## $u$-Substitution

## Introduction

We can compute basic integrals such as $\int 2 x^{2} \mathrm{~d} x$ and $\int\left(x^{3}+3\right) \mathrm{d} x$ using sum and power rules and other basic formulas such as $\int \frac{1}{x} \mathrm{~d} x=\ln x$. We cannot solve many integrals this way, however. For example, it is not clear how to use a sum or power rule to solve $\int 2 x \cos \left(x^{2}\right) \mathrm{d} x$ or $\int \frac{\ln x}{x} \mathrm{~d} x$. For such integrals, we must use the method of $u$-substitution.

## The Method of $u$-Substitution

Let's do the two examples given above, starting with $\int 2 x \cos \left(x^{2}\right) \mathrm{d} x$. This is a good candidate for $u$-substitution because we have (1) a composition of functions ( $\cos x$ is composed with $x^{2}$ ), and (2) the inner function's derivative is outside (the derivative of $x^{2}, 2 x$, is on the outside of $\cos \left(x^{2}\right)$ ). We then set the inner function equal to $u$ and compute $\mathrm{d} u$ by deriving the right-hand side (with respect to $x$ ). Here, this gives

$$
\begin{aligned}
u & =x^{2} \\
\mathrm{~d} u & =2 x \mathrm{~d} x .
\end{aligned}
$$

Remember the $\mathrm{d} x$ when deriving both sides. We can then substitute into our integral and proceed as normal, plugging $x^{2}$ back in for $u$ at the end:

$$
\begin{aligned}
\int 2 x \cos \left(x^{2}\right) \mathrm{d} x & =\int \cos \left(x^{2}\right)(2 x \mathrm{~d} x) \\
& =\int \cos u \mathrm{~d} u \\
& =\sin u+C \\
& =\sin \left(x^{2}\right)+C
\end{aligned}
$$

Let's do this for $\int \frac{\ln x}{x} \mathrm{~d} x$. We can rewrite this as $\int \frac{1}{x} \ln x \mathrm{~d} x$. Here, we don't have a composition of functions, but we have a function, $\ln x$, multiplied by its derivative, $\frac{1}{x}$. This suggests using the substitution

$$
\begin{aligned}
u & =\ln x \\
\mathrm{~d} u & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

As before, we can plug these data in straight away. For the future, we show another method for substitution. Rewrite the second line above as $\mathrm{d} x=x \mathrm{~d} u$. This gives

$$
\begin{aligned}
\int \frac{\ln x}{x} \mathrm{~d} x & =\int \frac{u}{x}(x \mathrm{~d} u) \\
& =\int u \mathrm{~d} u \\
& =\frac{1}{2} u^{2}+C \\
& =\frac{1}{2}(\ln x)^{2}+C
\end{aligned}
$$

## Working with bounds

So far, we have seen $u$-Substitution with indefinite integrals. Suppose now we have the definite integral $\int_{0}^{\sqrt{\pi}} 2 x \cos \left(x^{2}\right) \mathrm{d} x$. We can proceed in one of two ways:

1. Change the bounds: First, we can change the bounds when doing our $u$-Substitution. Recall that we had $u=x^{2}$ for this example. Plugging the lower bound $x=0$ into this gives a new lower bound of $u=0$, and plugging the upper bound $x=\sqrt{\pi}$ into this gives a new upper bound of $u=\pi$. We then

## $u$-Substitution

evaluate the integral as normal:

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi}} 2 x \cos \left(x^{2}\right) \mathrm{d} x & =\int_{0}^{\pi} \cos u \mathrm{~d} u \\
& =\left.\sin u\right|_{0} ^{\pi} \\
& =\sin (\pi)-\sin (0) \\
& =0
\end{aligned}
$$

2. Don't change the bounds: We can also just plug in our original bounds once we've rewritten the antiderivative in terms of $x$. Recall that we found that

$$
\int 2 x \cos \left(x^{2}\right) \mathrm{d} x=\sin \left(x^{2}\right)+C
$$

so evaluating this from $x=0$ to $x=\sqrt{\pi}$ gives

$$
\int_{0}^{\sqrt{\pi}} 2 x \cos \left(x^{2}\right) \mathrm{d} x=\left.\sin \left(x^{2}\right)\right|_{0} ^{\sqrt{\pi}}=\sin (\pi)-\sin (0)=0
$$

We can use both methods, but sometimes changing the bounds is more convenient. Let's consider our second example with bounds now: $\int_{1}^{e^{2}} \frac{\ln x}{x} \mathrm{~d} x$. We can again proceed in two ways:

1. Change the bounds: Recall that in this integral we used the substitution $u=\ln x$. Then $x=1$ goes to $u=\ln (1)=0$, and $x=e^{2}$ goes to $u=\ln \left(e^{2}\right)=2$. In terms of $u$, the antiderivative worked out to be $\frac{1}{2} u^{2}$, so we plug in our bounds to get the answer:

$$
\int_{1}^{e^{2}} \frac{\ln x}{x} \mathrm{~d} x=\left.\frac{1}{2} u^{2}\right|_{0} ^{2}=\frac{1}{2}\left(2^{2}-0^{2}\right)=2
$$

2. Don't change the bounds: In terms of $x$, our antiderivative was $\frac{1}{2}(\ln x)^{2}$. Evaluating with our bounds gives

$$
\int_{1}^{e^{2}} \frac{\ln x}{x} \mathrm{~d} x=\left.\frac{1}{2}(\ln x)^{2}\right|_{1} ^{e^{2}}=\frac{1}{2}\left(\left(\ln \left(e^{2}\right)\right)^{2}-(\ln 1)^{2}\right)=\frac{1}{2}(4)=2
$$

