
Limits and Convergence
of Sequences

What is a Sequence?

Formally, a sequence is a function whose domain is the set of positive integers: 1, 2, . . ., and we denote
a sequence by {an}. We can also denote a sequence by the formula for its terms, as we do now. Examples
of sequences include an = 2n and bn = n2 + 1. Then we have

a1 = 2(1) = 2, a2 = 2(2) = 4, a3 = 2(3) = 6 ,

b1 = (1)2 + 1 = 2, b2 = (2)2 + 1 = 5, b3 = (3)2 + 1 = 10 .

Here, we see that an and bn are both functions of n, where n is a positive integer. Rather than writing
an(n) or bn(n) (as we would do for f(x)), we abbreviate to an. Another notation for the above sequences,
which we’ll call list notation, is

{an} = 2, 4, 6, . . .

{bn} = 2, 5, 10, . . . .

There’s no fixed rule for how many terms in the sequence should be included with this list notation, and
it would have been valid to write {an} = 2, 4, 6, 8, . . . as well. The ellipses at the end of both sequences in
this notation signify that the sequence continues for infinitely many values of n.

n is called the index of the sequence. We sometimes refer to a1 as the “first term”, a2 as the “second
term”, and so on. This is why it’s convenient for our indices to start at 1, but we could have just as well
started with n = 0. The “nth term” refers to the general form of the sequence. For an, the nth term is 2n,
and for bn the nth term is n2 + 1. Sometimes it is convenient to include the nth term in the list notation for
the sequence, like so:

{an} = 2, 4, 6, . . . , 2n, . . .

{bn} = 2, 5, 10, . . . , n2 + 1, . . . .

This compact form gives the formula for computing any desired term as well as the first few terms. The
ellipses after the nth term show that the sequence continues on indefinitely. When we want to ignore terms
in between two specific terms in the sequence, we also use ellipses. If we wanted to emphasize the first three
terms of a sequence and then, say, the 20th and 21st terms, we would write:

{an} = 2, 4, 6, . . . , 40, 42, . . .

{bn} = 2, 5, 10, . . . , 401, 442, . . . .

Just as familiar functions like cosx and ex have limits, sequences also have limits. As we shall see, finding
the limit of a sequence is very similar to evaluating the limits of functions.

Limits and Convergence of Sequences

The formal definition for the limit of a sequence is quite technical and not usually taught in freshman
Calculus, so we will omit it. Informally, the limit of a sequence {an} is L if an approaches L as n gets
larger. We write this as

lim
n→∞

an = L .

Note that this is very similar to the notation limx→c f(x) for a function x when c is any real number.
For sequences, however, it only makes sense to take limits as n→∞. Thinking of limits of sequences as like
limits of functions helps in finding the limit of a particular sequence, assuming that function has a limit as
n→∞. For example, the sequences

an =
1

n
,

bn =
n2 + 2n− 1

3n2 + 1
,

cn =
2n

n2 + 1
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have limits

lim
n→∞

an = 0 ,

lim
n→∞

bn =
1

3
,

lim
n→∞

cn = 0 ,

which can be seen by taking the limit of each sequence as n → ∞. For instance, 1
n → 0 as n → ∞, which

is essentially the same as the function f(x) = 1
x going to 0 as x → ∞. The point of this discussion is that

taking limits of certain sequences is like taking limits of functions in Differential Calculus.
A sequence is convergent if it has a limit. Otherwise, the sequence is divergent. For a convergent

sequence {an} with a limit L, we say that {an} converges to L. A convergent sequence will always have
only one limit. Before we do examples, let’s go over some helpful properties for the limits of sequences.

Properties of the Limits of Sequences

Let {an} and {bn} be convergent sequences with limn→∞ an = A and limn→∞ bn = B. Then

1. lim
n→∞

(kan) = k lim
n→∞

an = kA, where k is a constant,

2. lim
n→∞

(a± bn) = lim
n→∞

an ± lim
n→∞

bn = A±B,

3. lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn = AB,

4. lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

=
A

B
, if B 6= 0 and bn 6= 0 for all n, and

5. if an is in the domain of f and if f is continuous for all n, then
lim
n→∞

f(an) = f(A).

These properties are very similar to the properties for limits of functions. They are useful for transform-
ing difficult limits into simpler ones, as we shall see in some of the following examples.

Example 1. Find the limit, if it exists, of the sequence an = 3
n .

We immediately have limn→∞
3
n = 0. This sequence converges with limit 0.

Example 2. Find the limit, if it exists, of the sequence an = sinn.

The limit limn→∞ sinn does not exist. This is because the sine function oscillates between −1 and 1
indefinitely and never approaches a fixed number. Thus, this sequence diverges.

Example 3. Find the limit, if it exists, of the sequence an = (−1)n.

This sequence also has no limit. Again, this is because it oscillates between −1 and 1; in fact, it switches
between those two values, so it never approaches a fixed number. This sequence diverges.

Example 4. Find the limit, if it exists, of the sequence an = lnn
2n .

We need to compute limn→∞
lnn
2n . We do this using L’Hôpital’s Rule since this limit is of the form ∞

∞ :

lim
n→∞

an = limn→∞ lnn

2n
=

1/n

2
= lim

n→∞

1

2n
= 0 .

Since limits of sequences are like limits of functions, we can also use theorems like L’Hôpital’s Rule.
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Example 5. Find the limit, if it exists of the sequence an =
(

n2+1
3n2−5

)3

.

The limit as n→∞ of the inside function, n2+1
3n2−5 , is 1

3 . Our sequence is the cube of this inside function.

The function f(x) = x3 is a continuous function, and we can view an as f applied to n2+1
3n2−5 . By Property 5,

we have

lim
n→∞

an =

(
1

3

)3

.

3


