

The University of Texas at Austin Sanger Learning Center School of Undergraduate Studies

Summary

We use the method of integration factors on linear, first-order differential equations, which are of the form

$$y' + p(t)y = q(t) \,.$$

The method is a 5-step process:

- 1. Set the coefficient of y' equal to 1 if necessary (by dividing both sides by that coefficient).
- 2. Multiply both sides of the differential equation by the integrating factor, $\mu = e^{\int p(t) dt}$:

$$e^{\int p(t) \,\mathrm{d}t} y' + p(t) e^{\int p(t) \,\mathrm{d}t} y = e^{\int p(t) \,\mathrm{d}t} q(t) \,.$$

3. Rewrite the left-hand side using the Product Rule for Derivatives:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[e^{\int p(t) \, \mathrm{d}t} y \right] = e^{\int p(t) \, \mathrm{d}t} q(t)$$

4. Integrate both sides, keeping the constant of integration, C:

$$e^{\int p(t) \, \mathrm{d}t} y = \int e^{\int p(t) \, \mathrm{d}t} q(t) \, \mathrm{d}t$$

5. Isolate y(t) to get the final solution.

When to Use Integration Factors

In this handout we'll describe the method of integration factors, which we use to solve linear, first-order differential equations. A differential equation is **first-order** if the highest-power derivative of y is only the first derivative (so no second, third, etc. derivatives). A first-order differential equation is **linear** if it is of the form

$$y' + p(t)y = q(t)$$
.

This equation only contains the first derivative of y (no higher-order derivatives), so it is first order. The term "linear" comes from the fact that y is only multiplied by some other expression, but beyond that nothing is done to y. Contrast this with another first-order differential equation such as $y' + \cos y = 0$ or $y' + ty^2 = 2$, where the first example takes the cosine of y and the second squares y.

The following method works for *all* linear first-order differential equations and only for such equations. Thus, knowing how to identify a linear first-order differential equation is crucial to knowing when to use the method of integrating factors.

The Method of Integration Factors

Suppose we have our linear first-order differential equation:

$$y' + p(t)y = q(t)$$
. (1)

We construct our **integration factor**, μ as follows:

$$\mu = e^{\int p(t) \, \mathrm{d}t}$$

Here are some examples of differential equations, with the integration factor (note that the equations are linear and first-order):

$$\begin{aligned} y' + 3y &= 3 & \longrightarrow \mu = e^{\int 3 \, \mathrm{d}t} = e^{3t} \\ y' + \frac{1}{t}y &= \frac{1}{t^2} & \longrightarrow \mu = e^{\int 1/t \, \mathrm{d}t} = e^{\ln t} = t \\ y' + 2ty &= e^{-t^2} \longrightarrow \mu = e^{\int 2t \, \mathrm{d}t} = e^{t^2} . \end{aligned}$$

Note that when we compute μ , we ignore the constant of integration. There is a deeper mathematical reason for why we can do this, which we omit. What do we do with our integration factor, μ ? We multiply both sides of (1) by μ :

$$\mu y' + p(t)\mu y = \mu q(t)$$

$$e^{\int p(t) \, \mathrm{d}t} y' + p(t) e^{\int p(t) \, \mathrm{d}t} y = e^{\int p(t) \, \mathrm{d}t} q(t) \,.$$
(2)

Recall that $\mu = e^{\int p(t) dt}$. We defined μ so that the left-hand side of this equation is just the Product Rule for differentiation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left[\mu y\right] = \frac{\mathrm{d}}{\mathrm{d}t}\left[e^{\int p(t)\,\mathrm{d}t}y\right] = e^{\int p(t)\,\mathrm{d}t}y' + p(t)e^{\int p(t)\,\mathrm{d}t}y.$$

We then rewrite the left-hand side of (2) accordingly:

$$e^{\int p(t) \, \mathrm{d}t} y' + p(t) e^{\int p(t) \, \mathrm{d}t} y = [e^{\int p(t) \, \mathrm{d}t} y]'$$

which gives us

$$\left[e^{\int p(t) \, \mathrm{d}t} y\right]' = e^{\int p(t) \, \mathrm{d}t} q(t) \, .$$

From here, we can integrate both sides with respect to t and retrieve y that way. Let's do this for the three previously mentioned examples.

Example 1. Solve y' + 3y = 3.

We already computed the integrating factor $\mu = e^{3t}$. We multiply both sides of the differential equation by μ and then integrate:

y' + 3y = 3 $e^{3t}y' + 3e^{3t}y = 3e^{3t}$ Multiply both sides by μ . $[e^{3t}y]' = 3e^{3t}$ Product Rule for Derivatives. $\int [e^{3t}y]' dt = \int 3e^{3t} dt$ Integrate both sides. $e^{3t}y = e^{3t} + C$ $y = 1 + Ce^{-3t}$ Isolate y.

Here we do not neglect the constant of integration, C. $y = 1 + Ce^{-3t}$ is the general solution to the above differential equation.

Example 2. Solve $y' + \frac{1}{t}y = \frac{1}{t^2}$.

We already computed $\mu = t$. We proceed exactly as before:

 $y' + \frac{1}{t}y = \frac{1}{t^2}$ $ty' + y = \frac{1}{t}$ $[ty]' = \frac{1}{t}$ $\int [ty]' dt = \int \frac{1}{t} dt$ $ty = \ln t + C$ $y = \frac{\ln t}{t} + \frac{C}{t}$ Multiply both sides by μ . Product Rule for Derivatives. Integrate both sides. $ty = \ln t + C$ $y = \frac{\ln t}{t} + \frac{C}{t}$ Isolate y.

Example 3. Solve $y' + 2ty = e^{-t^2}$.

We already computed $\mu = e^{t^2}$. We then go through the method:

 $y' + 2ty = e^{-t^{2}}$ $e^{t^{2}}y' + 2te^{t^{2}}y = 1$ Multiply both sides by μ . $\begin{bmatrix} e^{t^{2}}y \end{bmatrix}' = 1$ Product Rule for Derivatives. $\int \begin{bmatrix} e^{t^{2}}y \end{bmatrix}' dt = \int 1 dt$ Integrate both sides. $e^{t^{2}}y = t + C$ $y = te^{-t^{2}} + Ce^{-t^{2}}$ Isolate y.

Example 4. Solve $(\cos t)y' + (\sin t)y = \cos^2 t$, subject to the initial-value condition y(0) = 6.

This is a linear first-order equation. However, we must make the coefficient of y' equal to 1 for the method of integration factors to work. Dividing both sides by $\cos t$, we must now solve

$$y' + (\tan t)y = \cos t \,.$$

We compute $\mu = e^{\int \tan t \, dt} = e^{\ln |\sec t|} = \sec t$. With the integration factor in hand, we follow the usual method:

$$y' + (\tan t)y = \cos t$$

$$(\sec t)y' + (\sec t \tan t)y = 1$$

$$[(\sec t)y]' = 1$$

$$\int [(\sec t)y]' dt = \int 1 dt$$

$$(\sec t)y = t + C$$

$$y = t \cos t + C \cos t$$

$$Integrate both sides.$$

We now use our initial-value condition to solve for C:

$$6 = y(0) = (0)\cos(0) + C\cos(0)$$

= 0 + C(1)
= C.

giving us our final answer of

$$y(t) = t\cos t + 6\cos t \,.$$

DISCLAIMER: This handout uses notation and methods from the textbook commonly used for M 427J courses taught at the University of Austin:

Braun, Martin, *Differential Equations and Their Applications*, 4th ed. Springer December 5, 1992.