Summary

We use the method of integration factors on linear, first-order differential equations, which are of the form

$$
y^{\prime}+p(t) y=q(t)
$$

The method is a 5 -step process:

1. Set the coefficient of y^{\prime} equal to 1 if necessary (by dividing both sides by that coefficient).
2. Multiply both sides of the differential equation by the integrating factor, $\mu=e^{\int p(t) \mathrm{d} t}$:

$$
e^{\int p(t) \mathrm{d} t} y^{\prime}+p(t) e^{\int p(t) \mathrm{d} t} y=e^{\int p(t) \mathrm{d} t} q(t)
$$

3. Rewrite the left-hand side using the Product Rule for Derivatives:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{\int p(t) \mathrm{d} t} y\right]=e^{\int p(t) \mathrm{d} t} q(t)
$$

4. Integrate both sides, keeping the constant of integration, C :

$$
e^{\int p(t) \mathrm{d} t} y=\int e^{\int p(t) \mathrm{d} t} q(t) \mathrm{d} t
$$

5. Isolate $y(t)$ to get the final solution.

When to Use Integration Factors

In this handout we'll describe the method of integration factors, which we use to solve linear, first-order differential equations. A differential equation is first-order if the highest-power derivative of y is only the first derivative (so no second, third, etc. derivatives). A first-order differential equation is linear if it is of the form

$$
y^{\prime}+p(t) y=q(t)
$$

This equation only contains the first derivative of y (no higher-order derivatives), so it is first order. The term "linear" comes from the fact that y is only multiplied by some other expression, but beyond that nothing is done to y. Contrast this with another first-order differential equation such as $y^{\prime}+\cos y=0$ or $y^{\prime}+t y^{2}=2$, where the first example takes the cosine of y and the second squares y.

The following method works for all linear first-order differential equations and only for such equations. Thus, knowing how to identify a linear first-order differential equation is crucial to knowing when to use the method of integrating factors.

The Method of Integration Factors

Suppose we have our linear first-order differential equation:

$$
\begin{equation*}
y^{\prime}+p(t) y=q(t) \tag{1}
\end{equation*}
$$

We construct our integration factor, μ as follows:

$$
\mu=e^{\int p(t) \mathrm{d} t}
$$

Here are some examples of differential equations, with the integration factor (note that the equations are linear and first-order):

$$
\begin{aligned}
& y^{\prime}+3 y=3 \quad \longrightarrow \mu=e^{\int 3 \mathrm{~d} t}=e^{3 t} \\
& y^{\prime}+\frac{1}{t} y=\frac{1}{t^{2}} \quad \longrightarrow \mu=e^{\int 1 / t \mathrm{~d} t}=e^{\ln t}=t \\
& y^{\prime}+2 t y=e^{-t^{2}} \longrightarrow \mu=e^{\int 2 t \mathrm{~d} t}=e^{t^{2}} .
\end{aligned}
$$

Linear, First-Order Equations:
 Integration Factors

Note that when we compute μ, we ignore the constant of integration. There is a deeper mathematical reason for why we can do this, which we omit. What do we do with our integration factor, μ ? We multiply both sides of (1) by μ :

$$
\begin{align*}
\mu y^{\prime}+p(t) \mu y & =\mu q(t) \\
e^{\int p(t) \mathrm{d} t} y^{\prime}+p(t) e^{\int p(t) \mathrm{d} t} y & =e^{\int p(t) \mathrm{d} t} q(t) \tag{2}
\end{align*}
$$

Recall that $\mu=e^{\int p(t) \mathrm{d} t}$. We defined μ so that the left-hand side of this equation is just the Product Rule for differentiation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[\mu y]=\frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{\int p(t) \mathrm{d} t} y\right]=e^{\int p(t) \mathrm{d} t} y^{\prime}+p(t) e^{\int p(t) \mathrm{d} t} y
$$

We then rewrite the left-hand side of (2) accordingly:

$$
e^{\int p(t) \mathrm{d} t} y^{\prime}+p(t) e^{\int p(t) \mathrm{d} t} y=\left[e^{\int p(t) \mathrm{d} t} y\right]^{\prime} .
$$

which gives us

$$
\left[e^{\int p(t) \mathrm{d} t} y\right]^{\prime}=e^{\int p(t) \mathrm{d} t} q(t)
$$

From here, we can integrate both sides with respect to t and retrieve y that way. Let's do this for the three previously mentioned examples.

Example 1. Solve $y^{\prime}+3 y=3$.
We already computed the integrating factor $\mu=e^{3 t}$. We multiply both sides of the differential equation by μ and then integrate:

$$
\begin{aligned}
y^{\prime}+3 y & =3 & & \\
e^{3 t} y^{\prime}+3 e^{3 t} y & =3 e^{3 t} & & \text { Multiply both sides by } \mu . \\
{\left[e^{3 t} y\right]^{\prime} } & =3 e^{3 t} & & \text { Product Rule for Derivatives. } \\
\int\left[e^{3 t} y\right]^{\prime} \mathrm{d} t & =\int 3 e^{3 t} \mathrm{~d} t & & \text { Integrate both sides. } \\
e^{3 t} y & =e^{3 t}+C & & \\
y & =1+C e^{-3 t} & & \text { Isolate } y .
\end{aligned}
$$

Here we do not neglect the constant of integration, $C . y=1+C e^{-3 t}$ is the general solution to the above differential equation.

Example 2. Solve $y^{\prime}+\frac{1}{t} y=\frac{1}{t^{2}}$.
We already computed $\mu=t$. We proceed exactly as before:

$$
\begin{aligned}
y^{\prime}+\frac{1}{t} y & =\frac{1}{t^{2}} & & \\
t y^{\prime}+y & =\frac{1}{t} & & \text { Multiply both sides by } \mu . \\
{[t y]^{\prime} } & =\frac{1}{t} & & \text { Product Rule for Derivatives. } \\
\int[t y]^{\prime} \mathrm{d} t & =\int \frac{1}{t} \mathrm{~d} t & & \text { Integrate both sides. } \\
t y & =\ln t+C & & \\
y & =\frac{\ln t}{t}+\frac{C}{t} & & \text { Isolate } y .
\end{aligned}
$$

Example 3. Solve $y^{\prime}+2 t y=e^{-t^{2}}$.

Linear, First-Order Equations:
 Integration Factors

We already computed $\mu=e^{t^{2}}$. We then go through the method:

$$
\begin{aligned}
y^{\prime}+2 t y & =e^{-t^{2}} & & \\
e^{t^{2}} y^{\prime}+2 t e^{t^{2}} y & =1 & & \text { Multiply both sides by } \mu . \\
{\left[e^{t^{2}} y\right]^{\prime} } & =1 & & \text { Product Rule for Derivatives. } \\
\int\left[e^{t^{2}} y\right]^{\prime} \mathrm{d} t & =\int 1 \mathrm{~d} t & & \text { Integrate both sides. } \\
e^{t^{2}} y & =t+C & & \\
y & =t e^{-t^{2}}+C e^{-t^{2}} & & \text { Isolate } y .
\end{aligned}
$$

Example 4. Solve $(\cos t) y^{\prime}+(\sin t) y=\cos ^{2} t$, subject to the initial-value condition $y(0)=6$.
This is a linear first-order equation. However, we must make the coefficient of y^{\prime} equal to 1 for the method of integration factors to work. Dividing both sides by $\cos t$, we must now solve

$$
y^{\prime}+(\tan t) y=\cos t
$$

We compute $\mu=e^{\int \tan t \mathrm{~d} t}=e^{\ln |\sec t|}=\sec t$. With the integration factor in hand, we follow the usual method:

$$
\begin{aligned}
y^{\prime}+(\tan t) y & =\cos t & & \\
(\sec t) y^{\prime}+(\sec t \tan t) y & =1 & & \text { Multiply both sides by } \mu . \\
{[(\sec t) y]^{\prime} } & =1 & & \text { Product Rule for Derivati } \\
\int[(\sec t) y]^{\prime} \mathrm{d} t & =\int 1 \mathrm{~d} t & & \text { Integrate both sides. } \\
(\sec t) y & =t+C & & \\
y & =t \cos t+C \cos t & & \text { Isolate } y .
\end{aligned}
$$

We now use our initial-value condition to solve for C :

$$
\begin{aligned}
6=y(0) & =(0) \cos (0)+C \cos (0) \\
& =0+C(1) \\
& =C,
\end{aligned}
$$

giving us our final answer of

$$
y(t)=t \cos t+6 \cos t
$$

DISCLAIMER: This handout uses notation and methods from the textbook commonly used for M 427J courses taught at the University of Austin:
Braun, Martin, Differential Equations and Their Applications, $4^{\text {th }}$ ed. Springer
December 5, 1992.

