Summary

For differential equations of the form $a y^{\prime \prime}+b y^{\prime}+c y=0$, where a, b, and c are constants, we start with the guess $y=e^{r t}$. There are three cases:

Type	Discriminant	General solution
Distinct roots	$\sqrt{b^{2}-4 a c}>0$	$y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$
Equal roots	$\sqrt{b^{2}-4 a c}=0$	$y(t)=c_{1} e^{r t}+c_{2} t e^{r t}$
Imaginary roots	$\sqrt{b^{2}-4 a c}<0$	$y(t)=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)$

In the third case, Imaginary roots, we use $r=\alpha \pm \beta i$.

Identification

As the title suggests, use this method for linear second-order homogeneous equations with constant coefficients. These are equations of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

where a, b, and c are constants (so no t 's here). For equations of the above form, we assume that our solution takes the form $y=e^{r t}$, where r is a constant for which we must solve (in fact, there are often two r values). Calculating y^{\prime} and $y^{\prime \prime}$ with this assumption and then plugging into the above equation gives

$$
a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0
$$

and dividing both sides by $e^{r t}$ (which is never 0) gives

$$
a r^{2}+b r+c=0
$$

Recall from algebra that this equation has at most two solutions, with

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

which is the familiar quadratic formula. From here, there are three possibilities: distinct roots, equal roots, and imaginary roots.

Distinct Roots: $b^{2}-4 a c>0$
Consider the equation $y^{\prime \prime}+4 y^{\prime}-5=0$. Using the guess $y=e^{r t}$ and following the reasoning above gives us

$$
r^{2}+4 r-5=0
$$

which we can solve using the quadratic formula or by factoring the above equation into $(r+5)(r-1)$ to get that $r=-5,1$. We then have two solutions for y :

$$
y=e^{-5 t} \quad \text { and } \quad y=e^{t}
$$

These are two linearly independent solutions, so our general solution is

$$
y(t)=c_{1} e^{-5 t}+c_{2} e^{t}
$$

where c_{1} and c_{2} are arbitrary constants.
Equal Roots: b $^{\mathbf{2}}-4 \mathrm{ac}=0$

Second-Order Equations:
 Constant Coefficients

Now consider the equation $y^{\prime \prime}-2 y^{\prime}+y=0$. This gives us

$$
r^{2}-2 r+1=(r-1)^{2}=0
$$

so $r=1$. Thus, $y=e^{t}$ is one solution. However, we need a second, linearly independent solution. Using the method of reduction of order (in the handout of the same name), we use this first solution to determine that $y(t)=t e^{t}$ is another solution to the above equation. Our general solution then takes the form

$$
y(t)=c_{1} e^{t}+c_{2} t e^{t}
$$

Imaginary Roots: $\mathbf{b}^{\mathbf{2}}-\mathbf{4 a c}<\mathbf{0}$
Let's now consider the equation $y^{\prime \prime}+y=0$. This gives $r^{2}+1=0$. Plugging this into the quadratic formula, with $a=c=1$ and $b=0$, gives

$$
r=\frac{ \pm \sqrt{-4}}{2}=\frac{ \pm 2 i}{2}= \pm i
$$

This gives us the two solutions $y=e^{i t}$ and $y=e^{-i t}$, which gives us

$$
y(t)=A e^{i t}+B e^{-i t}
$$

where A and B are arbitrary (complex) constants. In order to find real solutions, we must first use Euler's formula:

$$
e^{\lambda \pm i \mu}=e^{\lambda t}(\cos (\mu t) \pm i \sin (\mu t))
$$

where λ and μ are real numbers. Here, $\lambda=0$ and $\mu=1$, so we get

$$
\begin{aligned}
y(t) & =A(\cos t+i \sin t)+B(\cos t-i \sin t) \\
& =(A+B) \cos t+(A-B) i \sin t
\end{aligned}
$$

Since A and B are arbitrary complex constants, we can actually make the quantities $(A+B)$ and $(A-B) i$ whatever we like, so we may as well replace them with c_{1} and c_{2} :

$$
y(t)=c_{1} \cos t+c_{2} \sin t
$$

DISCLAIMER: This handout uses notation and methods from the textbook commonly used for M 427J courses taught at the University of Austin: Braun, Martin, Differential Equations and Their Applications, $4^{\text {th }}$ ed. Springer

December 5, 1992.

