
A revised approach to DAMS
MODS XML

Each of us have varying levels of experience with entering metadata into the DAMS.
There’s two basic approaches: manual or bulk editing within the DAMS interface or
batch creating MODS XML for batch ingesting large numbers of objects. Batch
creating MODS XML currently requires meticulous template and spreadsheet
encoding in order to avoid syntax and processing errors downstream. This also makes
the current approach difficult to distribute among staff involved with metadata
ingest. I wanted to see if we could revise the MODS XML batch creation approach.
Where coding MODS templates with JSONIZE expressions and keying in custom
spreadsheet headers, plus trying to escape reserved XML syntax so it doesn’t clobber
the next transformation step, could be avoided as much as possible, and save time,
be free of headaches and be re-useable by anybody.

1

But before I talk about a new way to transform metadata, I’ll start at the beginning,
the source, our object metadata. Often times it’s kept in spreadsheets like this
example. A single collection can have varying metadata. Some objects have multiple
titles or multiple subject terms, while others do not. This means we’re in a
conditional case, where an if-then statement written in a computer programming
expression will help create the metadata we need (and leave out what we don’t
need) when collections do have varying metadata.

2

{{if(isNull(cells["subtitle1"]), "", jsonize(cells["subtitle1"].value).replace('"',''))}}

Thanks to Mirko, we have a conditional statement we can use in our MODS
transformations. (He’ll try to tell you it’s just from the OpenRefine (G)eneral (R)efine
(E)xpression L()anguage instead of taking credit… try not to fall asleep) In this
example, our first object doesn’t have a subtitle (take a look at the metadata in the
upper right-hand corner), so our conditional resolves to creating what’s known as an
“empty-element tag” < />. Our second object does have a subtitle so our conditional
statement resolves by inserting the subtitle text into the MODS.

3

I wondered if I could take it to the next step by pairing up the conditional statements
we potentially want to see for every corresponding field available in the DAMS. That
should mean we can create a MODS template rather quickly.

4

Here is the new approach. Enter a conditional statement for the maximum number of
repeated fields for a given set of objects for ingest. Use the companion handout
‘DAMS MODS Conditional Statements.xlsx’ for easy cut and paste. Back in our sample
metadata, shown in the upper right-hand corner, we have a third object with a title in
German and an alternate title in English, so we enter a conditional statement into
two title form fields, making sure to distinguish the second title and attributes with a
number ‘2’
Added bonus, if your browser form field history is enabled (which by default it is) you
will always have the option to select the last conditional statement you entered for
that field from your browser form field history. So the next time you need to create a
MODS template, it’s going to be a lot quicker.
Again, using conditional statements in the form editor will create a ready to use
MODS template.

5

A note about the field Identifiers. This will sound familiar to those using the current
approach to creating MODS XML as documented in the DAMS wiki. This note also
applies to the new approach I’m speaking about today. The Identifiers field is optional
in the DAMS form (there’s no red asterisk hovering next it), but Identifiers is required
if using a script that renames files based on the Identifier XML node in order to create
matching XML and object filenames. Our objects are uniquely named, oftentimes
with OCLC or local identifiers embedded in the filename. Here in the upper right-hand
corner, our spreadsheet has OCLC number identifiers but it can also represent local
identifiers (we could also leave the attribute type blank.) When we get to file
renaming later, we’ll use a script, which is available for download in the DAMS wiki. It
looks for MODS:Identifier nodes and copies the text values into the XML filenames so
that they match the object filenames. But renaming talk is for another time. Let’s get
back to finishing our MODS with conditional statements.

6

OK we’re done. I’m not showing all the fields, but let’s assume we’re done with filling
in all our conditional statements (as well as any fixed metadata) and this is now what
our MODS template looks like. After downloading it from the Manage Datastreams
tab in the DAMS, we’ll need to make one or two edits in a text editor, depending on if
you used conditional statements for attributes instead of hard coding text. In the
example, we used conditional statements for the titleLanguage attribute, so we will
need to unescape the characters in the selection between the double quotes (“) in
order to get the conditional statement to function in OpenRefine. If you use
Notepad++ and you have the highly recommended XML Tools plugin installed, you
can find the menu command for unescaped characters under Plugins>XML
Tools>”Unescape characters in selection…”
Our MODS template is almost ready for use in OpenRefine.

7

We just need to delete the machine generated info.

8

Our conditional statement “values” were created with “camelCase” (no separators
like hyphens and underscores) to facilitate quick copying and pasting into a DAMS
specific spreadsheet.
Yes, this new approach involves creating a DAMS specific spreadsheet. (Feels like
more work) But I think the tradeoff is worth it. Common MODS template coding
errors in the old approach are avoided. Downstream processing in OpenRefine is
simplified. Plus, if it matters, original source metadata spreadsheets can retain their
original usage, while a specific spreadsheet of DAMS specific metadata is obtained.

9

Also, don’t forget to change your DateCreated cell format to ‘Text’ to avoid “auto-
mangling” cell data and accommodate the recommended input provided in the
DAMS information box.

10

Time spent in OpenRefine was only on uploading the DAMS specific metadata sheet
and pasting in my MODS template. No more coding errors encountered and
troubleshooting syntax. I imagine even for large numbers of records, time spent in
OpenRefine would just be minutes, not longer like it can be in the current approach
that can involve troubleshooting unexpected output.

11

Reference

https://dams-t01-rh7.lib.utexas.edu/islandora/object/utlmisc%3A15ccb766-d041-443b-9331-5089341627ac/btitle

A before and after look of DAMS MODS metadata is available in DAMS-T01 if you
follow the link. Please be aware that the link contains a lot of MODS conditional
testing that I did and continue to do. Ideally there will be a reference spot in the
future, if widely adopted, where things are left untouched and are ideal
representations. I also recommend making your own test collection with conditional
values filled into the MODS form. Let me know if you try this new approach to
generate a MODS template. The ultimate goal is to simplify processes and increase
our ingest rates, and I think this new approach takes significantly less time (I’m talking
minutes, instead of hours or days) once things are setup. I hope this helps so please
let me know if you try it out. I can send you the MODS form field to conditional
statement pairings shown earlier.

12

Considerations:
If we are creating “empty-element tags” in the DAMS,

e.g. <title/> <subTitle/>

what’s the impact on the database and storage systems (backend)? My guess is it’s insignificant. Each character
occupies a byte. If there are very large numbers of empty-element tags stored in the DAMS, that eventually
leads to undesirable storage consumption. (It’ll be awhile, 1 million characters is only 1MB) Left totally
unchecked in the long term it could be an impact. DAMS-IT consult would be a good course of action before
producing significant numbers of empty-element tags. If the opinion is negative that would call for producing
minimal “empty-element tags” within reason.

Are empty attributes, e.g. <titleInfo lang=""> a problem? Doesn’t seem to be invalid XML syntax. What about
schema validity.

Testing publishing to the public facing side should be performed.

What else is wrong with this approach?

13

