Introduction

We can compute basic integrals such as \(\int 2x^2 \, dx \) and \(\int (x^3 + 3) \, dx \) using sum and power rules and other basic formulas such as \(\int \frac{1}{x} \, dx = \ln x \). We cannot solve many integrals this way, however. For example, it is not clear how to use a sum or power rule to solve \(\int 2x \cos (x^2) \, dx \) or \(\int \frac{\ln x}{x} \, dx \). For such integrals, we must use the method of \(u \)-substitution.

The Method of \(u \)-Substitution

Let’s do the two examples given above, starting with \(\int 2x \cos (x^2) \, dx \). This is a good candidate for \(u \)-substitution because we have (1) a composition of functions (\(\cos x \) is composed with \(x^2 \)), and (2) the inner function’s derivative is outside (the derivative of \(x^2 \), \(2x \), is on the outside of \(\cos (x^2) \)). We then set the inner function equal to \(u \) and compute \(du \) by deriving the right-hand side (with respect to \(x \)). Here, this gives

\[
u = x^2 \\
du = 2x \, dx.
\]

Remember the \(dx \) when deriving both sides. We can then substitute into our integral and proceed as normal, plugging \(x^2 \) back in for \(u \) at the end:

\[
\int 2x \cos (x^2) \, dx = \int \cos (x^2) (2x \, dx) \\
= \int \cos u \, du \\
= \sin u + C \\
= \sin (x^2) + C.
\]

Let’s do this for \(\int \frac{\ln x}{x} \, dx \). We can rewrite this as \(\int \frac{1}{x} \ln x \, dx \). Here, we don’t have a composition of functions, but we have a function, \(\ln x \), multiplied by its derivative, \(\frac{1}{x} \). This suggests using the substitution

\[
u = \ln x \\
du = \frac{1}{x} \, dx.
\]

As before, we can plug these data in straight away. For the future, we show another method for substitution. Rewrite the second line above as \(dx = x \, du \). This gives

\[
\int \frac{\ln x}{x} \, dx = \int \frac{u}{x} (x \, du) \\
= \int u \, du \\
= \frac{1}{2} u^2 + C \\
= \frac{1}{2} (\ln x)^2 + C.
\]

Working with bounds

So far, we have seen \(u \)-Substitution with indefinite integrals. Suppose now we have the definite integral \(\int_{0}^{\sqrt{\pi}} 2x \cos (x^2) \, dx \). We can proceed in one of two ways:

1. Change the bounds: First, we can change the bounds when doing our \(u \)-Substitution. Recall that we had \(u = x^2 \) for this example. Plugging the lower bound \(x = 0 \) into this gives a new lower bound of \(u = 0 \), and plugging the upper bound \(x = \sqrt{\pi} \) into this gives a new upper bound of \(u = \pi \). We then
evaluate the integral as normal:

\[
\int_0^{\sqrt{\pi}} 2x \cos (x^2) \, dx = \int_0^\pi \cos u \, du
\]

\[= \sin u \bigg|_0^\pi
\]

\[= \sin(\pi) - \sin(0)
\]

\[= 0.
\]

2. Don’t change the bounds: We can also just plug in our original bounds once we’ve rewritten the antiderivative in terms of \(x\). Recall that we found that

\[
\int 2x \cos (x^2) \, dx = \sin (x^2) + C,
\]

so evaluating this from \(x = 0\) to \(x = \sqrt{\pi}\) gives

\[
\int_0^{\sqrt{\pi}} 2x \cos (x^2) \, dx = \sin (x^2) \bigg|_0^{\sqrt{\pi}} = \sin(\pi) - \sin(0) = 0.
\]

We can use both methods, but sometimes changing the bounds is more convenient. Let’s consider our second example with bounds now: \(\int_1^{e^2} \frac{\ln x}{x} \, dx\). We can again proceed in two ways:

1. Change the bounds: Recall that in this integral we used the substitution \(u = \ln x\). Then \(x = 1\) goes to \(u = \ln(1) = 0\), and \(x = e^2\) goes to \(u = \ln (e^2) = 2\). In terms of \(u\), the antiderivative worked out to be \(\frac{1}{2} u^2\), so we plug in our bounds to get the answer:

\[
\int_1^{e^2} \frac{\ln x}{x} \, dx = \left. \frac{1}{2} u^2 \right|_0^2 = \frac{1}{2} (2^2 - 0^2) = 2.
\]

2. Don’t change the bounds: In terms of \(x\), our antiderivative was \(\frac{1}{2} (\ln x)^2\). Evaluating with our bounds gives

\[
\int_1^{e^2} \frac{\ln x}{x} \, dx = \left. \frac{1}{2} (\ln x)^2 \right|_1^{e^2} = \frac{1}{2} \left((\ln (e^2))^2 - (\ln 1)^2 \right) = \frac{1}{2}(4) = 2.
\]