Rolle's Theorem

Before we state the Mean Value Theorem, we will state a special case of it: Rolle's Theorem. Rolle's Theorem is as follows: if $f(x)$ is a function satisfying

1. $f(x)$ is continuous on the closed interval $[a, b]$,
2. $f(x)$ is differentiable on the open interval (a, b), and
3. $f(a)=f(b)$,
then there is a number c with $a<c<b$ such that

$$
f^{\prime}(c)=0
$$

Consider the function $f(x)=4-x^{2}$ on $[-1,1]$. What does Rolle's Theorem say about this situation? Since $f(x)$ is continuous and differentiable everywhere, it is certainly continuous on the closed interval $[-1,1]$ and differentiable on the open interval $(-1,1)$ (here, $a=-1$ and $b=1$). We also have that $f(-1)=f(1)=3$. Rolle's Theorem then says that there is a number c with $-1<c<1$ such that $f^{\prime}(c)=0$. In other words, the function $4-x^{2}$ has a critical point somewhere between -1 and 1 .

In fact, we can find this value c. We know that $f^{\prime}(x)=-2 x$. We want to check when $f^{\prime}(x)=-2 x=0$. This occurs at $x=0$, which is between $x=-1$ and $x=1$, so here $c=0$. Below on the left, we graph $f(x)=4-x^{2}$ (solid) and show the tangent line (dashed) at $c=0$, which has slope 0 .

Most problems will ask for the value of c satisfying the conclusion of Rolle's Theorem, which amounts to finding where $f^{\prime}(x)=0$ on the open interval (a, b). Rolle's Theorem states that there has to be at least one such c so long as $f(x)$ satisfies the hypotheses.

One deeper insight from Rolle's Theorem is the following: if a continuous and differentiable function $f(x)$ has n roots, then the derivative $f^{\prime}(x)$ has at least $n-1$ roots. Imagine the x-values for the roots of $f(x)$ lined up on the x-axis. For every two consecutive roots, Rolle's Theorem tells us that $f^{\prime}(x)=0$ between those two roots (since $f(x)=0$ at both of the two roots). So, if $f(x)$ has 3 distinct roots, then $f^{\prime}(x)=0$ somewhere between the first and the second roots and also somewhere between the second and third roots. In the right-hand figure above, we show this, with dashed lines representing the tangent lines where $f^{\prime}(x)=0$. There are two such points, each between two of the roots.

The Mean Value Theorem

The Mean Value Theorem is as follows: if $f(x)$ is a function such that

1. $f(x)$ is continuous on the closed interval $[a, b]$, and
2. $f(x)$ is differentiable on the open interval (a, b),
then there is a value c with $a<c<b$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Rolle's Theorem and the Mean Value Theorem

First, note that when $f(a)=f(b)$, the numerator is 0 , which gives Rolle's Theorem. The expression on the right-hand side of the equation gives the slope of the line between $(a, f(a))$ and $(b, f(b))$. The Mean Value Theorem then says that there is a point c between a and b such that the tangent line at $x=c$ has the same slope as the secant line connecting $(a, f(a))$ and $(b, f(b))$, i.e. the tangent line at $x=c$ is parallel to the secant line.

Example 1. Find all values of c satisfying the conclusion of the Mean Value Theorem for $f(x)=\frac{1}{4} x^{3}+1$ on the interval $[-2,2]$.

First, note that $f(x)$ is continuous and differentiable everywhere, in particular it is continuous on the closed interval $[-2,2]$ and differentiable on the open interval $(-2,2)$. We wish to find a value c such that

$$
f^{\prime}(c)=\frac{f(2)-f(-2)}{(2)-(-2)}=\frac{(3)-(-1)}{4}=1
$$

So, we compute $f^{\prime}(x)=\frac{3}{4} x^{2}$ and set it equal to 1 . We then solve for x :

$$
\begin{aligned}
\frac{3}{4} x^{2} & =1 \\
x^{2} & =\frac{4}{3} \\
x & = \pm \frac{2}{\sqrt{3}} .
\end{aligned}
$$

Both of these values lie in the open interval $(-2,2)$, so we have $c= \pm \frac{2}{\sqrt{3}}$. We graph $f(x)$ along with the secant line (dotted) and the two lines of tangency (dashed):

