
Limits and Continuity

What is a Limit?

Understanding the limits of functions gives us insight into the graph of that function. Informally, the
limit of a function f(x) as x approaches c, written limx→c f(x), is the value f(x) approaches as x gets
“close to c” from both sides, though we do not care what happens at x = c. We can also consider the
left-hand limit limx→c− f(x) and the right-hand limit limx→c+ f(x), as we approach x = c only from the
left or only from the right respectively. The “−” and “+” to the right of c denote this concept, rather than
negativity or positivity, which would be −c or +c. The delta-epsilon definition for the limit of a function
makes this notion of “close to” precise, but this is definition too technical for our purposes. Let’s illustrate
the limit concept with an example.
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In the plot above, we have labelled several points. We will compute the limit of f(x) at x = −4, x = −2,
x = 0, x = 1, x = 2, and x = 3 by inspecting the graph of f(x) above.

• First, at x = −4, we see that f(x) approaches −1 from both sides, so

lim
x→−4

f(x) = −1

(
= lim

x→−4−
f(x) = lim

x→−4+
f(x)

)
.

• What about at x = −2? Well, even though the function is 2 at x = 2, f(x) approaches 1 as x approaches
−2. Thus, the limit as x→ −2 of f(x) is 1 rather than 2. This is a very important concept: the limit
of f(x) as x→ c is not necessarily equal to f(x). At x = −4, this was the case, but as we’ve just
seen this is not the case at x = −2.

• Next, consider x = 0. From the left, i.e. for x-values less than but close to 0, f(x) approaches −1. On
the other hand, from the right, i.e. for x-values greater than but close to 0, f(x) approaches 1. This
gives us

lim
x→0−

f(x) = −1 and lim
x→0+

f(x) = 1 .

What about limx→0 f(x), the limit itself? Remember, the fact that the function value is 1 at x = 0
does not mean that limx→0 f(x) equals 1. In fact, since the left-hand and right-hand limits disagree,
we say that the limit does not exist (DNE). The limit does not exist when the left- and right-hand
limits disagree.

• At x = 1, we have a vertical asymptote. From the left, the x-values approach very large positive values
without bound. In such a case, we say that

lim
x→1−

f(x) =∞ .

This equals “=” sign has a slightly different use here than before, since ∞ is not a number per se,
but rather this notation is just meant to convey the idea that f(x) increases without bound as x→ 1
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from the left. From the right, the x-values approach very large (in absolute value) negative numbers.
Similar to the case before, we write

lim
x→1+

f(x) = −∞ .

Again, the equals sign does not mean equality in the traditional sense. It only denotes that f(x)
decreases without bound as x → 1 from the right. Now, the left-hand and right-hand limits do not
agree, so limx→1 f(x) does not exist.

• At x = 2, we immediately see that limx→2 f(x) = −1. Even though f(x) is not defined at x = 1, we
only care what happens at x-values close to 1, but not at 1 itself.

• Finally, at x = 3, we see that both the left-hand and right-hand limits are positive∞. Some textbooks
say that the limit does not exist because ∞ is not a number.

Though ∞ is not a number, the left- and right-hand limits agree, so we might say, unlike before, that
limx→3 f(x) = ∞. This statement refers to the behavior of the function at x = 3 rather than asserts
that the limit is a single number: the function f increases without bound as x approaches 3 from the
left or from the right. This disagreement is merely a matter of convention rather than an argument
over mathematical fact.

Few functions have all of these features. We constructed this example to show the several different cases
to consider when taking limits of functions.

Continuity

Informally, we can determine that a function is continuous if we can draw its graph without picking up
the pencil. This is not a rigorous method, but it helps one visualize continuity. Like the limit, continuity
has a formal delta-epsilon definition that makes the notion precise, but we will not cover it here. We can do
better than the “pencil method”, however, by using limits. A function f(x) is continuous at x = c if

lim
x→c

f(x) = f(c) .

This property actually requires 3 things:

1. f(x) must be defined at x = c. This is usually the simplest to check.

2. limx→c f(x) must exist.

3. The limit limx→c f(x) and the function value f(c) must agree, i.e. must be equal.

If f(x) fails any of these three conditions at x = c, then we say that f(x) is discontinuous (or not
continuous) at x = c. Let’s use these three conditions to determine the continuity of the function on page
1.

• f(x) is continuous at x = −4. By inspection: (1) f(c) exists, (2) limx→c f(x) exists, and (3)
limx→c f(x) = f(c).

• f(x) is discontinuous at x = −2 because the limit and the function value do not agree.

• f(x) is discontinuous at x = 0 because the limit of f(x) does not exist, as we saw above.

• f(x) is discontinuous at x = 1 because it is not defined at x = 2. It fails conditions (2) and (3) as well.

• f(x) is discontinuous at x = 2 since it is not defined there.

• f(x) is discontinuous at x = 3 because it is not defined there.

Determining condition (3) requires evaluating limx→c f(x). We cover how to do this without using the
graph of the function in the handout “Evaluating Limits”. Below is a table with examples of common
functions that are continuous (on their domains):
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Type Examples

Polynomials 1; x + 2; x3 − 4x + 1

Trigonometric functions sinx; cosx; tanx (if cosx 6= 0)

Exponential functions ex; 2−x

Sums of cont. functions x2 + cosx; ex − sinx

Products of cont. functions x (ex + cosx); x2 cosx

Quotients of cont. (denominator 6= 0) x2

x+1 , (x 6= −1); 2
ex (for all x)

Compositions of cont. functions cos
(
x2

)
; esin(x+2)
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