BFAST: BLAT-like Fast Accurate Search Tool 1

Nils Homer

1Copyright © UCLA 2008, made for BFAST version 0.6.5b

i

Contents

Table of Contents \Y%
List of Figures vii
List of Tables ix
Preface xi
0.1 Acknowledgements xi

1 Run BFAST now! 1
2 Installation 3
2.1 Prerequisites 3
2.2 Compilation 3

3 Fundamental Concepts 5
3.1 What is BFAST? 5
3.2 Program Organization 6
3.3 Work flow 6

4 Basic Usage 9
4.1 Common Options 9
411 Usage . . o o o e 10

4.2 Dbfast fasta2brg 11
4.2.1 Creating a Reference Genome 11

4.3 Dbfastindex 11
4.3.1 Creating Indexes of a Reference Genome 12

4.3.2 Usage e 12

4.4 Dbfast match 14

il

iv CONTENTS
4.4.1 Finding Candidate Alignment Locations (CALs) 14
4.4.2 Usageo 15

4.5 bfast localalign L 17
4.5.1 Performing Local Alignment on Candidate Alignment Locations (CALs) 17
4.5.2 Usage 18

4.6 bfast postprocess L 19
4.6.1 Prioritizing Alignments oL oL 19
4.6.2 Usage e 20

4.7 bfast bafconverto 22
471 Usage o 22

4.8 bfast header L 23
4.8.1 Usage e e 23

4.9 bfast bmfconverto 23
4.91 Usage . . . o o oo 23

4.10 bfast brg2fasta 24
4.10.1 Usage o o e 24

4.11 bfast easyalign oL 24

4.12 butil . .. 24
4.12.1 balignmentscoredistribution00 24
4.12.2 balignsimo 25
4.12.3 bevalsimo 26
4.12.4 bgeneratereadso 26
4.12.5 bindexdisto 27
4.12.6 bindexhisto 28
4.12.7 bmfmerge 28
4.12.8 brepeat 29
4.12.9 btestindexes 29

413 SCripts e 32
4.13.1 bfast.submit.pl 32
4.13.2 bfast.resubmit.pl 32
4.13.3 qgseq2fastq.pl 33
4.13.4 solid2fastq 33

5 File Formats 35

5.1 Imput Files 35
5.1.1 Reference genome FASTA file 35
5.1.2 Reads FASTQ file 35

5.1.3 Exons File 36

CONTENTS

5.1.4 Scoring Matrix File oo
5.2 BFAST Files.
5.2.1 BFAST reference genome file.
5.2.2 BFAST index file
5.2.3 BFAST matches file.
5.2.4 BFAST aligned file
5.2.5 BFAST sequence alignment/map file
5.3 Example Input Fileso oo
6 Advanced Topics
6.1 How To Design Indexes Lo
6.2 Whole-Genome Alignment
6.3 Targeted Genomic Alignments
6.3.1 Using index andexon list
6.3.2 Using command-line options to specify one contiguous range
6.4 Transcriptome Alignment Lo
6.5 Bisulfite Treated or Methylation Alignment
6.6 Color Space Alignment
7 Appendix
7.1 Human Genome Alignment Recommended Settings
7.1.1 Muminao 0L
7.1.2 ABISOLID
7.2 High-Speed Tutorial

7.3 Copyright

References

37
37
37
38
38
39
39
40

45
45
47
47
47
47
48
49
50

53
53
53
5}
26
56

64

vi

CONTENTS

List of Figures

3.1

5.1
5.2
5.3
5.4
5.9
5.6
5.7

6.1

The BFAST work flow. 8
An example of a reference genome FASTA file. 41
An example of an Exons file oL 42
An example of a reads FASTQ file in nucleotide space. 42
An example of a reads FASTQ file in nucleotide space with paired end reads. 43
An example of a reads FASTQ file in color space. 43
An example of a Scoring Matrix file for nucleotide space. 44
An example of a Scoring Matrix file for color space. 44
The BFAST work flow for color space alignment. 51

vil

viii LIST OF FIGURES

List of Tables

X

LIST OF TABLES

Preface

This document is meant to serve as a guide for the practical use of BFAST. It includes
explanations of all command-line options for each command and binary in BFAST to give
an idea of basic usage. Input and output file formats are also detailed. We give many
examples of use, including alignment to the whole genome, targeted genomic regions, and to
the transcriptome.

This document does not try to explain the underlying algorithm or data-structures used in
BFAST. For example, we will not explain the local alignment algorithms, or the underlying
BFAST algorithm. Without proper understanding of the underlying algorithm, including
local alignment algorithms, it is difficult to use this very flexible program knowledgeably to
obtain your desired results. Therefore, reading the BFAST paper (Homer et al. (2009a)) is a
strict prerequisite. Additionally, the local alignment paper used by BFAST for ABI SOLiD
data is required for ABI SOLiD data alignment (Homer et al. (2009b)).

If you have anything that you would be useful to add to this guide, feel free to relay
the addition to the BFAST developers. This includes but is not limited to bugs, typos, and
explanations. Please see http://genome.ucla.edu/bfast for more details.

Enjoy!

0.1 Acknowledgements

We would like to thank Jim Kent for creating and distributing the BLAT program (Kent
(2002)), which was both a motivation for this work, and was also the basis for our initial
practical large scale alignment pipeline. We also thank members of the Nelson Lab: Zugen
Chen, Hane Lee, Bret Harry, Jordan Mendler, Brian OConnor for input and computational
infrastructure support.

The layout and organization of this book was guided by the design found in the SVN book
(http://svnbook.red-bean.com/). We would also like to thank SVN for creating
amazing version control software that manages the source code BFAST.

x1

http://genome.ucla.edu/bfast
http://svnbook.red-bean.com/

X1l

PREFACE

Chapter 1
Run BFAST now!

So impatient! If you want to run BFAST now, you have come to the right place. If you
are aligning Illumina data or ABI SOLiD data to the human genome, please see section 7.1.
Otherwise, then please check out the High Speed Tutorial (section 7.2).

CHAPTER 1. RUN BFAST NOW!

Chapter 2

Installation

BFAST is distributed via source code. This requires the user to compile and install BFAST
from source. We assume that the BFAST tarball has been downloaded and unpacked.

2.1 Prerequisites

BFAST requires the following packages to be installed:
e automake (part of GNU autotools)
e zlib-dev (ZLIB developer’s libraray)
e libbz2-dev (BZIP2 developer’s library)

The BZIP2 developer’s library may optionally not be installed, but the ——disable-bz2
option must be used when running the configure script (see the next section).

2.2 Compilation

Enter the following commands, and note any warnings or errors. These commands are
commont to linux source packages that use GNU Autotools for compilation.

./configure
make

make check
make install

If you are having problems, try regenerating the configure script (depends on aut omake):

3

4 CHAPTER 2. INSTALLATION

sh autogen.sh

The installation path is set by default based on your system (see the output of make
install). You may change the installation path by using the ——prefix=PATH option
when running the configure script, where PATH is the full path to the installation directory.

Chapter 3

Fundamental Concepts

3.1 What is BFAST?

The short answer is that BFAST is a tool for fast and accurate sequence alignment (it is in the
name). An implementation of BFAST can be found at http://bfast.sourceforge.
net. The longer answer is, well, longer.

The basic problem is as follows. We are given some reference sequence, to which we wish
to compare our data. Our data are short reads (sometimes numbering in the billions) that
are substrings of the reference sequence. In some cases, these short reads differ based on
various edit operators that modify the read in some fashion. It is the goal of BFAST to find
the location in the reference sequence that minimizes the number of edit operators used to
transform the read into the reference sequence at that location. The process of concluding
a read has a location in the reference sequence is called mapping or alignment.

In the case of DNA sequence alignment, these edit operators are biologically and tech-
nology motivated, including mutations/mismatches/SNPs, insertion of bases (or letters),
deletion of bases (or letters), and technical errors. Typically we have some set of sequence to
which we wish to compare our reads. In many cases, finding the correct location given a set
of variants (such as the operators) is extremely important since we may be only interested
in the variants themselves.

For example, we may be interested in mutations in Breast Cancer and therefore mapping
accurately or robust to many combinations of variants is important. In other cases, the speed
of mapping is important and the accuracy is not. For example, in digital gene expression
analysis the goal is to estimate the number of reads map over locations in the genome as to
gain an overall trend of coverage, rather than precise variant detection.

Whatever the intended application of BFAST, it can be tuned to find alignments quickly
at the cost of accuracy or robustness against variants. It can also be tuned to accurately find

http://bfast.sourceforge.net
http://bfast.sourceforge.net

6 CHAPTER 3. FUNDAMENTAL CONCEPTS

alignments with variants at the cost of speed. This is the power of BFAST. It is a highly
generalized algorithm allowing the user to tune the algorithm to suit their specific needs.

Its implementation is ever-evolving, with new releases occurring early in development and
often. BFAST is suited for use on high memory machines when used for Human Genome
resequencing and is best used on a cluster of such machines. Nevertheless, it is able to be
efficiently run on low memory machines (j4GB) even for the Human Genome. It also uses
multi-threaded programming to utilize the multi-core architecture of current machines. The
output of BFAST is in binary format to reduce file space for large data, although we supply
tools to convert these formats to text or other standard formats if so desired. Finally, we
use the C programming language to implement BFAST to increase efficiency as well as the
GNU Build System (Autotools) to handle compilation.

3.2 Program Organization

BFAST consists of two sets of programs. The most important utilities are combined into one
program bfast. A command is specified this one binary to run each command. Auxiliary
commands are separated into their own individual programs in the butil folder.

3.3 Work flow

The basic work flow has five steps as seen in Figure 3.1.

1. The first step is to create a reference genome from an input FASTA file that contains all
the sequence to which we wish to align. The command bfast fasta2brg performs
this task (see section 4.2).

2. The second step is to create indexes of the reference genome, which was created in the
first step. The number and layout of these indexes is determined both by the user’s
speed and accuracy requirements. The command bfast index performs this task
(see section 4.3).

3. The third step is to find candidate alignment locations (CALs) for each read. The
expected number of CALs returned is a function of the number of indexes and the
layouts chosen in the second step as well as the number offsets. The binary bfast
match performs this task (see section 4.4).

4. The fourth step is to fully align each CAL for each read. This uses a standard local
alignment algorithm (Smith and Waterman (1981)) or a custom tool for ABI SOLiD

3.3. WORK FLOW 7

data (Homer et al. (2009b)). The binary bfast localalign performs this task (see
section 4.5).

5. The fifth and final step is to prioritize the final alignments. The user specifies criteria
to select the correct alignment for each read. The criteria can be based on many fac-
tors, including uniqueness, score, or other factors. The binary bfast postprocess
performs this task (see section 4.6).

The reference genome (Step 1) and indexes (Step 2) can be re-used between experiments
where only the read data changes, not the reference genome or index layouts. Since only
the reads will change, one can utilize the same reference genome and indexes created in Step
1 and Step 2 respectively. Therefore, it is advised to perform Step 1 and Step 2 such that
the reference genome and indexes can be re-used, thus reducing the work flow down to three
steps upon re-use. In fact, the main speed of this program comes from the idea that in
general, the reference genome and associated indexes need only be built once, with the reads
coming from the same reference genome (say Human) but different samples or experiments.

CHAPTER 3. FUNDAMENTAL CONCEPTS

I CREATE A REFERENCE GENOMEI

v

CREATE INDEXES OF THE
REFERENCE GENOME

v

USE THE INDEXES AND REFERENCE
GENOME TO FIND CANDIDATE
ALIGNMENT LOCATIONS (CALS)

v

ALIGN EACH CAL USING A LOCAL
ALIGNMENT ALGORITHM

v

|PRIORITIZE ALIGNMENTSl

Figure 3.1: The BFAST work flow.
See section 3.3 for a description.

Chapter 4

Basic Usage

BFAST is a command-line program. It accepts many command-line options to customize and
tune the alignment algorithm. The key commands are organized into one binary program
called bfast. To access each command, we use bfast <command>. As seen in the
section 3.3, there are five commands to be run for the entire work flow, although only three
need to be used if we are aligning to a previously indexed reference.

4.1 Common Options

Some common options exist across some or all of the commands.

These options include specifying the reference genome FASTA file (
T-f), specifying the number of threads for parallel processing (-n), the number of reads
to load at a time (-Q), specifying where temporary files should be stored (-T), specifying
the encoding space (—A), outputting timing information (-t), printing program parameters
(-p), and printing a help message (~h).

Other options, such as the options —s, —S, —e, and —E for specifying only a contiguous
range should be considered, are shared across some of the commands but have specific
implications to each command and are described in the respective command’s section.

The BFAST commands match, localalign, and postprocess can all accept their
input file from the standard input stream, facilitating the use of these BFAST commands
in a pipe-and-filter model. For example, this allows the output of match to be piped into
localalign, with the subsequent output be piped into postprocess. When the input
for these commands comes from the standard input stream, no progress messages of any
kind will be outputted (don’t panic).

10 CHAPTER 4. BASIC USAGE

4.1.1 Usage
—-f FILENAME, --fastaFileName=FILENAME

Specifies the file name of the FASTA reference genome (see subsection 5.1.1 for the file for-
mat). This option applies to bfast fastal2brg, bfast index,bfast match, bfast
localalign, and bfast postprocess.

-n INTEGER, ——numThreads=INTEGER

For bfast index the number of threads must be a power of two due the implementation
of the index sorting algorithm (merge sort). Otherwise it is recommended that the number
of threads match the number of cores or processors. This option applies to bfast index,
bfast match, bfast localalign, and bfast postprocess.

—-Q INTEGER, ——queuelength=INTEGER

Specifies the number of reads to cache or load into memory at one time. This option applies
to bfast match, bfast localalign, and bfast postprocess.

—-T DIRECTORY —--tmpDir=DIRECTORY

This option specifies the directory in which to store temporary files. For large datasets, the
necessary disk space for temporary files may be large and therefore it is useful to to specify
the temporary file directory. Be sure to include a trailing backslash or \. If no option is
given, the temporary file directory is defaulted to the current directory. This option applies
to bfast index, and bfast match.

—-A INTEGER, —--space=INTEGER

Specifies the encoding space of the alphabet. For nucleotide space, use —A 0 (Illumina, 454,
etc.). For color space, use -A 1 (ABI SOLID).

-t, ——timing

This option appliestobfast fastalbrg,bfast index,bfast match,bfast localalign,
and bfast postprocess. This option causes timing information for the execution of the
program to be displayed upon successful termination.

4.2. BFAST FASTA2BRG 11

-p, ——Parameters

This option appliestobfast fasta2brg,bfast index,bfast match,bfast localalign,
and bfast postprocess. This option causes the input command-line parameters to be
displayed and subsequent termination of the program.

-h, —--Help

This option appliestobfast fastalbrg,bfast index,bfast match,bfast localalign,
and bfast postprocess. This option prints a help message.

4.2 bfast fasta2brg

fasta2brg is a command that is used to create a reference genome from FASTA file. This
utility performs the first step of the work flow outlined in section 3.3. The BFAST reference
genome file will be written in compressed binary format to preserve space. See subsec-
tion 5.2.1 for the file format of the BFAST reference genome file.

See section 4.1 for common options that are in use in this command.

4.2.1 Creating a Reference Genome

To create a reference genome, the required command-line option is —f.

We need to input a reference genome FASTA file using the — £ option (see subsection 5.1.1
for the file format). To create a reference genome in color space, we use the option —-A 1,
otherwise we use —A 0.

When creating a BFAST reference genome file, the contigs will be numbered according
to their order in the reference genome FASTA file (option —f). The numbering is one-based
(begins with one). The maximum number of contigs is 23! or 2147483648. The name of each
contig specified in the header of the reference genome FASTA file will be also be stored. The
maximum sequence length for a single contig is also 23! or 2147483648. The input sequence
will be assumed to be the forward strand of the genome. Only the forward strand of the
genome will be stored (see subsection 5.2.1 for more details). The output will be a BFAST
reference genome file (see subsection 5.2.1 for the file format).

4.3 bfast index

index is a command that is used to create the indexes of a reference genome. This utility
performs the second step of the work flow outlined in section 3.3. The BFAST index file will

12 CHAPTER 4. BASIC USAGE

be written in compressed binary format to preserve space. See subsection 5.2.2 for the file
format of the BFAST index file.
See section 4.1 for common options that are in use in this command.

4.3.1 Creating Indexes of a Reference Genome

To create indexes of a reference genome, the required command-line options are —f, —m, and
—W.
We need to input a reference genome FASTA file using the — £ option (see subsection 5.1.1
for the file format). The BFAST reference genome file must already be created using this
reference genome FASTA file using bfast fastalbrg and will be inferred from the ref-
erence genome FASTA file file name. If we choose to create the indexes in color space (—A
1), a color space BFAST reference genome file must exist. The —m option specifies the mask
or space-seed to use for this index. The —w option specifies the hash width (the index into
the index).

The —d option is used to split the index into multiple parts for low-memory computation.
The index will be split into 4¢ parts, where d is the value for —d specified. Specify a value
of 1 to reduce memory usage to 25%. To calculate the size of the BFAST index file before
creation, see subsection 5.2.2. The —1i option is used when we wish to create more than one
index using the same reference genome FASTA file and space (-2).

When creating a BFAST index file, we will use all possible contig sequences from the
specified BFAST reference genome file, specified using option —r, unless any of the options
-s, —S, —e, —E, or —x are used. The file size of the BFAST index file can be very large for
large indexes (see subsection 5.2.2 for more details), although it can be optimally split using
-d.

The output will be a BFAST index file (see subsection 5.2.2 for the file format).

Other options are specified in subsection 4.3.2.

4.3.2 Usage

-m STRING, —--mask=STRING

The mask or spaced seed to use. The mask is a set of zero and ones (must start and end
with a one). Please see subsection 5.2.2 for more details.

-w INT, ——-hashWidth=INT

The hash width for the index. A hash is used as an index into the index but at the cost of
increasing the size of the index. Please see subsection 5.2.2 for more details.

4.3. BFAST INDEX 13

-d INT, —-—depth=INT

The depth of splitting (d). The index will be split into 4¢ parts, where d is the value for —d
specified. Use —d 0 to not split the index. To calculate the size of the BFAST index file
before creation, see subsection 5.2.2.

-1 INT, --indexNumber=INT

Specifies this is the ith index you are creating. This is useful when multiple indexes from
the same reference are to be created (in the same space).

-R, ——RepeatMasker

Ignores lower case bases when creating the indexes. This typically corresponds to Repeat-
Masker sequence.

—-s INTEGER, —--startContig=INTEGER

Specifies the first contig to include when building indexes.

-S INTEGER, ——-startPos=INTEGER

Specifies the first position in the first contig to include when building indexes.

—e INTEGER, —--endContig=INTEGER

Specifies the last contig to include when building indexes.

—-E INTEGER, ——-endPos=INTEGER

Specifies the last position in the last contig to include when building indexes.

-x FILENAME, --exonsFileName=FILENAME

Specifies the exon-like ranges to include in the index. This option cannot be used with the
-s, —-S, —e, or —E options. The exon ranges must fall within bounds in the BFAST reference
genome file. For the file format of the exons file, please see subsection 5.1.3.

14 CHAPTER 4. BASIC USAGE

4.4 bfast match

bfast match command takes a set of reads and searches a set of indexes to find candidate
alignment locations (or CALs) for each read. This utility performs the third step in the work
flow outlined in section 3.3.

The output will be in BFAST matches file format (see subsection 5.2.3 for the file format).

Also see section 4.1 for common options that are in use across some or all of the binaries.

4.4.1 Finding Candidate Alignment Locations (CALs)

To find CALs for a set of reads, the required command-line option is —f. We need to
input a reference genome FASTA file using the —f option (see subsection 5.1.1 for the
file format). The BFAST reference genome file must already be created using this refer-
ence genome FASTA file using bfast fasta2brg and will be inferred from the reference
genome FASTA file file name. If the option —2A 1 is used, then both the BFAST reference
genome file and the BFAST index files must have been created using the —A 1 option.

By default, all indexes of the reference genome FASTA file will be automatically detected
and used as the main indexes. The -1 option specifies the main index numbers to use (comma
separated). This corresponds to the —i parameter(s) used during index creation. If you wish
to have a secondary set of indexes, which are used if no matches are found in the main set
of indexes, use the —I option.

The reads by default will be read from the standard input stream. Nevertheless, a file
containing the reads may be specified using the —r option (see subsection 5.1.2 for the file
format). The output is printed in binary format to the standard output stream.

Only the forward strand of the genome is indexed (see subsection 5.2.2), so both the
read and its reverse compliment will be looked-up in the index to find CALs. This can be
modified by using the —w option, which will target a specific strand of the reference genome.

In all cases, the BFAST reference genome file and BFAST index files must match that
encoding space specified by —A.

The —-K and —M options are useful to ignore keys that return too many CALs (-K) and to
ignore reads that in aggregate have too many CALs (-M). (For reference, 65% of the human
genome has fewer than 100 CALs given a key size (k) of 16).

If the reads file is large, a subset of reads can be specified using the —s and —e op-
tions, which helps distribute the process across a cluster. For extremely large read datasets
(billions), it is recommended that the reads be split into separate files before hand.

Other options are specified in subsection 4.4.2

4.4. BFAST MATCH 15

4.4.2 Usage
-1 STRING, -—-mainIndexes=STRING

Specifies the index numbers for the main bif files (comma separated). This corresponds to
the —i parameter(s) used during index creation. By default, all indexes of the reference
genome FASTA file will be automatically detected and used as the main indexes if no main
indexes are given. See subsection 5.2.2 for the file format of the BFAST index files.

For advanced users, the input can be a combination of numbers and ranges. For example,
-i 1,5-6, 10 will specify that indexes 1, 5, 6, and 10 will be used.

-1 STRING, —-—-secondaryIndexes=STRING

Specifies the index numbers for the secondary bif files (comma separated). This corresponds
to the —i parameter(s) used during index creation. See subsection 5.2.2 for the file format
of the BFAST index files. If no secondary indexes are specified, none will be used.

-r FILENAME, —--readsFileName=FILENAME

Specifies the file containing the reads. See subsection 5.1.2 for more information on the file
format of the reads file.

-1, ——-loadAllIndexes

Specifies to load all main or secondary indexes into memory. This is useful for high memory
(RAM) machines.

-3, --bz2

Specifies that the input reads are bz2 compressed (bzip2).

-z, ——gz

Specifies that the input reads are gz compressed (gzip).

-0 STRING, ——-0ffsets=STRING

Specifies the offsets to use for all BFAST index files. If no offsets file is given, all possible
offsets will be used. The offsets can be given as a range (i.e. —o 0-25), or as a comma
separated list (i.e. —o 0,1,2,3,4,5).

16 CHAPTER 4. BASIC USAGE

For advanced users, the input can also be a combination of numbers and ranges. For
example, —i 1, 5-6, 10 will specify that the offsets 1, 5, 6, and 10 will be used.

—-s INTEGER, —--startReadNum=INTEGER

Specifies the first read in which to process. This may be useful when distributing a large
data set across a cluster.

—-e INTEGER, —-—endReadNum=INTEGER

Specifies the last read in which to process. This may be useful when distributing a large
data set across a cluster.

-k INTEGER, --keySize=INTEGER

Specifies to truncate all indexes to have the given key size. This will only be performed on
indexes for which the given value is greater than the hash width and less than the original
key size. This may be useful to search with greater sensitivity by reusing indexes large key
sizes (See section 6.1).

—-K INTEGER, ——maxKeyMatches=INTEGER

Specifies the maximum number of matches to allow before a key is ignored. A key may return
one or more CALSs and therefore it may be desirable to ignore non-unique or over-represented
keys. For example, a value of 100 may be useful when aligning the to Human Genome given
that each index used is expected to return one CAL.

-F FLOAT, --keyMissFraction=FLOAT

Specifies the maximum fraction of seed positions within the read that exceed the maximum
key matches limti (-K) for the hit to be retained. The lower the maximum to increase
specificity at the cost of sensitivity.

-M INTEGER, ——maxNumMatches=INTEGER

Specifies the maximum number of CALs to allow before we stop searching for CALS for a
given read. If the limit is reached, the read will be flagged and ignored in later alignment
processes. For example, a value of 500 may be useful when aligning the to Human Genome
given that each index used is expected to return one CAL.

4.5. BFAST LOCALALIGN 17

-w INTEGER, —-whichStrand=INTEGER

Specifies to find matches on the designated strands. For both strands, use —w 0. For the
forward strand only, use —w 1. For the reverse strand only, use —w 2.

4.5 bfast localalign

bfast localalign is a command that takes a list of Candidate Alignment Locations (CALs)
for each read and performs a local alignment of each read to the reference, giving a score for
the quality of the alignment. This utility performs the fourth step in the work flow outlined
in section 3.3.

The output will be a BFAST aligned file (see subsection 5.2.4 for the file format). See
section 4.1 for common options that are in use in this command.

4.5.1 Performing Local Alignment on Candidate Alignment Loca-
tions (CALs)

To perform local alignment of CALSs, we need to input a reference genome FASTA file using
the —f option (see subsection 5.1.1 for the file format). The BFAST reference genome file
must already be created using this reference genome FASTA file using bfast fastalbrg
and will be inferred from the reference genome FASTA file file name.

The input by default will be read from the standard input stream and must be in the
same format as a BFAST matches file outputted by bfast match. To process a file, the
—-m option specifies a BFAST matches file outputted by bfast match. The output will
written to the standard output stream. The output file is a BFAST aligned file, which stores
the local alignments for each CAL and read in binary format (see subsection 5.2.4 for the
file format).

Local alignment may be time consuming when a large number of CALs are returned.
Therefore we can use the option —M to specify maximum number of CALs. If a read has
more than the specified number, it will be ignored, and annotated as having too many CALs.

The Smith Waterman algorithm supports mismatches, indels (with affine gap penalties),
and color errors. The value for the —A option must match the value given to the —A option
in bfast match. In the case that —A 1 is used, the algorithm will simultaneously correct
for color errors. For more information on the local aligner, please see Homer et al. (2009b).

To align without gaps (deletions and insertions), we can use —u. The —U is used to align
without considering seed constraints. With this option, bases that matched the reference
during bfast match will be not constrained to match during bfast localalign.

18 CHAPTER 4. BASIC USAGE

The —-s, —S, —e and —-E can be used to specify only to consider CALs within a given
range.

4.5.2 Usage

-m FILENAME, --matchFileName=FILENAME

Specifies the BFAST matches file outputted by the match utility. See subsection 5.2.3 for
the file format.

-x FILENAME, --scoringMatrixFileName=FILENAME

Specifies the Scoring Matrix file used to score the alignments. Please see subsection 5.1.4 for
the file format.

-u, ——ungapped

Specifies that the local alignment will be ungapped (no deletions and insertions).

-U, —-unconstrained

Specifies align without considering seed constraints. Without this option, bases that matched
the reference during bfast match will be constrained to match duringbfast localalign.

-s INTEGER, —--startReadNum=INTEGER

Specifies the first read in which to process. This may be useful when distributing a large
data set across a cluster.

—-e INTEGER, ——endReadNum=INTEGER

Specifies the last read in which to process. This may be useful when distributing a large
data set across a cluster.

-0 INTEGER, ——-0ffset=INTEGER

Specifies the number of bases before and after each CAL to include in the reference when
aligning. This is not used with ungapped constrained alignment (when —u but not -U is
specified). For example, a value of 10 can be used when aligning to the Human Genome,
since this would allow for small insertions and deletions to be placed more accurately in the
local alignment.

4.6. BFAST POSTPROCESS 19

-M INTEGER, ——maxNumMatches=INTEGER

Specifies to ignore reads who have more than the specified number of CALs.

—-g INTEGER, --avgMismatchQuality=INTEGER

Specifies the average mismatch quality.

4.6 bfast postprocess

bfast postprocess is a command that takes as input a BFAST aligned file. It can convert
the input file to a specified output format as well as help choose the best alignment for
each read based on score or uniqueness. This utility performs the fifth step in the work
flow outlined in section 3.3. Many other filters can be applied, for example with paired-
end reads where we desire only alignments for which BOTH ends align. These filters
can be applied by downstream tools such as SAMtools (see http://samtools.
sourceforge.net) or DNAA (see http://dnaa.sourceforge.net).

The input by default will be read from the standard input stream and must
be in the same format as a BFAST aligned file outputted by bfast localalign.
To process a file, the -1 option specifies a BFAST aligned file outputted by bfast
localalign. The output will written to the standard output stream, with the
output format specified by —-0. The output file will be in the format specified
by -0 format (see subsection 5.2.4 for the file format). Optionally, the —u will
dump all unmapped reads to a BFAST aligned file (see subsection 5.2.4 for the
file format).

By default, unmapped reads will be included in the output file.

See section 4.1 for common options that are in use in this command.

4.6.1 Prioritizing Alignments

The —a option can be used to filter and choose the best alignment. —a 0 will not
modify the data but only convert the file to the specified output format (-0).
Options -a 1, —a 2, and -a 3, will for each read select a subset of alignments
from the alignment(s) found. -a 1 will output all alignments that pass the
filters. —a 2 will output only reads that have a unique alignment regardless of
score after applying the filters. —a 3 will output only reads that have a unique
best scoring alignment after applying the filters. If multiple alignments have
the same best score, an alignment is not reported. -a 4 will output only reads

http://samtools.sourceforge.net
http://samtools.sourceforge.net
http://dnaa.sourceforge.net

20 CHAPTER 4. BASIC USAGE

that have a best scoring alignment (possibly many best scoring alignments may
exist).

Paired-end reads will be scored by examining both ends to select the best
paired-alignment.

For paired end reads, use -Y 0 or -S 0 -P 1. For mate pair reads, use -Y 1
or -S 1 -P O.

4.6.2 Usage

—i FILENAME, --alignedFileName=FILENAME

Specifies the BFAST aligned file (see subsection 5.2.4 for the file format).

—a INTEGER, --algorithm=INTEGER

This specifies the algorithm to choose the alignment for each each end of the read
after filtering. The option —a 0 specifies that no filtering will occur. The option
—a 1 specifies that all alignments that pass the filters will be outputted. The
option —a 2 outputs only reads that have been aligned uniquely. The option -a
3 chooses uniquely the alignment with the best score. The option —a 4 chooses
all alignments with the best score.

-0 INTEGER, ——-outputFormat=INTEGER

Specifies the output format. -0 0 specifies the output to be in BFAST aligned
file format (see subsection 5.2.4 for the file format). -0 1 specifies the output to
be in BFAST sequence alignment/map file format (see https://sourceforge.
net/projects/samtools/).

-0 STRING, —-—outputID=STRING

Specifies output ID to prepend to the read name (BFAST sequence alignment/map
file output only).

—-r STRING, --readGroupFileName=STRING

Specifies to add the read group (QRG) line to add to the header, which is given
in the specified file. Additionally, the appropriate read group (RG) tag (and LB
tag if present) will be added to each read. Make sure that the line is exactly

https://sourceforge.net/projects/samtools/
https://sourceforge.net/projects/samtools/

4.6. BFAST POSTPROCESS 21

the same as what would be printed to the SAM file, which includes the “@QRG”
string.

-S INT, —--strandedness=INT

Specifies the pairing strandedness: The option -S 0 specifies that the reads
should be mapped onto the same strand. The option -S 1 specifies that the
reads should be mapped onto the opposite strand.

-P INT, —--positioning=INT

Specifies the pairing positioning: The option -S 0 specifies that the first read
should be (5’) upstream of the second read (sequencing strand). The option
-S 1 specifies that the second read should be (5’) upstream of the first read
(sequencing strand). The option —S 2 specifies that there is no positioning.

-Y INT, —--pairing=INT

Specifies the pairing orientation: The option -S 0 specifies that the reads are
paired ends (-S 0 -P 1). The option -S 1 specifies that the reads are mate pairs
(-s 1 -P 0). The option -S 2 specifies that no pairing should be performed.

—-g INTEGER, -—-avgMismatchQuality=INTEGER

Specifies the average mismatch quality (should match that value used in bfast
match.

-x FILENAME, --scoringMatrixFileName=FILENAME

Specifies the Scoring Matrix file used to score the alignments. Please see subsec-
tion 5.1.4 for the file format. This file should be the file used in bfast match.
If this option is used with ABI SOLiD data, then the -2 1 option must be set.

-z, ——randomBest

Specifies to choose a random best scoring alignment to break ties. This only
works when used in conjunction with -a 3.

22 CHAPTER 4. BASIC USAGE

-m INTEGER, ——minMappingQuality=INTEGER

Specifies to choose remove all alignments with worse mapping quality.

-M INTEGER, ——minNormalizedScore=INTEGER

Specifies to choose remove all alignments with worse normalized alignment score.
The normalized alignment score is calculated by dividing the alignment score by
the read length.

-v FLOAT, —-insertSizeAVG=FLOAT

Specifies the insert size mean (outer size) to use for pairing.

-s FLOAT, ——-insertSizeStdDev=FLOAT

Specifies the insert size standard deviation (outer size) to use for pairing.

4.7 bfast bafconvert

bfast bafconvert converts BFAST aligned files to the specified output format.

4.7.1 Usage

The usage is bfast bafconvert [options] <files>. The command line op-
tions are:

-0

Specifies the output type. 0 converts a text BFAST aligned file to a binary
BFAST aligned file. 1 converts a binary BFAST aligned file to a text BFAST
aligned file. 2 converts a binary BFAST aligned file to a BFAST sequence
alignment/map file (currently experimental, see https://sourceforge.net/
projects/samtools/).

-f

Specifies the reference genome FASTA file. See section 4.1 for common options
for a description of this option. This option is not required for BFAST aligned
file output.

https://sourceforge.net/projects/samtools/
https://sourceforge.net/projects/samtools/

4.8. BFAST HEADER 23

-0

Specifies an output ID, which will be prepended to the name of each read. This
option is only used for for BFAST sequence alignment/map file output only.

—r STRING, —-readGroupFileName=STRING

Specifies to add the read group (QRG) line to add to the header, which is given
in the specified file. Additionally, the appropriate read group (RG) tag (and LB
tag if present) will be added to each read. Make sure that the line is exactly
the same as what would be printed to the SAM file, which includes the “QRG”
string.

4.8 Dbfast header

header prints the header of a BFAST reference genome file or a BFAST index
file.

4.8.1 Usage

The usage is bfast header [options] <files>. The input file can be either
a BFAST reference genome file or a BFAST index file.

4.9 Dbfast bmfconvert

bfast bmfconvert converts a BFAST matches file from binary to text or vice
versa.

4.9.1 Usage

The usage is bfast bmfconvert [options] <files>. The command line op-
tions are:

-0

Specifies the output type. 0 converts a text BFAST matches file to a binary
BFAST matches file. 1 converts a binary BFAST matches file to a text BFAST
matches file. 2 converts a binary BFAST matches file to a Reads FASTQ file.

24 CHAPTER 4. BASIC USAGE

4.10 bfast brg2fasta

bfast brg2fasta prints the reference genome in FASTA format.

4.10.1 Usage

The usage is bfast brg2fasta BFAST reference genome file.

4.11 bfast easyalign

bfast easyalign willrunbfast match,bfast localalign,and bfast postprocess
with their respective default parameters. See the respective commands for the
default parameters and explanation of the command line usage.

4.12 butil

butil is a folder containing utilities that were developed for personal use to test,
debug, and compliment the BFAST program and its accompanying publication.
They are included in this distribution to aid in using BFAST and to give examples
of other uses for the indexes built and data generated by BFAST. There is no
support or warranty for these utilities. Please use at your own risk and consult
the source code if problems arise. If you find one of these utilities incredibly
useful, please contact the authors/developers as to recommend the utility be
supported.
To access a help message, please use the —h option for all utilities.

4.12.1 balignmentscoredistribution

Assess the alignment score distribution (histogram) for all reads with a given
number of CALs. The alignment scores are binned according the given param-
eters.

-i FILENAME

The BFAST aligned file to analyze.

4.12. BUTIL 25

—-f INT

Bins from.

-b INT

Bins by.

-t INT

Bins to.

4.12.2 balignsim

balignsim generates synthetic reads given a number of variants and errors from
a reference genome and tests the various local alignment algorithms.

—i FILENAME

This is an input specification file. Each line contains the specification for one set
of simulated reads. Each set of reads has 8 fields (all specified on one line).

1. 0: gapped 1: ungapped

2. 0: no indel 1: deletion 2: insertion

w

. indel length (if #2 is an indel)

4. include errors within insertion 0: false 1: true
5. # of SNPs

6. # of errors

7. read length

8. number of reads

—-f FILENAME

Specifies the reference genome FASTA file. See section 4.1 for common options
for a description of this option.

26 CHAPTER 4. BASIC USAGE

-x FILENAME

Specifies the Scoring Matrix file used to score the alignments. Please see sub-
section 5.1.4 for the file format.

-n INT

The number of threads to use for the search.

—A INT

The space in which the reads should be outputted. Use 0 for nucleotide space,
and 1 for color space.

4.12.3 bevalsim

bevalsim parses a BFAST aligned file resulting from using reads generated by
bgeneratereads to give accuracy statistics for the mapping.

—-i FILENAME

BFAST aligned file name to be evaluated.

—-r FILENAME

The reads file name generated by bgeneratereads.

4.12.4 bgeneratereads

bgeneratereads generates synthetic reads given a number of variants and errors
from a reference genome. See the source code for the output file format.

-1 FILENAME

This is an input specification file. Each line contains the specification for one set
of simulated reads. Each set of reads has 9 fields (all specified on one line).

1. 0: no indel 1: deletion 2: insertion

2. indel length (if #2 is an indel)

4.12. BUTIL 27

3. include errors within insertion 0: false 1: true
4. # of SNPs

5. # of errors

6. read length

7. paired end 0: true 1: false

8. paired end length

9. number of reads

—-f FILENAME

The reference genome FASTA file from which reads should be generated.

—A INT

The space in which the reads should be outputted. Use 0 for nucleotide space,
and 1 for color space.

4.12.5 bindexdist

bindexdist prints each unique read from the genome and the number of times
it occurs, where the genome is contained in the BFAST index file.

—-f FILENAME

The reference genome FASTA file accompanying the BFAST index file.

-1 FILENAME

The BFAST index file to be examined.

—-s INT

Which strand to examine: 0 - both strands, 1 - item forward strand only, and 2
- item reverse strand only.

28 CHAPTER 4. BASIC USAGE

—n INT

The number of threads to use for the search.

—-T DIRECTORY

A temporary file directory to store temporary files.

4.12.6 bindexhist

bindexhist prints a histogram that counts the number of unique k-mers in the
genome that occur X number of times. The k-mer chosen comes from the layout
of the BFAST index file.

—-f FILENAME

The reference genome FASTA file accompanying the BFAST index file.

—-i FILENAME

The BFAST index file to be examined.

—-s INT

Which strand to examine: 0 - both strands, 1 - item forward strand only, and 2
- item reverse strand only.

-—n INT

The number of threads to use for the search.

4.12.7 bmfmerge

bmfmerge merges the results from searches from different indexes under the
assumption that all the searches were performed on the same dataset. This
performs the final merge step in bfast match separately such that the merge
step can be separated from the search step.

4.12. BUTIL 29

-M INTEGER, ——maxNumMatches=INTEGER

Specifies the maximum number of CALs to allow before we stop searching for
CALS for a given read. If the limit is reached, the read will be flagged and
ignored in later alignment processes. For example, a value of 500 may be useful
when aligning the to Human Genome given that each index used is expected to
return one CAL.

4.12.8 brepeat

brepeat finds all contiguous repeats in the genome specified by the index that
fall within the specified unit length range and minimum contiguous length.

—-f FILENAME

The reference genome FASTA file accompanying the BFAST index file.

-m INT

The minimum unit length for a repeat.

-M INT

The maximum unit length for a repeat.

—-r INT

The maximum total repeat length as a scalar multiple of the unit length.

4.12.9 btestindexes

btestindexes is a utility that tests, searches for, and compares layouts for
indexes against certain events, such as errors, mismatches and insertions.

This utility can sample the space of possible indexes and the space of reads
with a given set of errors and variants to find accurate index sets for use with
BFAST. By specifying -a 0, the greedy search strategy will run. We initially
seed the index set with an index with one contiguous mask. Next, we iteratively
add indexes to the set as follows. We search for the best index that would
increase the accuracy of the set when added. After sampling the possible space
of indexes (-s), we choose add the best index to the set. To estimate the accuracy

30 CHAPTER 4. BASIC USAGE

of an index set, we create an accuracy profile. The accuracy profile computes
the accuracy for mapping reads with a specific number of SNPs/errors and
color errors (see -M and -E respectively). We prioritize color errors over SNPs,
meaning when comparing the accuracy profile of two index sets, we compare the
accuracy for mapping reads with 1 to the specified maximum number of color
errors (-E) with no SNPs. We repeat the comparison with one SNP, two SNPs,
up to the maximum number of SNPs (-M).

This utility can also be used to print the accuracy for each scenario of a read
with variants and errors (-a 1).

—a INT

The algorithm to run. The option -a 0 will search for masks. The option -a 1
will compute the accuracy of masks read from file.

—-r INT

Specifies the read length to examine.

-S INT

Specifies the number of events in our sampling space. This corresponds to the
number of random reads to generate to estimate the accuracy for a specific
scenario of events.

—A INT

Specifies the encoding space of the alphabet. For nucleotide space, use —-A 0.
For color space, use -A 1.

—-s INT

Specifies the number of masks in our sampling space (for —a 0).

-1 INT

Specifies the mask key size when sampling indexes (for -a 0).

4.12. BUTIL 31

—-w INT

Specifies the maximum mask width when sampling indexes (for -a 0).

-n INT

Specifies the maximum index set size (or the maximum number of indexes in
one set). Each index will be added greedily one at a time (for -a 0).

-t INT

Specifies the accuracy threshold that must be met for a specific scenario when
comparing index set accuracy during sampling (for —a 0). Once the index set
has reached this accuracy threshold for the given scenario, the next scenario will
determine the index set selection.

—-f STRING

Specifies the input file name for the masks (for -a 1). Each mask should be on
a separate line.

—-I INT

Specifies the maximum insertion length when evaluating index sets (for —a 1).

-M INT

Specifies the maximum number of mismatches. With -A 0 this will correspond
to SNPs or errors. With —A 1 this will correspond to SNPs.

—-E INT

Specifies the number of color errors to include (for -A 1).

-p

Prints the program parameters.

-h

Prints a help message.

32 CHAPTER 4. BASIC USAGE

4.13 scripts

scripts is a folder containing scripts that were developed to convert the input
files from Illumina and ABI SOLiD sequencers to the BFAST FASTQ format.
Additionally, we include a script to parallelize BFAST on a cluster. Currently
only SGE and PBS clusters are supported.

4.13.1 bfast.submit.pl

This script will run BFAST on a SGE or PBS cluster. Please use the -man
option for information on how to use the script. Note that the PERL module
XML Simple is required to be installed for compilation and can be found at
http://search.cpan.org/dist/XML-Simple.

—help

Print a brief help message and exits.

—schema

Print the configuration XML schema.

—man

Prints the manual page and exits.

—quiet

Do not print any submit messages.

—config

The XML configuration file.

4.13.2 bfast.resubmit.pl

This script is a companion script to bfast.submit.pl. If any job fails (for
whatever reason), this script can be used to resubmit the failed job and update
any other jobs that depend on the failed job.

http://search.cpan.org/dist/XML-Simple

4.13. SCRIPTS 33

—help

Print a brief help message and exits.

—man

Prints the manual page and exits.

username

Process all jobs in the error state from the given username.

-jids

Process all given job ids.

4.13.3 qseq2fastq.pl

This script will convert Illumina generated QSEQ files or Illumina generated
SEQUENCE files to the BFAST FASTQ format. Please execute the script with
no arguments for more information.

4.13.4 solid2fastq

This program will convert ABI SOLiD generated CSFASTA and QUAL files to
the BFAST format. It will also split the input reads into chunks for parallel com-
putation. Please execute the program with no arguments for more information.
We also include a PERL version of this program for developer modification.

34

CHAPTER 4. BASIC USAGE

Chapter 5

File Formats

5.1 Input Files

These files represent the input files that are used by one or more BFAST binaries
but are not generated as output by a BFAST binary. Although some files are
used as input to other binaries, for example the BFAST matches file is used as
input to bfast localalign, they are described in section 5.2. Examples of each
input file is given in section 5.3.

5.1.1 Reference genome FASTA file

The reference genome FASTA file follows the familiar FASTA format used to
describe one or more molecular sequences or contigs. Each contig begins with a
header line, characterized by a greater-than (>) symbol at the beginning of the
line. The contig’s sequence is then listed beginning on a new line. The end of
the contig’s sequence is specified by the end of the file or a new header line for
the next contig.

An example of such a file can be seen Figure 5.1. In this example, there are
two contigs specified.

5.1.2 Reads FASTQ file

This file contains the reads for which we wish to align. The reads are specified
in FASTQ format. The first line begins with the @ symbol. The rest of the first
line will be the read name. The second line contains the sequence for the read.
Currently the entire sequence must be specified one line and should be specified

35

36 CHAPTER 5. FILE FORMATS

5 — 3 from left-to-right. The third line will begin with the + symbol. The rest
of the line can be empty or contain an arbitrary comment string. The fourth
line will contain the sequence qualities.

For ABI SOLiD or color space reads, the adaptor should be included in the
sequence and the colors should be encoded as [0 — 4] with 4 signifying a unknown

color. There should be one Phred-like quality score for each base in the sequence
(or number of colors for ABI SOLiD data).

For paired end or multi end data, each end should be specified separately
but have the same read name. They should be listed in which order they are
sequenced. Paired end reads are typically on the opposite strand, with the first
end having a smaller co-ordinate when mapped to the forward genomic strand.
Mate pair reads are typically on the same strand, with the first end having
a large co-ordinate when mapped to the forward genomic strand. Multi end,
paired end, or single end data can be incorporated into the same Reads FASTQ
file as long as the data follows the above rules.

Another method to specify this file is through the use of a grammar:

<fastq> := <fastq>@<read name><\n><info><\n>
<fastqg>@<read name> := <fastq>@Q<read name><\n><info><\n>@<read name>
<info> := <sequence><\n><comment><\n><qualities>

<read name> = ["<\n>]+

<sequence> := <NT sequence>

<sequence> := <CS sequence>

<NT sequence> := [ACGTNacgtn.]+

<CS sequence> := [ACGT][01234.]+

<comment> = ["<\n>]4+

<qualities> = [-7]4+

An example of a reads file in nucleotide space can be found in Figure 5.3. An
example of a reads file in nucleotide space with paired end reads can be found in
Figure 5.4. An example of a reads file in color space can be found in Figure 5.5.

5.1.3 Exons File

This Exons file specifies an exon-like structure, with each line representing an
exon. Each exon has four entries specifying the start contig, start pos, end
contig, and end position in that order. An example of an Exons file can be
found in Figure 5.2.

5.2. BFAST FILES 37

5.1.4 Scoring Matrix File

The Scoring Matrix file specifies how the local aligner should score gaps in the
alignment, nucleotide substitutions, and if applicable, color substitutions.

Each entry is whitespace delimited. The first two entries represent the affine
gap open penalty and the affine gap extension penalty. The next two entries
represent the nucleotide substitution penalties (match then mismatch). For color
space alignments, the final two entries represent the color substitution penalties
(match then mismatch).

An example with a file for use with nucleotide space alignment can be found
in Figure 5.6. An example with a file for use with color space alignment can be
found in Figure 5.7.

5.2 BFAST Files

These files are generated by the BFAST utilities. Explicit examples of these files
are not given since the are specified in the source code and will (hopefully) be
created through the use of BFAST.

5.2.1 BFAST reference genome file

The BFAST reference genome file stores the sequence to which we wish to align.
The sequence is stored in a binary format. Each base (or color) is stored in four
bits: two bits for the raw base (or color), one bit to specify if the letter was an
N (or a 4), and one bit to store if the base was upper case or lower case (not
applicable to a color). The BFAST reference genome file stores only the forward
strand. Therefore for a genome of size G (forward strand), we can estimate the
total required storage size of a BFAST reference genome file to be GG/2 bytes.

The contigs that compose the reference genome are indexed based on the
order specified in the Reference genome FASTA file (see subsection 5.1.1) along
with each contig’s associated name (see section 4.2).

The BFAST reference genome file will have the prefix corresponding to the
reference genome FASTA file. If the BFAST reference genome file is in nucleotide
space, then it will have the suffix .nt.brg. If the BFAST reference genome
file is in color space, then it will have the suffix .cs.brg. Information about
the BFAST reference genome file can be found by using the command bfast
header (see section 4.8). Please see the source code for the full internal binary
representation.

38 CHAPTER 5. FILE FORMATS

5.2.2 BFAST index file

The BFAST index file stores the index and hash table for the BFAST reference
genome file. The index and hash table are stored in a binary format, with only
the forward strand indexed.

To estimate the required storage size of an index before creation, we must
know the number of contigs, hash width and genome size (forward strand). It
is interesting to note that the BFAST reference genome file size does neither
depend on the keysize, key width, nor mask layout. If there are more than 256
contigs in the BFAST reference genome file then each starting position indexed
will require 8 bytes of storage. If the are 256 or fewer contigs in the BFAST
reference genome file then each starting position indexes will require 5 bytes
of storage. This representation is handled internally and is not visible to the
user. Since we index a four letter alphabet, the hash with width j will require
4 x 47 bytes (4 bytes per hash entry). Thus if the genome size is G (forward
strand), the estimated BFAST index file required storage size is approximately
5X G+4x47 or 8x G+4 x4 for a small number (< 256) or large number (> 256)
contigs respectively.

If the index was created with splitting (using —d), then there will be 4¢ sep-
arate BFAST index files. The BFAST reference genome file will have the prefix
corresponding to the reference genome FASTA file. Its suffix will correspond to
the index number and bin number. The index number is specified during cre-
ation. The bin number corresponds to which part out of the 4¢ (see -d) BFAST
index files. Information about the BFAST index file can be found by using the
binary header (see section 4.8). Please see the source code for the full internal
binary representation.

5.2.3 BFAST matches file

The BFAST matches file is used to store Candidate Alignment Locations (CALs)
for each read processed by match (see section 4.4). By default, this file is stored
in binary format. This file can be converted to text format for manual inspection
by using the utility bmfconvert (see section 4.9).

To estimate the file size a prior is difficult. The read length, read name length,
and number of CALs for each read must be known. The factor that causes the
majority of the file size bloat is the average number of CALs stored per read.
This can be overcome by having an upper limit on the number of CALs to store
(see section 4.4).

5.2. BFAST FILES 39

Typically, the file extension should be .bmf. The file format for the text
version of the BFAST matches file is as follows.

All entries are tab delimited. The first line has two entries: the @ symbol
appended to the read name, and number of ends of the read. The number of
subsequent lines corresponds to the number of ends in the read. For each end
of the read, we have the original reads sequence, original quality values, a flag
indicated whether the maximum CALs was reached, the number of CALs found
(0 if the maximum was reached), and the CALs. Each CAL has three fields: the
contig (1-based), position (1-based), strand, and a string representing where in
the read the keys hit (condensed). Please see the source code for the full internal
binary representation.

5.2.4 BFAST aligned file

The BFAST aligned file is used to store the alignments of reads to the refer-
ence genome and is created by the command localalign (see section 4.5). By
default, this file is stored in binary format. This file can be converted to text
format for manual inspection by using the utility bafconvert (see section 4.7).

To estimate the file size a prior is difficult. The read length, read name length,
and number of alignments, and the length of the alignments for each read must
be known. The factor that causes the majority of the file size bloat is the average
number of alignments stored per read. This can be overcome by having an upper
limit on the number of alignments per read to consider (see section 4.5) or by
filtering the alignments (see section 4.6).

The BFAST aligned file will have the prefix bfast.aligned.file and the
file extension .baf.

Please see the source code for the full internal binary representation.

5.2.5 BFAST sequence alignment/map file

BFAST is able to produce alignments in the SAM format. Some data may not be
able to be represented by the SAM format, for example triple-end or quad-end
data (instead of paired-end etc.)..

BFAST produces a mapping quality for each read, which depends on the
—-q parameter to bfast postprocess (section 4.5). If a read is unmapped, due
to having no CALs, too many CALs, or being filtered (see section 4.6 for the
latter), then the mapping quality is zero. If a read has one alignment, then
the mapping quality is set to 255. This also indicates a mapping quality for an

40 CHAPTER 5. FILE FORMATS

alignment could not be computed accurately. If a read has a mapping quality of
zero, this means that there exists another alignment that has a better alignment
score. Otherwise, the mapping quality indicates the number edits away the
current alignment is away from the next-best alignment in terms of alignment
score. This is calculated by taking the current alignment’s alignment score minus
the next-best alignment’s alignment score, then dividing by the alignment score
of an atomic edit (a nucleotide change in nucleotide space and a color change
for color space). Mapping quality should be calibrated on a experimental basis
and is highly sensitive to the sensitivity settings of alignment. In general, the
mapping quality is more accurately assessed under higher sensitivity scenarios.

BFAST also produces optional fields. The optional fields produced by BFAST
documented in the SAM format include: RG, LB, PU, PG, AS, MQ, NM, IH,
HI, MD, CS, CQ, CM, CC, and CP. Some fields are produced only when op-
tional arguments are given to BFAST. BFAST also produces two aligner-specific
optional fields: XA, and XE. XA gives the postprocessing algorithm from bfast
postprocess if used (see section 4.6). XE gives a string indicating where color
errors occurred on the forward genomic strand and has the regular expression:
([0 — 4])+. If a color error occurred, then this gives the original color from the
color sequence.

5.3 Example Input Files

5.3. EXAMPLE INPUT FILES

>NM_006435 2
gaggaaactgttgagaaaacggaactactggggaaagggagggctcactg
agaaccatcccggtaacccgatcaccgctggtcaccatgaaccacattgt
gcaaaccttctctcctgtcaacagcggccagcecctcccaactacgagatge
tcaaggaggagcaggaagtggctatgctgggggtgccccacaaccctgcet
cccceccgatgtccaccgtgatccacatccgcagcgagaccteecgtgectga
ccatgtggtctggtccctgttcaacaccctcecttcatgaacacctgectgece
tgggcttcatagcattcgcgtactccgtgaagtctagggacaggaagatg
gttggcgacgtgaccggggcccaggcctatgcecctccaccgceccaagtgect
gaacatctgggccctgattttgggcatcttcatgaccattctgcectcatca
tcatcccagtgttggtcgtccaggecccagcgatagatcaggaggcatcat
tgaggccaggagctctgccecgtgacctgtatcccacgtactctatcttec
attcctcgccctgeccccagaggccaggagcectctgeccttgacctgtatt
ccacttactccaccttccattcctcgcecctgtceccccacagecgagtcecctg
catcagccctttatcctcacacgcttttctacaatggcattcaataaagt
gtatatgtttctggtgctgctgtgacttcaaaaaaaaa

>NM_015644 3
agtgctctcttccgecttcagtgceccecctgcectcatcaagggtctgggtttece
cggtcctctggcgaggatcctccaaggcgtctcacatgaaccggctcaga
aacgccaaaatctacgtggagagagctgtcaagaagaagatctttacaat
ccaaggctgctacccggtgatccggtgtctcttgecgeccggaggggectggg
tggagaagaagatggtccatcgctcaggccccaccctgegec
tgggcttcatagcattcgcgtactccgtgaagtctagggacaggaagatg
gttggcgacgtgaccggggcccaggcctatgcecctccaccgccaagtgect
gaacatctgggccctgattttgggcatcttcatgaccattctgctcatca
tcatcccagtgttggtcgtccaggecccagcgatagatcaggaggcatcat

Figure 5.1: An example of a reference genome FASTA file.
See subsection 5.1.1 for a description.

41

CHAPTER 5. FILE FORMATS

1 891540 1 892246
1 895320 1 896847
1 897118 1 897867
1 897904 1 900541
1 1129098 1 1129929
1 1130413 1 1130935
1 1131428 1 1132152
1 1256389 1 1259906
1 2312874 1 2313457
1 2316883 1 2317370

Figure 5.2: An example of an Exons file
See subsection 5.1.3 for a description.

@4:150:844:843
GAGCGTATCGAGGCTCTAAAAAGATGTATACTAGCATTCTTCTCT
+

IIIITIITI*III3ITIITIIITIITIIIIIIIIL, ?TI<ITTII+ITIIIT
@4:150:353:142
TGATTCATATCATGATGCTGGTAAACATTTTCTTTATGGTTCTCT
+

II-II.IIITIIEx%&TII%&ITISITI?4II/8I%9I. (I((2%&6%B
@4:150:495:390
TTCGCATGTTTCTCCTTTTTTTCCCCTTCTTTCACTCTTCCTTTT
+

IIT4?IITIIIIDIIIIIIIIIIZ3IIIII8IITS, 26721%+—) 11

Figure 5.3: An example of a reads FASTQ file in nucleotide space.
See subsection 5.1.2 for a description.

5.3. EXAMPLE INPUT FILES 43

@4:150:276:201
TTATGCTAATTTGCATACTGACCAAGAACGTGATTACTTCATTCA
+
IITIIIITIIIIITIIIIIIIIIIIIIIIIIIIIIIIIIIIZBBIIL)
@4:150:276:201
TTGTATGTTTTCATGCCTCCAAATCTTTGAGGCTTTTTTTTTTTT
+
IITIIIIIIIIIISIIIIIIIIIIIIII*>I+=/IIIIII;IIIII
@4:150:495:344
TGATTATGACCAGTGTTTCCAGTCCGTTTTTTITTTTTTTITTTTCT
+
TIIIIITITIITIIIIITIIIISITIITIICI?SITI?IGIISTIIT;
@4:150:495:344
TCTCACGTTGGCTGACGACCGCTTTGTGGCGTTTTTTTATATTCT
n
IITIIIITIIIIITIIIZIIIIBS<IIB)7I’IFE+I+I'’'C(%<&%

Figure 5.4: An example of a reads FASTQ file in nucleotide space with paired end reads.
See subsection 5.1.2 for a description.

@5_20_383
T11232310330012102133010223110131101021211013311230
+
><912>46797?6, .—) /+x/40=&/3=:&4309, .168"1.—...7,66&%*)
@5_20_1125
T12001200003103013013302121123331111300002333112310
I
B?>7?2@:81297?.:4685/93>2.46>60, (<,) &&&%&" &*,&" /2" & (
@5_20_1365
T30320113323301030133032013330330333013323033332313
|

0<?;?5046:67%562925:92,129?8+1-187./+1%5)&-3(",&%
@5_21_71
T10310020310300313122223311321123130022031131111010
+
Q0/@R4<.6;/72>@22978,—/"12.+1.6+%&" +' %+x0%$/%%) $) &

Figure 5.5: An example of a reads FASTQ file in color space.
See subsection 5.1.2 for a description.

44

CHAPTER 5. FILE FORMATS

-175
=50
50
-150

Figure 5.6: An example of a Scoring Matrix file for nucleotide space.
See subsection 5.1.4 for a description.

=175
=50
50
-150
0
-125

Figure 5.7: An example of a Scoring Matrix file for color space.
See subsection 5.1.4 for a description.

Chapter 6

Advanced Topics

In this chapter we present a few different applications of BFAST, as well as how
to design indexes.

6.1 How To Design Indexes

This section is meant as a brief introduction on how to design indexes. It will
outline what you must ask to define indexes for your specific experiment.

We assume that you have a specific reference genome to which you wish to
align, reads with a known length, an alphabet (ex. A,C,G, and T) with a known
size, an intuitive feeling of what error-rate and polymorphism-rate you wish to
tolerate, and the amount of time you wish to wait for BFAST to complete.

We first begin by determining the optimal key-size that corresponds to your
reference genome size, alphabet size, and key length. As you may have read
from the BFAST paper (Homer et al. (2009a)), we wish to make the lookup in
an index return on average one CAL. Given a genome of size G, a key size of k,
reads of length L, and an alphabet of size A, we compute the expected number
of “false” random key matches F' to be

This can be expressed in R code as:

Calculates the number of ‘‘false’’ random key matches
in the index given:
L: read length

45

46 CHAPTER 6. ADVANCED TOPICS

k: key size

G: genome size (both + and -)

A: alphabet (DNA is 4)

F <- function (L=50, k=18, G=2x3.2%x10"9, A=4)
{

return ((L — k + 1) = (G / (A"k)));

}

In this case, we test k over a varying range of values to find the smallest value of &
where F' is less than one. In theory this is the key size we should use. In practice,
for larger genomes, the distribution of bases is non-random, for example in the
Human Genome there are many stretches of long repeats. Therefore we advise
you to choose a key size of k + 2, to further guarantee the uniqueness of the
lookup to be performed. For the Human Genome, key sizes of 18 or greater will
suffice.

After deciding on our key size, we move to explicitly creating the masks for
the indexes. This is achieved by using the binary utility btestindexes (see
subsection 4.12.9). This utility must be run twice, first to find a set of masks,
and a second time to estimate the accuracy of those masks. We suggest using
a key width (number of zeros and ones in your mask) greater than your key
size (required) but also smaller than your read length, since the smaller the key
width the more offsets can be used during the lookup step(Homer et al. (2009a)).

Nevertheless, using the btestindexes utility allows the user to examine var-
ious mask sets and their associated estimated accuracy against many possible
error and variant combinations. We recommend that the user selects the mini-
mal number of masks sufficient to tolerate the user’s desired accuracy tolerances.
The fewer masks used, the faster the alignment will be performed.

After finding a set of masks to use for alignment, the final step is to select
the hash width to use. The hash accelerates the lookup by building an index of
the prefixes of all possible keys in the index. In general, the hash width will take
an exponential amount of space relative to the given hash width. For example,
a good hash width for the Human Genome is 14, which will add approximately
1GB to the index size (see subsection 5.2.2). For smaller genomes, much smaller
hash widths can be used.

Finally, both disk storage and random access memory sizes need to be consid-
ered. Based on all of the parameters above, it easy easy to calculate the required
size in bytes of each index to be created. This can be found in subsection 5.2.2.

If the indexes become to large, we urge you to upgrade your machine with
more random access memory memory and disk space given cost of such an up-

6.2. WHOLE-GENOME ALIGNMENT 47

grade compared to the actual generation (sequencing) of the data. If all attempts
at convincing the President fail, we suggest you further divide the indexes by
ranges across the genome. This can be achieved by using the -s, -S, -e, and -E
in index (see section 4.3).

6.2 Whole-Genome Alignment

Whole-Genome alignment is as simple as following the work flow presented in
section 3.3.

6.3 Targeted Genomic Alignments

There are a number of ways to target specific regions within the genome, for ex-
ample by specifying a subset of chromosomes or a number of contiguous regions.
The first method is to use index and to specify an Exons file (see section 4.3).
The second method is to use command line options to limit the starting contig
and position, and ending contig and position.
Applications of this type of index creation included targeted pull-down meth-
ods, where it is known only a certain set of regions will be sequenced.

6.3.1 Using index and exon list

To target specific regions of a larger reference genome, we can specify a Exons
file when creating the indexes in index using the —-x option (see section 4.3).
This will limit the locations indexed to just those specified in the Exons file.
Subsequently, options that limit the number of CALs returned by a key look up
or in total for a read (see section 4.4 and section 4.5) will only be relative to this
reduced index.

6.3.2 Using command-line options to specify one contiguous range

The command line options -s, -S, —e, and -E can be used to only consider
one contiguous range within the BFAST reference genome file. This specified
during the index creation (see section 4.3), during the local alignment step (see
section 4.5), or when prioritizing alignments (see section 4.6). The step at which
these options are specified will affect the resulting output.

48 CHAPTER 6. ADVANCED TOPICS

If specified during the index creation step, the BFAST index file will only
contain the sequence from that region. Thus, only CALs within this range will
be found. If we are limiting the number of CALs returned by a key or in total
for a read (see section 4.4 and section 4.5), then only CALs within the range
will count towards these limits.

If specified during the local alignment step, only CALs that fall within the
specified range will produce alignments. If we are limiting the number of CALSs
returned by a key or in total for a read (see section 4.4 and section 4.5), then
all CALs that are possible in the indexes will count towards these limits. For
example, if the index is of the whole genome, but we are interested in one
chromosome, then if the CAL limits are used the limits are imposed according
to CALs found in the whole genome, not the specified region. This may be
useful if we want to flag reads that have high homology to a larger region or
genome, but to have the alignments only be outputted within a specified range.
Furthermore, since the local alignment step is typically the most expensive step
for computation, ignoring alignments outside a certain range will reduce the
number of local alignments needed.

If specified when prioritizing alignments, only alignments within the specified
range will be outputted. This is similar to limiting the alignment range using
localalign but is useful when a BFAST aligned file has been created with
alignments to the full reference genome and we wish to only report alignments
within a contiguous region.

6.4 Transcriptome Alignment

In some cases a contiguous reference genome is not the desired reference se-
quence. Examples include alignment to the transcriptome, including different
transcript of genes, splice variants, or isoforms. This type of alignment can be
easily handled by BFAST. We refer to each transcript, splice variant, isoform,
or contigous sequence as a contig.

The sequence each possible transcripts should be given as independent contig
in the Reference genome FASTA file when creating the BFAST reference genome
file (see section 4.2). This will ensure that each transcript will be indexed sep-
arately and reported separately. Each step of the work flow (see section 3.3)
should proceed as normal.

The contigs will be given an index number based on the order specified in
the Reference genome FASTA file as well as outputting their name as defined in

6.5. BISULFITE TREATED OR METHYLATION ALIGNMENT 49

the Reference genome FASTA file. In this manner the ID of the contig can be
recovered. In a BFAST matches file (see subsection 5.2.3) generated by match
(see section 4.4) only the index number is given for compactness. In a BFAST
aligned file (see subsection 5.2.4) generated by localalign (see section 4.5)
either the index number or original contig name can be used.

Other local alignment algorithms to support spliced alignments are currently
under development and could be produced during local alignment.

6.5 Bisulfite Treated or Methylation Alignment

Bisulfite sequencing is an interesting experiment whereby we wish to know the
methylation status of certain bases. We assume that in the sequence data some
of the C bases have been converted to T by bisulfite treatment. In this case, we
wish to align the sequence data to a reference genome, tolerating the fact that
a fair number of mismatches when aligned will come from the fact that Cs have
been converted to Ts.

BFAST can support this type of alignment. In brief, we will convert all Cs
to Ts in the reference genome, convert all Cs to Ts in the sequence reads to
be aligned (and annotate where those conversions were made), align the con-
verted reads to the reference genome, then finally convert the reads back to
their original state using the annotations.

Suppose we have 25 contigs representing the 25 chromosomes of the Human
Genome. We convert each strand of each chromosome by changing every C to
a T, for a total of 50 final methylated contigs (this must be done independently
by the user). We use this “converted” reference genome as input when creating
a BFAST reference genome file.

Next we convert every C to a T in each read in our input Reads FASTQ
file (this must be done independently by the user). We can either annotate
where each conversion occurred, or just store the original read. Either way, the
annotation or the original read can be appended to the read name, since this
will be kept throughout by BFAST.

After converting the reference sequence and the input reads, we run BFAST
using the standard work flow (see section 3.3) with two exceptions. The first
exception is that in match we wish to use the option -w 1 so that we only match
to the forward strand of each contig (see section 4.4). The reason for this is
that we will index each strand separately. The second exception is that we have
reduced our alphabet size from four (A, C, G, and T) to three (A, G, and T).

50 CHAPTER 6. ADVANCED TOPICS

The reduced alphabet size must be taken into consideration when deciding on
the masks for our indexes, since our genome complexity has been reduced. This
should lead the user to use a larger key size to combat this reduced complexity.

After alignment using BFAST is complete, we simply convert back the read
to its original state (this must be done independently by the user) thereby giving
us the locations where there are Ts in the reference and Cs (or Ts) in the read.

6.6 Color Space Alignment

The work flow for color space has five steps as seen in Figure 6.1 similar in
fashion to the one described in section 3.3.

1. In the first step we build two reference genomes: a nucleotide space genome
using the option —-A 0 in fasta2brg, and a color space genome using the
option -A 1 (see section 4.2).

2. In the second step we create the indexes in color space by using the color
space reference genome built in the first step and the option -A 1 (see
section 4.3).

3. In the third step we search for CALs using the color space indexes created
in the second step, using the color space reference genome built in first
step, and by using the option -A 1 (see section 4.4).

4. In the fourth step we perform local alignment using the nucleotide space
reference genome built in the fist step and by using the option -2 1 (see
section 4.5).

5. In the fifth step we prioritize the local alignments as was previously de-
scribed in section 3.3.

6.6. COLOR SPACE ALIGNMENT

CREATE A REFERENCE GENOME

IN COLOR SPACE IN NUCLEOTIDE SPACE

‘CREATE A REFERENCE GENOME

CREATE INDEXES OF THE
REFERENCE GENOME
IN COLOR SPACE

v

USE THE INDEXES IN COLOR SPACE
) AND REFERENCE GENOME IN COLOR
SPACE TO FIND CANDIDATE
ALIGNMENT LOCATIONS (CALS)

v

ALIGN EACH CAL USING A LOCAL
ALIGNMENT ALGORITHM IN COLOR (

SPACE USING THE REFERENCE

GENOME IN NUCLEOTIDE SPACE

v

|PRIORITIZE ALIGNMENTSl

Figure 6.1: The BFAST work flow for color space alignment.
See section 6.6 for a description.

o1

52

CHAPTER 6. ADVANCED TOPICS

Chapter 7

Appendix

7.1 Human Genome Alignment Recommended Settings

We assume that you have the full hgl8 reference in the FASTA format in a file
called hgl8.fa. We detail our recommended commands to align sensitively to
the human genome, at the cost of speed, outputting in the SAM format (see
http://samtools.sourceforge.net). Further filtering, especially filtering on
mapping quality, alignment score, and alignment quality, should be also be per-
formed. Please use the —n option for multi-threaded alignment where possible.
For Illumina data see subsection 7.1.1. For ABI SOLiD data see subsection 7.1.2

When mapping paired end or paired end data, the orientation must be speci-
fied in bfast postprocess. For paired end reads, use -Y 0 or -S 0 -P 1. For
mate pair reads, use -Y 1 or -S 1 -P 0.

7.1.1 Illumina

We assume your reads are in Illumina QSEQ format (the files that end with
_gseq.txt) and we wish to align lane < N >. Note, we align one lane all at one
time but splitting the converted reads file allows for parallelism.

We suggest a hash width of 14, although this should be reduced if you are
splitting the indexes for low-memory computation.

For reads less than > 40bp, the masks for the main indexes should be:

53

http://samtools.sourceforge.net

o4 CHAPTER 7. APPENDIX

111111111111111111
111010001110001110100011011111
11110100110111101010101111
11111111111111001111
1111011101100101001111111
11110111000101010000010101110111
1011001101011110100110010010111
1110110010100001000101100111001111
1111011111111111111
11011111100010110111101101

For reads greater than or equal to 40bp, the main indexes should be:
1111111111111111111111
1111101110111010100101011011111
1011110101101001011000011010001111111
10111001101001100100111101010001011111
11111011011101111011111111
111111100101001000101111101110111
11110101110010100010101101010111111
111101101011011001100000101101001011101
1111011010001000110101100101100110100111
1111010010110110101110010110111011

Given the above, the commands we should execute are:

Convert the reads:

Sperl bfast-0.6.5b/scripts/gseg2fastq.pl -g s_<N>

Convert the reference:

Sbfast-0.6.5b/bfast/bfast fasta2brg -f hgl8.fa

Create the indexes:

Sbfast-0.6.5b/bfast index —-f hgl8.fa -m <mask> -w 14 -i <index number>

Search the indexes:

Sbfast-0.6.5b/bfast match —-f hgl8.fa —-r reads.s_<N>.fastqg > bfast.matches.file.s_<N>.bmf
Perform local alignment:

$bfast-0.6.5b/bfast localalign -f hgl8.fa -m bfast.matches.file.s_<N>.bmf > bfast.aligned.file.s_<N>.baf
Filter alignments:

Sbfast-0.6.5b/bfast postprocess —-f hgl8.fa -i bfast.aligned.file.s_<N>.baf

> bfast.reported.file.s_<N>.sam

7.1. HUMAN GENOME ALIGNMENT RECOMMENDED SETTINGS 55

7.1.2 ABI SOLiD

We assume your reads are at least 50bp in length. We will split the input into
10,000,000 read pieces for parallel computation.

We suggest a hash width of 14, although this should be reduced if you are
splitting the indexes for low-memory computation.

The masks for the main indexes should be:

1111111111111111111111
111110100111110011111111111
10111111011001100011111000111111
1111111100101111000001100011111011
111111110001111110011111111
11111011010011000011000110011111111
1111111111110011101111111
111011000011111111001111011111
1110110001011010011100101111101111
111111001000110001011100110001100011111

Given the above files, the commands we should execute are:

Convert the reads:

Sbfast-0.6.5b/scripts/solid2fastg —n 10000000 -o reads *.csfasta x.qual
Convert the reference (nucleotide space):

Sbfast-0.6.5b/bfast fastal2brg -f hgl8.fa

Convert the reference (color space):

$bfast-0.6.5b/bfast fasta2brg -f hgl8.fa -A 1

Create the indexes:

Sbfast-0.6.5b/bfast index —-f hgl8.fa -m <mask> -w 14 -i <index number> -A 1
Search the indexes:

Sbfast-0.6.5b/bfast match -f hgl8.fa -A 1 -r reads.<N>.fastqg > bfast.matches.file.hgl8.<N>.bmf
Perform local alignment:

S$bfast-0.6.5b/bfast localalign —-f hgl8.fa -m bfast.matches.file.hgl8.<N>.bmf -A 1
> bfast.aligned.file.hgl8.<N>.baf

Filter alignments:

96 CHAPTER 7. APPENDIX

$bfast-0.6.5b/bfast postprocess —-f hgl8.fa -i bfast.aligned.file.hgl8.<N>.baf -A 1

> bfast.reported.file.hgl8.<N>.sam

Note that for parallel computation, execute bfast match, bfast localalign,
and bfast postprocess for each converted input file created (replace < N >
with the input file number). Also, since color space local alignment may be slower
than the match step, we can use the —s and -e options in bfast localalign
to further parallelize the local alignment.

7.2 High-Speed Tutorial

Not for the faint of heart, most details will be omitted.
Your best bet is to follow the work flow in section 3.3 (or section 6.6 for color
space). A quick list of relevant sections are as follows:

e Step 1: subsection 4.2.1.
e Step 2: subsection 4.3.1.
e Step 3: subsection 4.4.1.
e Step 4: subsection 4.5.1.

e Step 5: subsection 4.6.1.

7.3 Copyright

7.3. COPYRIGHT 57

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not al-
lowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free software—to make sure the
software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Lesser General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do
these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the software,
or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually

o8 CHAPTER 7. APPENDIX

obtain patent licenses, in effect making the program proprietary. To prevent
this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of
this General Public License. The ”Program”, below, refers to any such program
or work, and a ”"work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Pro-
gram or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation
in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program is
not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer to this License and to the ab-
sence of any warranty; and give any other recipients of the Program a copy of
this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

7.3. COPYRIGHT 29

c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Excep-
tion: if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1 and
2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically perform-
ing source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable

60 CHAPTER 7. APPENDIX

form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface defi-
nition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Program (or
any work based on the Program), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third
parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are im-
posed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obligations

7.3. COPYRIGHT 61

under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from distribution of
the Program.

If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this section
has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographical dis-
tribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incor-
porates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Program speci-
fies a version number of this License which applies to it and ”any later version”,
you have the option of following the terms and conditions either of that version
or of any later version published by the Free Software Foundation. If the Pro-
gram does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for per-
mission. For software which is copyrighted by the Free Software Foundation,

62 CHAPTER 7. APPENDIX

write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE
ISNO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-
ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PRO-
GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OP-
ERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the ”copyright” line and a pointer
to where the full notice is found.

jone line to give the program’s name and a brief idea of what it does.; Copy-

7.3. COPYRIGHT 63

right (C) jyear; jname of author;

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision
comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This
is free software, and you are welcome to redistribute it under certain conditions;
type ‘show ¢’ for detalils.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appro-
priate parts of the General Public License. Of course, the commands you use
may be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a ”copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomo-
vision’ (which makes passes at compilers) written by James Hacker.

isignature of Ty Coonj, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library. If this
is what you want to do, use the GNU Lesser General Public License instead of
this License.

64

CHAPTER 7. APPENDIX

Bibliography

Homer, N., Merriman, B., and Nelson, S. F. (2009a). BFAST: An Alignment
Tool for Large Scale Genome Resequencing. PLoS ONE, 4, e7T767.

Homer, N., Merriman, B., and Nelson, S. (2009b). Local alignment of two-base
encoded dna sequence. BMC Bioinformatics, 10(1), 175.

Kent, W. (2002). BLAT-the BLAST-like alignment tool. Genome Res., 12,
656—664.

Smith, T. and Waterman, M. (1981). Identification of common molecular sub-
sequences. J. Mol. Biol., 147, 195-197.

65

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgements

	Run BFAST now!
	Installation
	Prerequisites
	Compilation

	Fundamental Concepts
	What is BFAST?
	Program Organization
	Work flow

	Basic Usage
	Common Options
	Usage

	bfast fasta2brg
	Creating a Reference Genome

	bfast index
	Creating Indexes of a Reference Genome
	Usage

	bfast match
	Finding Candidate Alignment Locations (CALs)
	Usage

	bfast localalign
	Performing Local Alignment on Candidate Alignment Locations (CALs)
	Usage

	bfast postprocess
	Prioritizing Alignments
	Usage

	bfast bafconvert
	Usage

	bfast header
	Usage

	bfast bmfconvert
	Usage

	bfast brg2fasta
	Usage

	bfast easyalign
	butil
	balignmentscoredistribution
	balignsim
	bevalsim
	bgeneratereads
	bindexdist
	bindexhist
	bmfmerge
	brepeat
	btestindexes

	scripts
	bfast.submit.pl
	bfast.resubmit.pl
	qseq2fastq.pl
	solid2fastq

	File Formats
	Input Files
	Reference genome FASTA file
	Reads FASTQ file
	Exons File
	Scoring Matrix File

	BFAST Files
	BFAST reference genome file
	BFAST index file
	BFAST matches file
	BFAST aligned file
	BFAST sequence alignment/map file

	Example Input Files

	Advanced Topics
	How To Design Indexes
	Whole-Genome Alignment
	Targeted Genomic Alignments
	Using index and exon list
	Using command-line options to specify one contiguous range

	Transcriptome Alignment
	Bisulfite Treated or Methylation Alignment
	Color Space Alignment

	Appendix
	Human Genome Alignment Recommended Settings
	Illumina
	ABI SOLiD

	High-Speed Tutorial
	Copyright

	References

