Rolle’s Theorem and the Mean Value Theorem

Rolle’s Theorem

Before we state the Mean Value Theorem, we will state a special case of it: Rolle’s Theorem. **Rolle’s Theorem** is as follows: if \(f(x) \) is a function satisfying

1. \(f(x) \) is continuous on the closed interval \([a, b]\),
2. \(f(x) \) is differentiable on the open interval \((a, b)\), and
3. \(f(a) = f(b) \),

then there is a number \(c \) with \(a < c < b \) such that

\[
f'(c) = 0.
\]

Consider the function \(f(x) = 4 - x^2 \) on \([-1, 1]\). What does Rolle’s Theorem say about this situation? Since \(f(x) \) is continuous and differentiable everywhere, it is certainly continuous on the closed interval \([-1, 1]\) and differentiable on the open interval \((-1, 1)\) (here, \(a = -1 \) and \(b = 1 \)). We also have that \(f(-1) = f(1) = 3 \). Rolle’s Theorem then says that there is a number \(c \) with \(-1 < c < 1\) such that \(f'(c) = 0 \). In other words, the function \(4 - x^2 \) has a critical point somewhere between \(-1\) and 1.

In fact, we can find this value \(c \). We know that \(f'(x) = -2x \). We want to check when \(f'(x) = -2x = 0 \). This occurs at \(x = 0 \), which is between \(x = -1 \) and \(x = 1 \), so here \(c = 0 \). Below on the left, we graph \(f(x) = 4 - x^2 \) (solid) and show the tangent line (dashed) at \(c = 0 \), which has slope 0.

Most problems will ask for the value of \(c \) satisfying the conclusion of Rolle’s Theorem, which amounts to finding where \(f'(x) = 0 \) on the open interval \((a, b)\). Rolle’s Theorem states that there has to be at least one such \(c \) so long as \(f(x) \) satisfies the hypotheses.

One deeper insight from Rolle’s Theorem is the following: if a continuous and differentiable function \(f(x) \) has \(n \) roots, then the derivative \(f'(x) \) has at least \(n - 1 \) roots. Imagine the \(x \)-values for the roots of \(f(x) \) lined up on the \(x \)-axis. For every two consecutive roots, Rolle’s Theorem tells us that \(f'(x) = 0 \) between those two roots (since \(f(x) = 0 \) at both of the two roots). So, if \(f(x) \) has 3 distinct roots, then \(f'(x) = 0 \) somewhere between the first and the second roots and also somewhere between the second and third roots. In the right-hand figure above, we show this, with dashed lines representing the tangent lines where \(f'(x) = 0 \). There are two such points, each between two of the roots.

The Mean Value Theorem

The **Mean Value Theorem** is as follows: if \(f(x) \) is a function such that

1. \(f(x) \) is continuous on the closed interval \([a, b]\), and
2. \(f(x) \) is differentiable on the open interval \((a, b)\),

then there is a value \(c \) with \(a < c < b \) such that

\[
f'(c) = \frac{f(b) - f(a)}{b - a}.
\]
First, note that when \(f(a) = f(b) \), the numerator is 0, which gives Rolle’s Theorem. The expression on the right-hand side of the equation gives the slope of the line between \((a, f(a))\) and \((b, f(b))\). The Mean Value Theorem then says that there is a point \(c \) between \(a \) and \(b \) such that the tangent line at \(x = c \) has the same slope as the secant line connecting \((a, f(a))\) and \((b, f(b))\), i.e. the tangent line at \(x = c \) is parallel to the secant line.

Example 1. Find all values of \(c \) satisfying the conclusion of the Mean Value Theorem for \(f(x) = \frac{1}{4}x^3 + 1 \) on the interval \([-2, 2]\).

First, note that \(f(x) \) is continuous and differentiable everywhere, in particular it is continuous on the closed interval \([-2, 2]\) and differentiable on the open interval \((-2, 2)\). We wish to find a value \(c \) such that

\[
f'(c) = \frac{f(2) - f(-2)}{2 - (-2)} = \frac{3 - (-1)}{4} = 1.
\]

So, we compute \(f'(x) = \frac{3}{4}x^2 \) and set it equal to 1. We then solve for \(x \):

\[
\frac{3}{4}x^2 = 1
\]

\[
x^2 = \frac{4}{3}
\]

\[
x = \pm \frac{2}{\sqrt{3}}.
\]

Both of these values lie in the open interval \((-2, 2)\), so we have \(c = \pm \frac{2}{\sqrt{3}} \). We graph \(f(x) \) along with the secant line (dotted) and the two lines of tangency (dashed):