Exact Equations

In this handout, our equations will be of the form

$$
M(t, y)+N(t, y) y^{\prime}=0
$$

The above equation is exact if the following condition holds:

$$
M_{y}(t, y)=N_{t}(t, y),
$$

where M_{y} denotes the partial derivative of M with respect to y, and N_{t} denotes the partial derivative of N with respect to t. We choose to show that method for dealing with exact equations through examples.

Example 1. Solve $6 y+3 t^{2}+6 t y^{\prime}=0$.
For this first example, we'll touch on the theory behind the method for solving exact equations. Let's identify $M(t, y)$ and $N(t, y)$ first. $N(t, y)$ is the part that is multiplied by y^{\prime}, so here $N(t, y)=6 t . M(t, y)$ is the rest of the equation, $6 y+3 t^{2}$. To check whether this equation is exact, we compute

$$
\begin{gathered}
M_{y}(t, y)=\left[6 y+3 t^{2}\right]_{y}=\begin{array}{c}
N_{t}(t, y)=[6 t]_{t} \\
6
\end{array}=6 .
\end{gathered}
$$

The differential equation is indeed exact. Now, let's suppose that there is a function $\psi(t, y)$ such that

$$
\psi_{t}(t, y)=M(t, y), \quad \text { and } \quad \psi_{y}(t, y)=N(t, y)
$$

In fact, such a ψ exists whenever the differential equation is exact, but we won't discuss why. Then, by writing $y=y(t)$ and $\psi(t, y)=\psi(t, y(t))$, the Chain Rule for partial derivatives gives us

$$
\begin{aligned}
\psi_{t}+\psi_{y} y^{\prime} & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}[\psi(t, y(t))] & =0 \\
\psi(t, y) & =c
\end{aligned}
$$

for some constant c. Our goal for solving exact equations is to find this function $\psi(t, y)$. We now turn back to our original problem, which we have shown was an exact equation. Then by the discussion above, we assume

$$
\psi_{t}=M=6 y+3 t^{2}, \quad \text { and } \quad \psi_{y}=N=6 t
$$

which allows us to solve for ψ. We compute

$$
\psi=\int M \mathrm{~d} t=\int 6 y+3 t^{2} \mathrm{~d} t=6 t y+t^{3}+h(y)
$$

where $h(y)$ is some function of y. The $h(y)$ acts as the "constant of integration" when we integrate with respect to t since the partial derivative of $h(y)$ with respect to t is 0 . Taking the derivative of both sides with respect to y gives

$$
\psi_{y}=6 t+h^{\prime}(y)
$$

Recall that $\psi_{y}=N=6 t$, so this implies that $h^{\prime}(y)=0$, so $h(y)$ is a constant. We conclude that $\psi(t, y)=6 t y+t^{3}$. We write our general solution as follows:

$$
\psi(t, y)=6 t y+t^{3}=c
$$

where c is an arbitrary constant. What happened to $h(y)$? Since $h(y)$ is a constant, we can move it to the right-hand side with the other constant, and the result is again a constant. This is an implicit solution for y. We do not have an explicit " $y=$ " equation, but we could use this implicit solution to approximate y
itself. In fact, we could isolate y algebraically here if we wished, though we cannot always do this.
Example 2. Solve $2 t y^{2} \cos \left(t^{2}\right)+2 y \sin \left(t^{2}\right) y^{\prime}=0$.
We first identify M and N. We see that

$$
M(t, y)=2 t y^{2} \cos \left(t^{2}\right), \quad \text { and } \quad N(t, y)=2 y \sin \left(t^{2}\right)
$$

Next, we verify that the equation is exact by checking whether $M_{y}=N_{t}$. To this end, we compute

$$
\begin{aligned}
M_{y}= & {\left[2 t y^{2} \cos \left(t^{2}\right)\right]_{y} \quad N_{t}=\left[2 y \sin \left(t^{2}\right)\right]_{t} } \\
4 t y \cos \left(t^{2}\right)= & 4 t y \cos \left(t^{2}\right),
\end{aligned}
$$

so the equation is exact. We then calculate

$$
\psi=\int M \mathrm{~d} t=\int 2 t y \cos \left(t^{2}\right) \mathrm{d} t=y^{2} \sin \left(t^{2}\right)+h(y)
$$

As before, we must determine $h(y)$, which we can do by examining $\psi_{y}=2 y \sin \left(t^{2}\right)+h^{\prime}(y)$ and using the fact that $\psi_{y}=N=2 y \sin \left(t^{2}\right)$ to conclude that $h^{\prime}(y)=0$, so $h(y)$ is a constant. This gives us a final answer of

$$
\psi(t, y)=y^{2} \sin \left(t^{2}\right)=c
$$

Alternatively, we could compute $\psi=\int N \mathrm{~d} y=y^{2} \sin \left(t^{2}\right)+g(t)$, where $g(t)$ is solely a function of t. Then we have

$$
y^{2} \sin \left(t^{2}\right)+h(y)=y^{2} \sin \left(t^{2}\right)+g(t)
$$

from which we conclude that $g(t)=h(y)=0$.
DISCLAIMER: This handout uses notation and methods from the textbook commonly used for M 427J courses taught at the University of Austin:
Braun, Martin, Differential Equations and Their Applications, $4^{\text {th }}$ ed. Springer
December 5, 1992.

