IFB SYSTEM

MA-4 AX-4 PIC-4000B INSTRUCTION and SERVICE MANUAL

Clear-Com
 Intercom Systems

$* *$	
$* *$	IFB SYSTRM MANUAL
$* *$	DOCUMENTATION ADDENDUM
$* *$	MA-4 \& AX-4
$* *$	REV.B
$* *$	December 22,1987
$* *$	

**

MIC TO LINR GAIN LEVEL INCREASE

In effecting a 4 dB Mic to Line increase in gain level, the following changes have been made:

Change:
15K OHM

At:
R27, 28,
29, 30

TO:
6.8 K OHM

**	CLEAR-COM
* \ddagger	DOCUMENTATION ADDENDUM
**	PIC-4000B/IFB SYSTEM
**	DATE: JUNE 25, 1987

* PIC-4000B - STEREO/SPLIT FEED IFB OUTPUTS.
* PIC-4000B - CONNECTION TO MS-808 MAIN STATION.

1. PIC-4000B:
1.1 Stereo/Split Feed outputs:
1.1.1 The Model PIC-4000 IFB Central Electronics has been upgraded to the Model PIC-4000B. The upgrage consists of a circuit design change that permits all of the four IFB outputs to feed two discrete audio channels ("Interrupt" \& "NonInterrupt") to the new Model TR-532 Stereo/Split Feed Talent Receivers. The two discrete signals, plus the DC operation power, are sent to the TR-532 via $3-\mathrm{p}$ in XL type connectors and two conductor shielded cable (standard microphone cable).
1.1.2 This upgrade in no way effects the PIC-4000B's operation with TR-50 Single Channel Talent Receivers, which receive only the "Interrupt" signal.

TR-50s and TR-532s should not be combined on the same IFB output. However, if they are accidently connected to the same output, no damage will result to the units or to the system.
1.1.4 Each of the four IFB outputs can operate a maximum of four TF. bu singly Chuncl Talunt Receiviss or two TR-532 StereolSplit Feed Talent Receivers.
1.1.5 This upgrade eliminates the "EPC" Sportscaster/Two Channel Output" option, which provided the "Interrupt/Non-Interrupt" outputs to two channel Talent Receivers via a 6-pin cable.
1.2 Connection between a PIC-4000B and a Ms-808 Main Station:
1.2.1 The new PIC-4000B now replaces the model fic-4 IFB central Electronics. The PIC-4 was originally designed as the IFE Central Electronics for MS-808 Main Stations. The fic-4 was controlled by one or more Model IfB-4 IfB Control Mojules installed in an MS-808 Main Station.
1.2.2 Ar MS-808 connects to the PIC-4000B via 6-pin connectors in the same manner as an MA-4 or AX-4 IFE Control Pane? connection. (The MS-808 originally connected to the EIC-A via a 12 pair cable terminating in a $30-\mathrm{pin}$ "Tuchel" connector. MS-808s are now equipped with 6-pin maie xi type connectors for connection to the fic-4000B.)
1.2.3 An IFB system can contain a combination of MA-4/AX-4 "standalone" Control Panels and MS-808 Main Stations equifped with IFB-4 Control Modules to control one or more FIC-4000Es.
I. INTRODUCTION
A. IFB System Concept........ 1
B. Unit Descriptions......... 2
II. INSTALLATION
A. System Capacity........... 4
B. System Architecture..... 4 System Diagrams........... 5
C. Interconnect Cabling..... 6
D. System Connection......... 7 System Wiring Example.... 8
E. Unit Mounting.............. 9
F. Setup and System Check..l 10
III. OPERATION...................... 10
IV. TECHNICAL INFORMATION
A. Maintenance \& Warranty..ll
B. Troubleshooting.......... 11
C. Parts Lists................ 13
D. Specifications........... 17
E. Schematics................. 18
F. Component Locations...... 21
motice:
While Clear-Com makes every attempt to maintain the accuracy of the information contained in its product manuals, the information is subject to change without notice."

I. INTRODUCTION

A. IFB System

During production of a program for transmission or recording, a director or producer frequently needs to cue the performing talent. This is done using Interrupt FoldBack, a type of closedcircuit intercom for sending program and cue audio on "IFB" lines for the talent to monitor. The IFB line carries three signals: program audio, cue audio, and the dip or mute control. See the signal flow diagram below. Electronic control allows the director to interrupt the program signal when addressing the talent. IFB communications are one-way only -- from an access location to the selected talent position.

Clear-Com's new stand-alone IFB components provide high performance, cost-effective answers for applications where regular intercom functions are not also required, or where space constraints require compact, versatile packaging. The simplest stand-alone system consists of a PIC-400日, an MA-4, a PS-20 for power and one to four TR-50 talent receivers. This system will permit cuing of one to four talent positions from only one access location.

NOTE: Throughout this manual, access location refers to the physical place someone needs to cue the talent from. Talent position refers to the individual "talent" cue channels.

B. Unit Descriptions

Clear-Com's stand-alone series of IFB components offers two types of talent access station. The MA-4 has a built-in electret gooseneck microphone and a pre-amplifier with line-level output. It provides access to four talent positions. Each AX-4 allows access, from the same location, to an additional group of four talent positions; it requires an external line-level signal for its cue audio source. The MA-4's cue audio and ALL control signals will feed up to twenty-three AX-4's, so that only one MA4 is reqired at each access location. Each talent position may be accessed independently, or simultaneously with any other(s). The ALL button on the MA-4 simultaneuosly accesses all talent positions of the MA-4 and each AX-4 extension unit fed from that MA-4.

THE MA-4
THE AX-4

A PIC－4000 unit is required for every four talent positions，or fraction thereof．For example，a system with five to eight talent positions will require two PIC－40日g＇s．The same IFB system with three access locations will require three MA－4＇s and three AX－4＇s，but will still need only two PIC－400日＇s．The PIC－40日ø performs the program feed and interrupt functions for each talent position，and also terminates the IFB lines．

THE PIC－4000

The connectors on the MA－4，AX－4，and PIC－4000 are arranged for convenient interconnection as a stand－a lone system．However，all units＇electrical characteristics are identical to those of the integrated IFB systems on our standard broadcast intercom line． So＇with suitable connector adaptors，both types of units may be mixed in a system．

II. INSTALLATION

A. System Capacity

A system may have up to fifty access locations. Cue audio from the MA-4 can drive up to twenty-three AX-4 units, thus permitting a maximum of ninety-six talent positions.

In order to use the IFB system at its maximum capacity, two factors must be considered: system wiring (architecture) and power requirements. The MA-4 consumes a maximum of 180 mA (idle current 140 mA), and the $A X-4$ consumes a maximum of 150 mA (idle current 120 mA). Since the resistance of the conductors in the interconnect cable may be on the order of five to ten ohms per 1000 feet, care must be taken to avoid having too many stations on one long cable run. For example, a system with two MA's on a $200 \emptyset$ foot cable which has 16 ohms cumulative resistance in the power conductor plus another 10 Ohms in the common conductor, the voltage drop is a maximum of 9 V . If another two MA's were to be added for the same cable run, the voltage drop would be an unacceptable 18 V . Therefore the other set of access stations would have to be connected on a separate cable run from the PIC4000 .

To determine the number and type of power supplies a system requires, add up the number of Unit Loads. (1 Unit Load $=50 \mathrm{~mA}$) PIC-4øø日 $=1$ Unit Load MA-4 $=4$ Unit Loads four $T R-5 \emptyset=1$ Unit Load $A X-4=3$ Unit Loads
A PS-20 has enough capacity for 20 Unit Loads, a PS-452 can supply 40 Unit Loads. Example: System \#5 on page 5 has a total of 20 unit loads, so a PS-20 has exactly enough capacity for this system.

B. System Architecture

Two basic cabling methods for connecting the system may be used: Daisy-Chain (or Loop-Through) and Hub. Both methods may be combined in any system. Since the PIC-40日0 has only two IFB line connectors, a Hub-type system is limited to two branches unless a special splitter box is used. Generally, resistance-buildup effects and resultant voltage drop are worse when using the daisy chain approach. The "hub" approach minimizes voltage-drop effects at the expense of greater cumulative cable capacitance. Cable capacitance is not quite the problem it is in regular intercom systems, because there is no sidetone null change, only a degradation of high-frequency response.

Referring to the typical System block diagrams on page 5 , only System \#2 is connected using the "hub" method; all other systems are shown connected via the "daisy-chain" method.

C. Interconnect Cabling

Use one multi-pair cable for each group of four channels when connecting the IFB lines between the access stations and their associated component (other MA's or. AX's and the PIC-40ø日). This cable MUST have (four) SEPARATELY shielded conductors or pairs of conductors to prevent crosstalk. Suitable cable types are: Alpha \#6054, Belden \#'s 8725 or 9330 , and Mogami \#2602. As noted in Section B, the resistance buildup in both the power and common (or ground) conductors must be kept at a minimum for proper operation. Resistance buildup in the common conductor will also increase crosstalk. Follow the diagram below for best results in connecting the cable to the XLR connectors. Notice that all four of the spare conductors in each pair are tied together to pin 2 (DC power), and all shields are tied together to pin 1 (common). This arrangement minimizes resistance buildup effects in long cable runs.

Clear-Com has ready-made cable in 25,50 , and 100 foot lengths to fit your cabling and system architecture needs. The model number is ICxx/6.

In a system with more than four talent positions (one group), the cue audio from the MA's mic preamp and the ALL control signal must be bussed from the MA to each AX unit. A two-conductor shielded mic cable with $1 / 4^{\prime \prime}$ TRS 'phone plugs at each end is used for this purpose. Refer to the diagram on page 8 , system wiring, for pin-out details.
Note: the diagram shows the access stations for talent positions $5-8$ connected in a "hub" from the second PIC-400日 while the stations for the first group of talent positions (1-4) are shown connected in the "daisy-chain" method. In practice, stations for both groups of talents would be interconnected in the same manner.

Connect single channel talent receivers to the PIC-4000 using standard two-conductor mic cable. For a split-feed receiver, our standard $2 / 4$ channel interconnect cable (ICxx/6 can be used. If custom cabling is made, refer to the diagram on page 8 for pinouts. Notice that pins 5 and 6 are not used, and be sure to keep the conductors for pins 3 and 4 in separate shields. Only two conductors are necessary for the cabling between the power supply and the PIC-4000(s). If any section of this cable is more than a few feet long, be sure that heavy-gauge wire is used.

D. System Connection

1) Determine the architecture for your IFB system.
2) Decide upon a location for the PIC-4000(s). Then:
3) Connect the PIC-4000(s) to Clear-Com power supply(s) such as the PS-452 or PS-20. (\#9)
4) Connect the program source(s) to the PIC-400日(s) as required. (\#5,6) A balanced program source is connected to pins 2 and 3 of the program input. The common pin can be connected to the common or ground point of the source, if necessary to eliminate any residual hum. If a single-ended source is used, either pin 2 or 3 must be connected to the common point of the source. The "high" side is connected to the other pin (2 or 3).
5) Use standard multi-pair shielded cables and two-conductor shielded mic cables to interconnect the access stations as described in the preceding section.
6) Route all cables from the access locations and the talent receivers to the PIC-4000's using either or both of the methods discussed in Section B above. Pin assignments for the rear panel IFB XLR connectors are: Pin l, COMMON; Pin 2, POWER; Pins 3-6, TALENT CHANNELS 1-4 respectively. (\#7)
7) Route cables away from heavy $A C$ power sources such as lighting panels or electric motors.
8) In permanent installations, cables should be installed in accordance with approved local building codes.
(The numbers in () refer to the diagram on page 3.)
GTdWVXG פNIBIM WGld

$$
\begin{aligned}
& 00 \\
& 00 \\
& \text { OO } \\
& 00 \\
& 00 \\
& \text { OD }
\end{aligned}
$$

(2)

E. Physical Mounting

The PIC-4000 is designed for mounting in a standard 19" rack. It requires only one $1.75^{\prime \prime}$ rackspace, and is 6.5" deep.

The MA-4 and AX-4 may be mounted in a console or desk, or in a standard 19" rack using the optional rack kit (CC\# 820022). Refer to the diagrams below for mounting dimensions when installing in a desk or console. There are no special constraints on relative positioning of MA's and AX's, though it is expected that the extension bus cable (the one with phone plugs) will be no more than lofeet (normally 18 inches long). Be sure to make allowance for the XLR connectors to be plugged into the back of each access station.

MOUNTING DIMENSIONS OF AX-4

F. Set-Up and System Check

After Program Sources are connected, assign them at the PIC-40日0 to the talent channels with the Program (Source) select switches for each channel's interrupt (\#3) and non-interrupt (\#2) talent feeds. Set the toggle handle up to select source \#l, or down to select source \#2.

Set the attenuation or dip of the program feed during cuing with the dip adjust trims (\#4). They can be set from no attenuation (fully $C W$) to greater than 50dB (fully CCW).

Before adjusting the Program Level trims at the PIC-4000, the volume at the $T a l e n t$ Receivers must be adjusted (via the control on the Receiver) for a comfortable cue audio level in the earpiece or headset while someone is cuing that talent position from one of the access locations.

The PROGRAM INPUT LEVEL trims (\#1) permit use of program levels ranging from $-2 \emptyset d B v$ to gdBv. At full clockwise rotation, the gain from program input to the IFB line is approximately unity. So at maximum gain setting, a program level of $-2 ø d B v$ will be roughly the same volume on the IFB line as the cue audio. If the program source level is around $\sigma \mathrm{dBv}$, the trims will have to be set near full counter-clockwise rotation to match the cue audio level on the IFB lines.
(NOTE: The numbers in () refer to the diagram on page 3.)

The only adjustment possible at the MA-4 is a trim ($+/-5 \mathrm{~dB}$) of the mic gain. Adjusting this gain should be necessary only in unusual circumstances, because of the mic preamp's limiter.

III. OPERATION

The system is operated by engaging the desired cue buttons on the access stations. A control voltage on the IFB line causes the PIC-400ø to dip the program feed to that channel so that the cues given are understandable. (At an optional split-feed receiver, the program is dipped only in the cue side; the other side has continuous program with no cue.)
A. Press the IFB button on the access station corresponding to the talent position(s) you wish to cue, then speak into the MA-4's microphone.
B. Press the MA-4's ALL button, and you simultaneously activate every IFB line, including those on any accompanying AX-4 units.

The control voltage also causes the corresponding buttons at all other access locations to be brightly lit, indicating which channels are in use.

A. Trouble Shooting

The table of troubles on the next page, which generally involves system wiring, covers only the most likely problems. In any trouble-shooting effort, keep these points in mind:

1) The power for all units in the system is routed from the power supplies through the PIC-4000.
2) All access stations (MA's and AX's) and the talent receivers are connected across the IFB lines in a bridging configuration (highimpedence)
3) Each IFB line is terminated by its associated PIC-4000. The termination is about 220 ohms A.C., and approximately 5000 Ohms D.C.
4) Three different types of signals are present on the IFB line: a. Cue audio, which originates from an access station's mic b. Program audio, from the associated PIC-4000, and c. Interrupt control signal, a D.C. voltage which also orignates at an access station.
5) The audio levels are approximately -15 dBv ref.0-. 775 VRMS), and the D.C. control voltage is about +13 Volts.
6) The cue audio and ALL control bignal for operation of the AX-4 stations at any given location are supplied by the MA-4 station at that location.

SYMPTOH

Channel access buttons not lit or too dim.

CAUSE

A No power

B Insufficent power

A Excessi.ve DC load on affected IFB line

B IFB line shorted in cabling

Access button remains brightly lit after being released.

No cue from an $A X-4$ station.

Hum or buzz from program. (pgm. trim affects loudness)

IFB 1 ine not terminated

A Associated MA-4 not operating

B Faulty or missing connection to MAor AX- unit.

Mis-connection of program source to input.
engaged at any station.

REMEDY

A Check that power supply is operating \& connected to the PIC-4000.

B Increase power capacity or connect fewer stations on each cable run.

A Isolate \& replace faulty module on affected line.

B Isolate \& repair cable.

ASY GOOSENECK MIC KIT W/O ALIAPTER PLATE
P/N
DESCRIPTION
QTY
210062 AMP 4 PIN MTA HOUSING $\ddagger 640440-4 \quad 2$
250157 MET ELECTRET MIC COLLAR 1
280002 HDS SHOULDER WASHER GM AMATON $\$ 2721-68763-F 625$
280011 HDS $4-40 \times .132$ SET SCREW ALLLEN HEAD
280068 HDS 5/8X27X.75OAFX. 010 HEX NUT
500090 AAA MIC PRIMO GOOSENECK MIC \#EM4544 500096 GSN FOAM WINDSCREEN FOR 500090 PRIMO $\ddagger W S-31$

ASSEMEL.Y 720052
ASY CHASSIS SUB-ASSY FOR MA-4
P/N DESCRIFTION
QTY
210004 SWC DGM CONNECTOR
210063 SWC DGF CONNECTOR
210117 AMP 6 PIN MTA HOUSING AMP $\$ 640440-6$
250271 MET MA-4 CHASSIS
710161 ASY PC MONULE FOR MA-4

ASSEMBLY MA-4 FGI IFB MIC ACCESS STATION
P/N
DESCRIPTION aty

250270
250272
250278
720052
720055
810045
MET MA-4 FRONT PANEL
1
MET MA-4 COVER - 1
MET CHASSIS MTG PLATE (INTERNAL) FOR MA/AX
ASY CHASSIS SUB-ASSY FOR MA-4 REU. 99
ASY GOOSENECK MIC KIT W/O ADAPTER PLATE REU. 99 MAN MA-4 INSTRUCTION MANUAL REU. 99

ASY PC MOLULE FOR AX-4

ASSEMBLY 720053
ASY CHASSIS SUB-ASY FOR AX-4
P / N
DESCRIPTION
QTY
210004 SWC LIGM CONNECTOR 1
210063 SWC D6F CONNECTOR 1
210117 AMP 6 FIN MTA HDUSING AMF *640440-6 1
250274 MET AX-4 CHASSIS 1
710162 ASY FCC MONULE FOR AX-4 1

ASSEMBLYY AX-4
FGI IFB EXTENSION ACCESS STATIOH
DESCRIPTION
QTY
250273 MET AX-4 FFIONT FANEL 1
250275 MET AX-4 COVER 1
250278 . MET CHASSIS MTG PLATE (INTERNAL) FOR MA/AX 2
720053 . ASY CHASSIS SUB-ASY FOR AX-4. 1
810046 MAN AX-4 INSTRUCTION MANUAL REU. 99 I
820028
ASY MA/AX INTERCONNECT CABLE

ASSEMBLY 720054
ASY PIC-4000 REAR PANEL ASSY

ASSEMBLY PIC-4000
FGI PGM. INTERR. CONT. (STAND ALONE)

D．Specifications

Circuit Design：
Power Required：

Frequency response： Signal to noise ratio：

Distortion：
Nominal IFB Line Level：
Gains：
$\begin{array}{ll}\text {（PIC－4ø0日）} & \text { Pgm to IFB line：} \\ \text {（MA－4）} & \text { Mic to IFB line：} \\ \text {（AX－4）} & \text { Extension bus } \\ & \text { to IFB line：}\end{array}$
Maximum number of
access locations：
Maximum number of talent positions： IFB Line Connectors： Dimensions（HxWxD）：

Weight：

IC amps，solid state audio switching 24－32 V．D．C． 60 mA max．（PIC－40日0） 180 mA max， 140 mA idle（MA－4） 150 mA max， 120 mA idle（AX－4） 200 HZ to 18 kHz ． better than -60 dB （mic input） better than -65 dB （pgm input） ＜$\quad .1 \%$ T．H．D．＠ 1 kHZ -18 dBv ＊
unity（trims full clockwise） $+4 \varnothing \mathrm{~dB}$（trim at mid position）
$-14 d b$
50
96 （24 4－channel access stations）
6－pin XLR
（PIC－4000）1．75＂x 19＂x 6．5＂
（MA－4）1．75＂x 6．3＂x 6．3＂
（AX－4）1．75＂x 4．9＂x 6．5＂
（PIC－400日） 3.2 lbs．（ 1.5 kg. ）
（MA－4） 1 lb． $7.68 \mathrm{oz}(.67 \mathrm{~kg})$
（ $\mathrm{AX}-4$ ）．96． $\mathrm{lb}(.43 \mathrm{~kg})$
＊$\emptyset \mathrm{dBv}$ is referred to 0.775 V ．RMS
Specifications subject to change without notice．

F. Component Locations

