
First-Order Equations:
Exact Equations

Exact Equations

In this handout, our equations will be of the form

M(t, y) +N(t, y)y′ = 0 .

The above equation is exact if the following condition holds:

My(t, y) = Nt(t, y) ,

where My denotes the partial derivative of M with respect to y, and Nt denotes the partial derivative of N
with respect to t. We choose to show that method for dealing with exact equations through examples.

Example 1. Solve 6y + 3t2 + 6ty′ = 0.

For this first example, we’ll touch on the theory behind the method for solving exact equations. Let’s
identify M(t, y) and N(t, y) first. N(t, y) is the part that is multiplied by y′, so here N(t, y) = 6t. M(t, y)
is the rest of the equation, 6y + 3t2. To check whether this equation is exact, we compute

My(t, y) =
[
6y + 3t2

]
y

Nt(t, y) = [6t]t
6 = 6 .

The differential equation is indeed exact. Now, let’s suppose that there is a function ψ(t, y) such that

ψt(t, y) = M(t, y) , and ψy(t, y) = N(t, y) .

In fact, such a ψ exists whenever the differential equation is exact, but we won’t discuss why. Then, by
writing y = y(t) and ψ(t, y) = ψ(t, y(t)), the Chain Rule for partial derivatives gives us

ψt + ψyy
′ = 0

d

dt
[ψ(t, y(t))] = 0

ψ(t, y) = c ,

for some constant c. Our goal for solving exact equations is to find this function ψ(t, y). We now turn
back to our original problem, which we have shown was an exact equation. Then by the discussion above,
we assume

ψt = M = 6y + 3t2 , and ψy = N = 6t ,

which allows us to solve for ψ. We compute

ψ =

∫
M dt =

∫
6y + 3t2 dt = 6ty + t3 + h(y) ,

where h(y) is some function of y. The h(y) acts as the “constant of integration” when we integrate with
respect to t since the partial derivative of h(y) with respect to t is 0. Taking the derivative of both sides
with respect to y gives

ψy = 6t+ h′(y) .

Recall that ψy = N = 6t, so this implies that h′(y) = 0, so h(y) is a constant. We conclude that
ψ(t, y) = 6ty + t3. We write our general solution as follows:

ψ(t, y) = 6ty + t3 = c ,

where c is an arbitrary constant. What happened to h(y)? Since h(y) is a constant, we can move it to the
right-hand side with the other constant, and the result is again a constant. This is an implicit solution
for y. We do not have an explicit “y =” equation, but we could use this implicit solution to approximate y

1



First-Order Equations:
Exact Equations

itself. In fact, we could isolate y algebraically here if we wished, though we cannot always do this.

Example 2. Solve 2ty2 cos
(
t2
)

+ 2y sin
(
t2
)
y′ = 0.

We first identify M and N . We see that

M(t, y) = 2ty2 cos
(
t2
)
, and N(t, y) = 2y sin

(
t2
)
.

Next, we verify that the equation is exact by checking whether My = Nt. To this end, we compute

My =
[
2ty2 cos

(
t2
)]

y
Nt =

[
2y sin

(
t2
)]

t

4ty cos
(
t2
)

= 4ty cos
(
t2
)
,

so the equation is exact. We then calculate

ψ =

∫
M dt =

∫
2ty cos

(
t2
)

dt = y2 sin
(
t2
)

+ h(y) .

As before, we must determine h(y), which we can do by examining ψy = 2y sin
(
t2
)

+h′(y) and using the

fact that ψy = N = 2y sin
(
t2
)

to conclude that h′(y) = 0, so h(y) is a constant. This gives us a final answer
of

ψ(t, y) = y2 sin
(
t2
)

= c .

Alternatively, we could compute ψ =
∫
N dy = y2 sin

(
t2
)

+ g(t), where g(t) is solely a function of t.
Then we have

y2 sin
(
t2
)

+ h(y) = y2 sin
(
t2
)

+ g(t) ,

from which we conclude that g(t) = h(y) = 0.

DISCLAIMER: This handout uses notation and methods from the textbook commonly used for M 427J
courses taught at the University of Austin:
Braun, Martin, Differential Equations and Their Applications, 4th ed. Springer

December 5, 1992.
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