Exponential Functions

Before we talk about logarithmic functions, or logarithms, we must review exponential functions. An exponential function is a function of the form

$$
f(x)=b^{x}
$$

where b is any positive real number except 1 . We call b the base and x the exponent. We will graph two exponential functions. First, let's graph $f(x)=3^{x}$ by plotting points:

x	$f(x)=3^{x}$
-2	$\frac{1}{9}$
-1	$\frac{1}{3}$
0	1
1	3
2	9

Next, let's graph $g(x)=\left(\frac{1}{2}\right)^{x}$ by plotting points:

x	$g(x)=\left(\frac{1}{2}\right)^{x}$
-2	4
-1	2
0	1
1	$\frac{1}{2}$
2	$\frac{1}{4}$

Notice the following:

1. Both $f(x)$ and $g(x)$ are never negative or zero.
2. For both $f(x)$ and $g(x)$, the y-intercept is at $(0,1)$.

3 . As the x-values get larger, $f(x)$ gets very large, but $g(x)$ approaches 0 .
4. As the x-values get more negative, $f(x)$ approaches 0 , but $g(x)$ gets very large.

The graph $f(x)=3^{x}$ slopes upward because the base is greater than 1 , so multiplying the base by itself results in a larger number. The graph of $g(x)=\left(\frac{1}{2}\right)^{x}$ on the other hand slopes downward because the base is less than 1 , so multiplying the base by itself yields a smaller number. In general, if the base is greater than 1 , the graph will slope upwards, and if the base is less than 1 , the graph will slope downwards. Note that if the base equals 1 , we just get a flat graph since $1^{x}=1$ for all real values of x. This is why we excluded it when we defined exponential functions.

Logarithmic Functions

A logarithmic function is the inverse of an exponential function. What does this mean? Suppose $x=b^{y}$. Here, y is the exponent, and b is the base $(b \neq 1$, and as before we must have $b>0)$. Now we can define the logarithm:

$$
x=b^{y} \text { is equivalent to } \log _{b} x=y \text {, read"log base } b \text { of } x " .
$$

For the logarithm, b is again the base, and x is the argument. The logarithmic function $\log _{b} x$ is the inverse of the exponential function in the sense that it takes in the answer you get from exponentiating (here x in $x=b^{y}$) and retrieves the exponent, y. This may be more easily demonstrated through examples:

$$
\begin{aligned}
8=2^{3} \longleftrightarrow 3 & =\log _{2} 8 \\
9=3^{2} \longleftrightarrow 2 & =\log _{3} 9 \\
1,000=10^{3} \longleftrightarrow 3 & =\log _{10} 1,000 \\
1=3^{0} \longleftrightarrow 0 & =\log _{3} 1 \\
b=b^{1} \longleftrightarrow 1 & =\log _{b} b
\end{aligned}
$$

For any $b>0$ with $b \neq 1, \log _{b} 1=0$ because $b^{0}=1$ for positive b. This fact for logarithms parallels the fact for exponential functions that the y-intercept is always at $(0,1)$. The logarithm (for any base) of 0 or of a negative number does not exist, which parallels the fact that b^{x} is positive for all $b>0$. Below we plot two logarithm functions, $f(x)=\log _{e} x$ (also denoted $\ln x$) and $g(x)=\log _{2}(-x)$:

Recall that $e \approx 2.718$. The plot on the left, $f(x)=\ln x$, is steeper around $x=0$ and is always increasing, but with a rate of growth that falls off as $x \rightarrow \infty$. As previously mentioned, logairthms are not defined for 0 or for negative numbers. The plot on the right is defined for negative values of x because the argument, $-x$, is positive only when x is negative. When computing the logarithms, it's very helpful to remember the equivalence with exponential functions discussed above.

