
Maclaurin Series and
Taylor Series

Summary

A Taylor series of a function f(x) centered at x = c gives a power series representation of f(x). The
formula for a Taylor series is given by

f(x) =

∞∑
i=0

f (i)(c)(x− c)i

i!
,

where f (i)(c) denotes the ith derivative of f evaluated at x = c (or just f(c) if i = 0). A Maclaurin
series is a Taylor series with c = 0. The nth degree Taylor polynomial, denoted Tn(x), is the polynomial
obtained by taking the first n + 1 terms of this series (i.e. setting the upper bound equal to n).

What are Maclaurin and Taylor series?

You may know that you can write many functions as power series, i.e. series of the form
∑

cnx
n, where

cn is a constant and x is a variable. For example, you can write the function 1
1−x in this form. In fact, you

can represent any infinitely differentiable function by a power series. By infinitely differentiable, we mean a
function f(x) that has a first derivative, a second derivative, and so on. (1 + x), sinx, and ex are examples
of such functions. Such representations are often infinite series, and thus are a bit unwiedly to use. For
example, we will see that the Maclaurin series for sinx is

sinx =

∞∑
n=0

(−1)nx2n+1

(2n + 1)!

If we were to take, say, the first 3 terms of this series, we would get an approximation of sinx:

sinx ≈ x− x3

3!
+

x5

5!
.

This is only an approximation: as x→∞, we see that this approximation goes off to −∞, whereas sinx
only varies between −1 and 1. In fact, this approximation is quite good for x values around the point x = 0.
Below, we plot sinx (dashed) and the above approximation (solid):
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We will first talk about how to get this Maclaurin series, then we will generalize to Taylor series.

Maclaurin series

A Maclaurin series for a function f(x) is a power series representation of the function f(x) around
x = 0. We saw above that if we took only finitely many terms of the Maclaurin series, it was still a good
approximation around x = 0. Later on, we will look at series that are good approximations around other
values of x. For an infinitely differentiable function f(x), its Maclaurin series is given by the formula

f(x) =

∞∑
i=0

f (i)(0)xi

i!
,

where f (i)(0) denotes the ith derivative of f at x = 0. We take f (0)(0) to just be f(0), i.e. the original
function value at x = 0. Writing a Maclaurin series for a function is simply a matter of computing the
function’s various derivatives and plugging them into the formula.
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Example 1. Write a Maclaurin series for f(x) = sinx.

First, we compute several derivatives of sin(x):

f(x) = sinx

f ′(x) = cosx

f ′′(x) = − sinx

f ′′′(x) = − cosx

f (4)(x) = sinx

f (5)(x) = cosx

...

Note that we could keep going. In general, there’s no fixed amount of times you should take the derivative.
Next, we need to evaluate these various derivatives at x = 0:

f(0) = 0

f ′(0) = 1

f ′′(0) = 0

f ′′′(0) = −1

f (4)(0) = 0

f (5)(0) = 1

...

If we plug all these data into our formula, we get

sinx =

∞∑
i=0

f (i)(0)xi

i!
=

(0)x0

0!
+

(1)x1

1!
+

(0)x2

2!
+

(−1)x3

3!
+

(0)x4

4!
+

(1)x5

5!
+ · · ·

Cleaning this up a bit, we get

sinx = x− x3

3!
+

x5

5!
+ · · · =

∞∑
n=0

(−1)nx2n+1

(2n + 1)!

You should compute as many derivatives as necessary so that it is clear for you how to get the last series
representation. For example, it may be necessary for you to compute up to the 7th derivative before you see
the pattern in the terms, or you may only need to compute up to the 3rd derivative.

Taylor series

A Taylor series is a more general form of the Maclaurin series in that it is still a power series represen-
tation of a function, but it may be “centered” at different x values. Recall that taking finitely many terms
of the Maclaurin series gave a good approximation of the function around x = 0. For a Taylor series, we
can choose this “center” so that taking finitely many terms of the Taylor series gives a good approxima-
tion around, say, x = 2 (here the center is x = 2). The Taylor series centered at x = c for an infinitely
differentiable function f(x) is given by the formula

f(x) =

∞∑
i=0

f (i)(c)(x− c)n

i!
.

This formula differs from the previous one in two ways. Firstly, the function f and its derivatives are
evaluated at x = c rather than at x = 0. Secondly, rather than an xi term we have an (x−c)i term. Looking
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at the formula, we see that a Maclaurin series is a Taylor series centered at x = 0 (i.e. with c = 0).

Example 2. Find a Taylor series representation centered at x = 1 for f(x) = e−x.

As before, we compute the various derivatives of e−x. We will compute three of them:

f(x) = e−x

f ′(x) = −e−x

f ′′(x) = e−x

f ′′′(x) = −e−x.

Next, we evaluate these derivatives at the center, x = 1:

f(1) = e−1

f ′(1) = −e−1

f ′′(1) = e−1

f ′′′(1) = −e−1

Finally, we plug this information into our formula:

f(x) =

(
e−1
)

(x− 1)0

0!
+

(
−e−1

)
(x− 1)1

1!
+

(
e−1
)

(x− 1)2

2!
+

(
−e−1

)
(x− 1)3

3!
+ · · · .

The series representation is then

e−x =

∞∑
n=0

(−1)n(x− 1)n

e(n!)
.

When we take only the first n + 1 terms of a Taylor series, we get what is called an nth degree Taylor
polynomial. In this case, we compute up to the nth derivative of f(x). This polynomial is sometimes
denoted Tn(x).

Example 3. Write T2(x) for the function f(x) = lnx centered at x = 3.

We compute the first and second derivatives of f(x) and evaluate them at x = 3:

f(x) = lnx f(3) = ln 3

f ′(x) =
1

x
f ′(3) =

1

3

f ′′(x) = − 1

x2
f ′′(3) = −1

9
.

We then get

T2(x) =
f(3)(x− 3)0

0!
+

f ′(3)(x− 3)1

1!
+

f ′′(3)(x− 3)2

2!

= ln 3 +
1

3
(x− 3)− 1

9
(x− 3)2.

Let’s compare the graph of this polynomial (solid) to the graph of lnx (dashed):
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Notice how the polynomial T2(x) is a very good approximation around x = 3 but then fails to be a good
approximation further away from x = 3.
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