7y) =,

for some constant c¢. Our goal for solving exact equations is to find this function ¥(¢,y). We now turn
back to our original problem, which we have shown was an exact equation. Then by the discussion above,
we assume
Yy =M =6y +3t>, and 1, =N =6t,

which allows us to solve for ¥. We compute
b= /Mdt:/6y+3t2dt:6ty+t3+h(y),

where h(y) is some function of y. The h(y) acts as the “constant of integration” when we integrate with
respect to t since the partial derivative of h(y) with respect to ¢ is 0. Taking the derivative of both sides
with respect to y gives

Py =6t + h'(y).

Recall that ¢, = N = 6t, so this implies that h'(y) = 0, so h(y) is a constant. We conclude that
¥(t,y) = 6ty + t3. We write our general solution as follows:
U(t,y) =6ty + 13 = ¢,

where ¢ is an arbitrary constant. What happened to h(y)? Since h(y) is a constant, we can move it to the
right-hand side with the other constant, and the result is again a constant. This is an implicit solution
for y. We do not have an explicit “y =" equation, but we could use this implicit solution to approximate y
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itself. In fact, we could isolate y algebraically here if we wished, though we cannot always do this.
Ezample 2. Solve 2ty cos (t*) + 2ysin (¢2) y' = 0.
We first identify M and N. We see that
M (t,y) = 2ty? cos (tz) , and N(t,y) = 2ysin (tz) .
Next, we verify that the equation is exact by checking whether M, = IV;. To this end, we compute
M, = [2ty2 cos (t2)]y Ny = [2y sin (t2)]t
4ty cos (t2) = 4ty cos (t2) ,

so the equation is exact. We then calculate
P = /Mdt = /Qty cos (tz) dt = y®sin (tz) + h(y).

As before, we must determine h(y), which we can do by examining 1, = 2y sin (tg) + /' (y) and using the

fact that ¢, = N = 2ysin (¢?) to conclude that h/(y) = 0, so h(y) is a constant. This gives us a final answer
of

Y(t,y) = y? sin (t2) =c.
Alternatively, we could compute ¢ = [ Ndy = y*sin (t2) + g(t), where g(t) is solely a function of t.
Then we have

y?sin (%) + h(y) = y*sin (%) + g(1),
from which we conclude that ¢(t) = h(y) = 0.

DISCLAIMER: This handout uses notation and methods from the textbook commonly used for M 427J
courses taught at the University of Austin:
Braun, Martin, Differential Equations and Their Applications, 4™ ed. Springer
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