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Summary

For differential equations of the form ay” + by’ + cy = 0, where a, b, and ¢ are constants, we start with
the guess y = e™. There are three cases:

Type Discriminant General solution

Distinct roots | v/b% — 4ac >0 y(t) = cre™t + cpe™?

Equal roots Vb2 —4dac=0 y(t) = cre™ + cate™
Imaginary roots | vb2 —4dac <0 | y(t) = e (c; cos(Bt) + casin(Bt))

In the third case, Imaginary roots, we use r = a + [i.
Identification

As the title suggests, use this method for linear second-order homogeneous equations with constant
coefficients. These are equations of the form

ay’ +by +cy=0,

where a, b, and ¢ are constants (so no t’s here). For equations of the above form, we assume that our solution
takes the form y = e, where r is a constant for which we must solve (in fact, there are often two r values).
Calculating ¢ and 3" with this assumption and then plugging into the above equation gives

ar?e™ + bre"t 4 ce™ =0,
and dividing both sides by e (which is never 0) gives
ar’ +br4+c¢=0.

Recall from algebra that this equation has at most two solutions, with
—b+ Vb2 — dac
r=--—
2a ’

which is the familiar quadratic formula. From here, there are three possibilities: distinct roots, equal roots,
and imaginary roots.

Distinct Roots: bZ2 —4ac > 0

Consider the equation y” + 4y’ — 5 = 0. Using the guess y = e"* and following the reasoning above gives
us
r24+4r—-5=0,

which we can solve using the quadratic formula or by factoring the above equation into (r 4+ 5)(r — 1) to get
that » = —5,1. We then have two solutions for y:

y=e " and y=e€.
These are two linearly independent solutions, so our general solution is
y(t) = cre™® + cpe,

where ¢, and ¢, are arbitrary constants.

Equal Roots: b%2 —4ac=0



Second-Order Equations:
Constant Coefficients

Now consider the equation y” — 2y’ +y = 0. This gives us
r?—2r4+1=(r—-1>%2=0,

so r = 1. Thus, y = e! is one solution. However, we need a second, linearly independent solution. Using the
method of reduction of order (in the handout of the same name), we use this first solution to determine that
y(t) = te! is another solution to the above equation. Our general solution then takes the form

y(t) = cre’ + cote® .
Imaginary Roots: b? —4ac < 0

Let’s now consider the equation y” +y = 0. This gives r? + 1 = 0. Plugging this into the quadratic
formula, with a = ¢ =1 and b = 0, gives

+v—4  £2i
r= = —

— 4.
2 2 !

This gives us the two solutions y = e* and y = e~*, which gives us

y(t) = Ae' + Be ™,
where A and B are arbitrary (complex) constants. In order to find real solutions, we must first use Euler’s

formula: .
e M = A (cos(put) £ isin(ut))

where A and p are real numbers. Here, A = 0 and p = 1, so we get
y(t) = A(cost + isint) + B (cost — isint)
= (A+ B)cost+ (A — B)isint.

Since A and B are arbitrary complex constants, we can actually make the quantities (A+ B) and (A— B)i
whatever we like, so we may as well replace them with ¢; and cs:

y(t) = c1 cost + cosint.

DISCLAIMER: This handout uses notation and methods from the textbook commonly used for M 427J
courses taught at the University of Austin: Braun, Martin, Differential Equations and Their Applications,
4*h ed. Springer
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