
u-Substitution

Introduction

We can compute basic integrals such as
∫

2x2 dx and
∫ (
x3 + 3

)
dx using sum and power rules and other

basic formulas such as
∫

1
x dx = lnx. We cannot solve many integrals this way, however. For example, it is

not clear how to use a sum or power rule to solve
∫

2x cos
(
x2
)

dx or
∫

ln x
x dx. For such integrals, we must

use the method of u-substitution.

The Method of u-Substitution

Let’s do the two examples given above, starting with
∫

2x cos
(
x2
)

dx. This is a good candidate for
u-substitution because we have (1) a composition of functions (cosx is composed with x2), and (2) the inner
function’s derivative is outside (the derivative of x2, 2x, is on the outside of cos

(
x2
)
). We then set the inner

function equal to u and compute du by deriving the right-hand side (with respect to x). Here, this gives

u = x2

du = 2xdx .

Remember the dx when deriving both sides. We can then substitute into our integral and proceed as
normal, plugging x2 back in for u at the end:∫

2x cos
(
x2
)

dx =

∫
cos
(
x2
)

(2xdx)

=

∫
cosudu

= sinu+ C

= sin
(
x2
)

+ C .

Let’s do this for
∫

ln x
x dx. We can rewrite this as

∫
1
x lnxdx. Here, we don’t have a composition of

functions, but we have a function, lnx, multiplied by its derivative, 1
x . This suggests using the substitution

u = lnx

du =
1

x
dx .

As before, we can plug these data in straight away. For the future, we show another method for substi-
tution. Rewrite the second line above as dx = xdu. This gives∫

lnx

x
dx =

∫
u

x
(x du)

=

∫
udu

=
1

2
u2 + C

=
1

2
(lnx)

2
+ C .

Working with bounds

So far, we have seen u-Substitution with indefinite integrals. Suppose now we have the definite integral∫√
π

0
2x cos

(
x2
)

dx. We can proceed in one of two ways:

1. Change the bounds: First, we can change the bounds when doing our u-Substitution. Recall that we
had u = x2 for this example. Plugging the lower bound x = 0 into this gives a new lower bound of
u = 0, and plugging the upper bound x =

√
π into this gives a new upper bound of u = π. We then
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evaluate the integral as normal: ∫ √
π

0

2x cos
(
x2
)

dx =

∫ π

0

cosudu

= sinu
∣∣∣π
0

= sin(π)− sin(0)

= 0 .

2. Don’t change the bounds: We can also just plug in our original bounds once we’ve rewritten the
antiderivative in terms of x. Recall that we found that∫

2x cos
(
x2
)

dx = sin
(
x2
)

+ C ,

so evaluating this from x = 0 to x =
√
π gives∫ √

π

0

2x cos
(
x2
)

dx = sin
(
x2
) ∣∣∣√π

0
= sin(π)− sin(0) = 0 .

We can use both methods, but sometimes changing the bounds is more convenient. Let’s consider our

second example with bounds now:
∫ e2
1

ln x
x dx. We can again proceed in two ways:

1. Change the bounds: Recall that in this integral we used the substitution u = lnx. Then x = 1 goes to
u = ln(1) = 0, and x = e2 goes to u = ln

(
e2
)

= 2. In terms of u, the antiderivative worked out to be
1
2u

2, so we plug in our bounds to get the answer:∫ e2

1

lnx

x
dx =

1

2
u2
∣∣∣2
0

=
1

2

(
22 − 02

)
= 2 .

2. Don’t change the bounds: In terms of x, our antiderivative was 1
2 (lnx)

2
. Evaluating with our bounds

gives ∫ e2

1

lnx

x
dx =

1

2
(lnx)

2
∣∣∣e2
1

=
1

2

((
ln
(
e2
))2 − (ln 1)

2
)

=
1

2
(4) = 2 .
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