
MICHAEL STRÖMBERG

MOSAIK Documentation� i

Michael Strömberg
2009-10-14�

Table of Contents

1. Introduction_ __ 1
1.1. What makes MOSAIK different?	 1
1.2. Overview	 2
1.3. Contact Information	 2

2. The MOSAIK suite__ 3
2.1. MosaikBuild	 3
2.2. MosaikAligner	 5
2.3. MosaikSort	 11
2.4. MosaikMerge	 13
2.5. MosaikAssembler	 14

3. Utilities___ 15
3.1. MosaikText	 15
3.2. MosaikCoverage	 15
3.3. MosaikDupSnoop	 16
3.4. MosaikJump	 16

4. Understanding Program Output__ 18
4.1 MosaikBuild	 18
4.2 MosaikAligner	 19
4.3 MosaikSort	 20

5. Performance_ ___ 21
5.1. Speeding Up Alignments	 21
5.2. Yeast Alignments	 22
5.3. Roundworm Alignments	 22
5.4. Human Alignments	 23
5.5. Aligner Settings By Sequencing Technology	 23

6. Visualization_ ___ 24
6.1. consed	 24
6.2. Gambit	 24

7. Data Access (MosaikTools)__ 25

Appendix 1: Crib Sheet_ __ 26

MOSAIK Documentation� 1

Michael Strömberg
2009-10-14�

1. Introduction
MOSAIK is a reference-guided assembler comprising of four
main modular programs (Figure 1.1):

• MosaikBuild
• MosaikAligner
• MosaikSort
• MosaikAssembler.

MosaikBuild converts various sequence formats into Mosaik’s
native read format. MosaikAligner pairwise aligns each read
to a specified series of reference sequences. MosaikSort
resolves paired-end reads and sorts the alignments by the
reference sequence coordinates. Finally, MosaikAssembler
parses the sorted alignment archive and produces a multiple
sequence alignment which is then saved into an assembly file
format.

Historically, the workflow consists of supplying sequences
in FASTA, FASTQ, Illumina Bustard & Gerald, or SRF
file formats and producing assembly files (phrap ace and
GigaBayes gig formats) which can be viewed with utilities
such as consed.

Our lab has been developing a new SNP caller called
BamBayes which uses the new BAM alignment file format.
Our current workflow involves producing alignment files with
MosaikAligner and then exporting the alignments to the BAM
format with MosaikText.

1.1. What makes MOSAIK different?
Unlike many current read aligners, MOSAIK produces
gapped alignments using the Smith-Waterman algorithm.
Additionally, our program goes beyond producing pairwise
alignments and produces reference-guided assemblies
with gapped alignments. These features make it ideal for
downstream single nucleotide polymorphism (SNP) and short
insertion/deletion (INDEL) discovery.

MOSAIK is written in highly portable C++ and currently
targetted for the following platforms: Microsoft Windows,
Apple Mac OS X, Linux/x86, Linux/Itanium2, and Sun Solaris/
UltraSPARC operating systems. Other platforms can easily be
supported upon request.

MOSAIK is multithreaded. If you have a machine with 8
processors, you can use all 8 processors to align reads faster
while using the same memory footprint as when using one
processor.

Figure 1.1 MOSAIK Pipeline.

This figure illustrates the basic MOSAIK pipeline.
MosaikBuild converts external read formats,
MosaikAligner pairwise aligns the reads,
MosaikSort sorts the alignments and resolves
paired-end reads, and finally MosaikAssembler
creates a gapped assembly file.

MosaikBuild

MosaikAligner

MosaikAssembler

MosaikSort

MOSAIK Documentation� 2

Michael Strömberg
2009-10-14�

MOSAIK supports multiple sequencing technologies. In
addition to legacy technologies such as Sanger capillary
sequencing, our program supports next generation
technologies such as Roche 454, Illumina, AB SOLiD, and
experimental support for the Helicos Heliscope.

MOSAIK aligns AB SOLiD reads in colorspace and then
converts the reads seamlessly back to basespace. This enables
the user to take advantage of the SOLiD platform without all
of the downstream bioinformatics headaches associated with
working in colorspace.

1.2. Overview
The primary MOSAIK programs (MosaikBuild,
MosaikAligner, MosaikSort, MosaikMerge, and
MosaikAssembler) are discussed individually in Chapter 2.

The MOSAIK utility programs (MosaikText, MosaikCoverage,
MosaikDupSnoop, and MosaikJump) are discussed
individually in Chapter 3.

“MOSAIK output demystified” is probably an apt title for
Chapter 4. Chapter 5 discusses how to fine tune performance
for a variety of reference genomes and sequencing
technologies.

The final two chapters discuss methods of visualizing and
accessing the data after alignment. Chapter 6 mentions two
visualization tools: consed & Gambit. Chapter 7 introduces
the MOSAIK API for interacting with the alignment archives
natively.

For the impatient, a one page crib sheet with the most
important parameters to the primary MOSAIK programs is
provided in the appendix.

1.3. Contact Information
Feel free to contact me to suggest improvements, submit bug
reports, or just to offer some moral support while I write my
Ph.D. dissertation:

Michael Strömberg
Biology Department
Boston College - Higgins Hall
140 Commonwealth Ave
Chestnut Hill, MA 02467
USA

email: mikaels@bc.edu

Figure 1.2 Michael Strömberg.

Feel free to say “Hello” if you see this character
at a conference. Offer him a Duvel and he might
be able to get any feature you want put into
MOSAIK.

MOSAIK Documentation� 3

Michael Strömberg
2009-10-14�

2. The MOSAIK suite
One of the author’s pet peeves are programs that require way
too many command-line parameters when decent default
values should suffice. As a result, MOSAIK has been revised
to require as few command-line parameters as possible. In
essence, most programs require only an input filename and
an output filename. Parameters with default values have been
marked blue in the information panels.

Apparently there are more than a few system administrators
out who are threatening bodily harm to faithful MOSAIK
users (Figure 2.1). MosaikSort, MosaikMerge, and
MosaikAssembler store temporary files in /tmp or similar
platform-specific directories. These programs delete the
temporary files when they finish.

If the /tmp directory is too small or if your local system
administrator is lurking over your cubicle with a knife in hand,
you can specify another directory by setting the MOSAIK_
TMP environment variable. For example, Gàbor might use the
following command in bash:

export MOSAIK_TMP = /home/marth/tmp

2.1. MosaikBuild
To speed up the assembly pipeline, compressed binary
file formats are used extensively throughout MOSAIK.
MosaikBuild translates external read formats to a format that
the aligner can readily use. In addition to processing reads, the
program also converts reference sequences from a FASTA file
to an efficient binary format.

MosaikBuild readily converts FASTA, FASTQ, Illumina
Bustard, Illumina Gerald, and SRF files. Pyrosequences in SFF
files can be converted to the FASTA format with the PyroBayes
utility (http://bioinformatics.bc.edu/marthlab/PyroBayes).
With files containing both bases and base qualities, such as
FASTQ and SRF, MosaikBuild can convert an entire directory
of read files into a single MOSAIK read file. This is handy, for
example, when converting a run of Illumina paired-end reads
that are separated by lanes and mate-pairs.

MosaikBuild automatically handles FASTA and FASTQ in
both the uncompressed or compressed (gzipped) state. There’s
no need to uncompress the files prior to importing them into
MOSAIK.

MosaikBuild stores the specified sequencing technology (-st
parameter) and read type (single ended vs paired-end) so that
it can be tracked throughout the entire pipeline.

Figure 2.1 Angry System Administrator.

This photo was taken moments before a user
was savagely attacked by an angry system
administrator for filling up the /tmp directory.

MOSAIK Documentation� 4

Michael Strömberg
2009-10-14�

Metadata
MOSAIK now supports the concept of read groups that was
introduced by the SAM & BAM file format specification. The
following data can now be associated with each read archive:

• center name (-cn)
• description (-ds)
• read group identifier (-id)
• library name (-ln)
• median fragment length (-mfl)
• platform unit (-pu)
• sample name (-sam)
• sequencing technology (-st)

When using the local alignment search feature in
MosaikAligner, the median fragment length metadata is used
to define the search area.

Using MosaikBuild (reference sequences)

MosaikBuild -fr c_elegans_chr2_ref.fa.gz -oa
c_elegans_chr2_ref.dat

Here we convert the reference sequence for chromosome 2 in
C. elegans from a FASTA file to a native MOSAIK reference
archive.

In all of the MOSAIK programs, parameters can be placed in
any order.

Using MosaikBuild (reads)

MosaikBuild -q c_elegans_chr2_mate1.fq.gz -q2
c_elegans_chr2_mate2.fq.gz -out c_elegans_chr2.dat -st
illumina -p B_

Here we convert the paired-end Illumina reads from a pair of
FASTQ files to a native MOSAIK read archive. In this example
we prepend each read name with “B_” so that we know that
these reads are from the Bristol strain during visualization and
SNP discovery.

Box 2.1 MosaikBuild Parameters.

FASTA
-fr, -fr2	 specifies the files containing the
	 bases for the first mate (-fr) and the
	 second mate (-fr2).

-fq, -fq2	 specifies the files containing the
	 base qualities for the first mate (-fq)
	 and the second mate (-fq2).

-assignQual	 assigns a base quality for every
	 base.

FASTQ
-q, -q2	 specifies the files for the first mate
	 (-q) and the second mate (-q2).

SRF
-srf	 specifies the short read format file
	 (currently only single-ended reads
	 are supported).

Illumina Bustard
-bd	 specifies the Illumina Bustard
	 directory.

-il	 specifies which lanes to use. e.g.
	 -il 137 will select lanes 1, 3, and 7.

-split	 split the reads into two equal
	 portions for paired-end reads.

Illumina Gerald
-gd	 specifies the Illumina Gerald
	 directory.

-il	 specifies which lanes to use. e.g.
	 -il 137 will select lanes 1, 3, and 7.

Shared Options
-cs	 translates the reference sequence
	 from basespace to colorspace.

-p	 adds the specified prefix to each
	 read name.

-st	 specifies the sequencing
	 technology:
	 454, helicos, illumina, sanger, solid

-out	 specifies the output file when
	 converting reads.

-oa	 specifies the output file when
	 converting the reference sequence.

MOSAIK Documentation� 5

Michael Strömberg
2009-10-14�

2.2. MosaikAligner
MosaikAligner performs pairwise alignment between every
read in the read archive and a set of reference sequences
(Figure 2.2). The program uses a hashing scheme similar to
BLAT and BLAST and places all of the hashes (k-words or
seeds) into a hash map or into a “jump database”.

When presented with a new read, MosaikAligner hashes
up the read in a similar fashion and retrieves the reference
positions for each hash in the hash table. These hash positions
are clustered together and then evaluated with a full Smith-
Waterman algorithm. Alignments are then screened according
to the filter criteria specified by the user.

Hashing Strategy
The first incarnation of MOSAIK used a fast hashing strategy
that stored one hash position per seed. If a seed was seen
more than once in the reference sequence, it was marked non-
unique and removed from subsequent use. When clustering
hash positions, the longest contiguous set of hash was used
to seed the full Smith-Waterman alignment. While speedy,
this strategy (FAST) was vulnerable to microrepeat structures
in reference sequences and often produced read pile-ups in
repeat regions.

Subsequently the hashing strategy was revised to store n
number of hash positions per seed and all hash position
clusters were used to seed the full Smith-Waterman alignment.
As the number of hash positions per seed increased, so did
alignment accuracy and the memory requirements.

Three newer strategies are available:

• SINGLE (stores 1 hash position per seed)
• MULTI (stores 9 hash positions per seed)
• ALL (stores all hash positions per seed).

We have standardized on the use of the most accurate version
(ALL) for all of our current lab projects.

Using Jump Databases
The aforementioned hashing strategies involve using hash
maps as their primary data structure. However, putting
an entire mammalian genome into a hash map is not very
efficient. MosaikAligner consumes around 57 GB RAM when
using the ALL strategy and aligning against the entire mouse or
human genome!

Using a “jump database” makes full mammalian genome
alignment possible (Figure 2.3). A jump database is comprised
of two main files: the keys file and the positions file. The

AAAA
AAAG » 20

AACA
AACG
AAGA
AAGG

AATA » 0
AATG

AAAC
AAAT
AACC
AACT
AAGC
AAGT
AATC

AATT » 8

1 0 2 6 11
1 16

key structure (4n) position structure (nhashes + npositions)

reference sequence: AATATGAATTTAATTCAAAG

Figure 2.3 The Jump Database Illustrated.

In this example we are hashing the reference
sequence with a hash size of 4. The hashes
are store in 2-bit notation and thus have an
equivalent integer value. e.g. AAAA=0, AAAC=1,
AAAG=2, etc.

Using the integer value we can jump directly in
the keys file to retrieve the positions file offset. e.g.
if we look into the bucket corresponding to hash
AAAG, we retrieve a file offset of 20.

Every record in the positions file starts with a
number indicating the hash position count and is
followed by the hash positions. e.g. at file offset
20, we discover one hash position at reference
sequence offset 16.

Mosaik Read
Archive

Jump DB

Hash Reference
Sequences

Hash Read & Find
Hits in Reference

Consolidate Hits
into Candidates

Align Candidates
w/Smith WatermanSave Alignments

Mosaik
Alignment Archive

Reference
Sequences

Figure 2.2 MosaikAligner Illustrated.

MOSAIK Documentation� 6

Michael Strömberg
2009-10-14�

positions file is a tightly packed file with all of the possible hash
positions for each seed. The keys file is a sparse look up table
that allows MOSAIK to find the relevant hash positions with
only two hops in memory. This data structure guarantees no
collisions, which is often prevalent in highly loaded hash maps.

What does this mean to the user? Instead of 57 GB, we can
now deliver the same data at 19 GB RAM. Since there are no
collisions, alignments are faster.

As an added bonus, the user can select whether the keys
and positions files should remain on disk or be loaded into
memory for additional performance. Technically, this means
that a full genome alignment can be performed with as little
as 4 GB RAM (used by the mammalian genome reference
sequence). However the random access usage patterns in the
“jump database” still make this alternative prohibitively slow.
Flash-based memory such as solid state drives (SSDs) might
make this feature more practical.

The Art of Being Ambiguous and Masking
Many aligners convert reads and reference sequences into
an efficient 2-bit format. While this may reduce the memory
footprint, it discards valuable information contained in the
IUPAC ambiguity codes.

MOSAIK uses the full set of IUPAC ambiguity codes during
alignment (Figure 2.4). For example, if you use a reference
sequence where all of the major confirmed SNPs from dbSNP
are marked with the appropriate ambiguity codes, alignment
bias for one allele over the other can be avoided. i.e. if the
reference genome has an ‘M’ allele, a read position with an ‘A’
or ‘C’ at that location will be scored as a match.

The only ambiguity code that is not strictly implemented is ‘N’.
Many finished genomes uses large regions (often 50,000 bases)
of N’s to denote where two contigs are linked but the actual
genomic data is missing. In order to prevent every single
read from aligning to those regions, ‘N’ is interpreted as ‘X’
(meaning this does not align to any of the four nucleotides).

MOSAIK has no problems with reference sequences that are
hard masked with X’s.

Hash Size Selection (Speed vs. Sensitivity)
In general, using a larger hash size equates to a faster
alignment speed. However this is often at the expense of
sensitivity. e.g. using a hash size of 30 when aligning 35 bp
reads will certainly be fast, but your reads will not be seeded if
you have any internal sequencing errors or SNPs. In contrast,

Figure 2.4 IUPAC Ambiguity Codes.

Bias against known SNPs can be reduced by
using a reference sequence masked with IUPAC
ambiguity codes. In the example, the alignment
would result in one mismatch (the Y matches the
C base, but M doesn’t match the T base).

ref A A A A A M A A CC C C C C C C C CG Y G G G G GTT T T T T T T T T T

dbSNP or HAPMAP SNPs

A A AC C C C C C CG G GTT T T TC T

 

MOSAIK Documentation� 7

Michael Strömberg
2009-10-14�

a hash size of 11 would guarantee that all reads with up to two
mismatches are seeded but performance would suffer.

When aligning mammalian reads, a hash size of 15 provides a
happy medium between speed and sensitivity.

Limiting Hash Positions
While scaling up to mammalian alignments, we added a
feature (-mhp) that places a maximum number of hash
positions per seed. Alignment representation bias is
minimized by selecting a random subset of the hash positions.

When using a hash size of 15, each seed has an average of 5.25
hash positions in the human genome. Limiting the number of
hash positions to 100 increases alignment speed significantly
while having little impact on alignment accuracy.

Setting a Minimum Cluster Size
A new feature that dramatically improves alignment speed
with little impact on accuracy is the alignment candidate
threshold (-act) (Figure 2.5). Normally all clusters are
submitted for Smith-Waterman alignment. Initially we
imposed a criterium (-dh) that two consecutive hashes had to
be clustered before being aligned. This double-hit mechanism
ensured that fewer spurious hash hits in the reference
sequence would cause a full alignment to be performed.

The alignment candidate threshold extends this double-hit
idea. An alignment candidate is simply the set of all seeds that
form a cluster. The alignment candidate size is the length from
the first base in the cluster to the last base in the cluster.

e.g. If a hash size of 11 is used and two hashes form cluster
separated by a SNP, the alignment candidate size is 23. If the
act paramater had been set to -act 20, this read would be
submitted for Smith-Waterman alignment.

Uniqueness and Filters
MosaikAligner has a strict, but simple definition of what
makes a unique read different from a non-unique read. If the
read aligns to more than one location according to the user
criteria, the alignments are non-unique. If the read aligns to a
single location according to the user criteria, the alignment is
unique.

MOSAIK offers two different alignment modes: unique
and all (Figure 2.6). When aligning in the unique mode (-m
unique), alignment stops as soon as there is evidence that the
read can be aligned to two places. Both alignments are saved
to the alignment file which can be handled by downstream
applications. When aligning in the all mode (-m all), the

ref

Scenario A. Align only unique reads

ref

Scenario B. Align everywhere possible

ref

Scenario C. Align randomly

Figure 2.6 Alignment Mode.

MOSAIK has the ability to either place only the
uniquely aligned reads (-m unique) or to place all
reads (-m all). Other aligners choose a random
location when placing non-unique reads, this
benefit of this scenario confuses the author and
therefore is not supported.

ref

read

Figure 2.5 Alignment Candidate Threshold.

Before performing a pairwise alignment,
MOSAIK hashes up each read and retrieves the
hash positions for each seed in the reference
sequence.

In this figure the hash positions are depicted as
the horizontal blue lines. When we cluster these
hash positions, three clusters are formed (orange
boxes). Each cluster represents an alignment
candidate that will be pairwise aligned.

Perhaps the middle cluster represents a spurious
hit due to the repetitive nature of the reference
sequence. To prevent spurious hits from eating
up processing cycles, we can enforce that
each cluster must have a specified length (the
alignment candidate threshold) before being
pairwise aligned.

MOSAIK Documentation� 8

Michael Strömberg
2009-10-14�

aligner finds all possible alignments. The all mode is suggested
when trying to resolve paired-end reads.

When filtering reads, the mismatch threshold can be either
a maximum number of mismatches allowed (-mm) or a
maximum percentage of mismatches (-mmp) (w.r.t. read
length).

Since Smith-Waterman is a local alignment algorithm,
undesirable subsequences may be aligned. Normally, unaligned
portions of the read are counted as mismatches, but this
behavior can be disabled with the -mmal parameter. When
using this parameter, it may be useful to force the alignments
to have a minimum length with respect to the original read
length. This threshold can be set with the -minp parameter.

We regularly allow four mismatches (-mm 4) for 36 bp
Illumina reads and allow up to 5 % mismatches (-mmp .05)
with variable length read technologies such as Helicos and 454.

Local Alignment Search
When aligning paired-end/mate-pair libraries, sometimes one
mate will align uniquely, but the other mate will end up in a
highly repetitive region (like an ALU) resulting in thousands
of potential locations. Depending on the chosen alignment
parameters, the proper location that resolves with the unique
mate might not be found.

To handle this situation, MOSAIK includes a local alignment
search (-ls) parameter (Figure 2.7). This parameter uses the
mean fragment length (-mfl) setting that was recorded when
the read archive was created. The -ls parameter specifies a
search radius relative to the mean fragment length.

Local Alignment Search

mean fragment length (-mfl)

ref

read

uniquely aligned mate

search radius (-ls)

rescued mate

For example, if the mean fragment length was set to 200
bp and the search radius is set to 100 bp - the alignment
algorithm will search 100 - 300 bp from the unique mate for an
alignment that conforms to the proper paired-end/mate-pair
orientation and ordering.

Figure 2.7 Local Alignment Search.

When aligning paired-end/mate-pair reads,
MOSAIK now has the ability to locally search
for a missing mate within a user-specified search
radius.

MOSAIK Documentation� 9

Michael Strömberg
2009-10-14�

Alignment Qualities
Quality scores are calculated for each alignment in MOSAIK
(Figure 2.8). Similar to base qualities, alignment qualities give
the probability that a read has been misaligned.

Alignment qualities occur on a logarithmic scale of 0 to 99. An
alignment quality of 20 indicates that there is a 1 % chance that
the alignment was misaligned, whereas an alignment quality of
30 indicates that there is a 0.1 % chance of misalignment.

In an effort to create highly accurate alignment qualities,
we used logistic regression to characterize reads that have a
subsitution error model (Illumina/AB SOLiD) and reads that
have an insertion/deletion error model (Roche 454). These
models use reference sequence length, read length, a weighted
mismatch metric, and information content as predictors.

A high complexity 36 bp Illumina read aligned to the human
genome with zero mismatches, will receive an alignment
quality of around 57. The predictors affect the alignment
quality in the following manner:

• As reference sequence length ↑,	 alignment quality ↓
• As # of mismatches ↑, 		 alignment quality ↓
• As read length ↑, 			 alignment quality ↑
• As information content ↑, 		 alignment quality ↑.

At the moment, alignment qualities are not adjusted in
resolved paired-end/mate-pair reads (some aligners sum
up the two alignment qualities). However, the qualities are
penalized if the chosen alignment parameters prevent the
aligner from discovering all of the possible alignments for any
given read.

Handling Colorspace
Despite the virtues of colorspace, the fact remains that many
tools work only in basespace. Previously, MOSAIK has
always stored the alignments in colorspace. In this version,
alignments are converted seamlessly back to basespace directly
after the Smith-Waterman algorithm.

Currently the algorithm used to translate dibase qualities
involves taking the minimum of the two qualities that overlap
a nucleotide in basespace.

There are a couple of advantages to handling the conversion
immediately after alignment:

1. Conventional alignment parameters can be used.
Allowing two mismatches means two bases that differ from the
reference in basespace. In colorspace, two mismatches could
mean one SNP or two sequencing errors.

Figure 2.8 Alignment Qualities.

The graph above shows how alignment qualities
vary in the Illumina logistic regression model
when aligning to the full human genome. The
number of mismatches was locked at zero, but
the information content varied from 0.4 bits to
2.0 bits. For each information content curve,
the alignment quality is plotted on a read length
sweep from 30 - 100 bp.

The three dimensional surface plot below depicts
the alignment qualities in the Illumina logistic
regression model when aligning to the full human
genome. The read length was locked at 36 bp, but
the information content and mismatch metric
were varied.

MOSAIK Documentation� 10

Michael Strömberg
2009-10-14�

2. Post-alignment tasks are all consistently performed in
basespace. Data can be easily exported into various file
formats. For example, the BAM file format cannot handle
colorspace sequences natively.

How do you use MOSAIK in colorspace?
1. Use MosaikBuild to import your reads into a read archive.

2. Use MosaikBuild to create a reference sequence archive (this
will naturally be in basespace).

3. Use MosaikBuild to create a reference sequence archive in
colorspace using the -cs parameter.

4. Use MosaikAligner to align the read archive using the
colorspace reference archive with the -ia parameter and the
basespace reference archive with the -ibs parameter.

Using MosaikAligner:

MosaikAligner -in myreads.dat -out h_sapiens_aligned.
dat -ia h.sapiens.dat -hs 15 -mm 4 -mhp 100 -act 20 -j
h.sapiens_15 -p 10

Here we specify an input read file (-in) and an output
alignment file (-out) that stores all of the alignments.
Additionally we specify a binary reference sequence file (-ia).
All of the aforementioned parameters are required.

A hash size of 15 was specified (-hs) and a maximum of 4
mismatches is allowed (-mm).

A jump database (-j) will be used instead of the normal hash
map. All hash positions are initially stored by the database,
but only 100 random hash positions will kept for each seed
(-mhp). In each seed cluster, a minimum length of 20 bp is
required (-act).

A total of 10 processors (-p) will be used to increase alignment
speed.

For some additional performance, try out the new banded
Smith-Waterman algorithm (-bw) designed by Wan-Ping
Lee. A bandwidth of 13 works well for 36 bp Illumina reads,
29 works well for 76 bp Illumina reads, and 51 works well for
Roche 454 Titanium reads.

Box 2.2 MosaikAligner Parameters.

Input & Output
-in	 specifies the input read archive.

-out	 specifies the output alignment
	 archive.

-ia	 specifies the input reference
	 sequence archive.

-ibs	 specifies the basespace input
	 reference sequence archive when
	 aligning SOLiD reads.

-rur	 stores unaligned reads in a FASTQ
	 file.

Essential Parameters
-m	 specifies the alignment mode:
	 unique or all. Default: all.

-hs	 specifies the hash size [4 - 32].
	 Default: 15.

-p	 uses the specified number of
	 processors. Default: 1.

-bw	 uses the banded Smith-Waterman
	 algorithm for increased
	 performance.

Filtering
-act	 specifies the alignment candidate
	 threshold.

-mm	 specifies the number of mismatches
	 allowed. Default: 4.

-mmp	 specifies the maximum percentage
	 of the read length that are allowed
	 to be errors. [0.0 - 1.0]

-mmal	 uses the aligned read length instead
	 of the original read length when
	 counting errors.

-minp	 specifies what minimum percentage
	 of the read length should be
	 aligned. [0.0 - 1.0]

-mhp	 specifies the maximum number of
	 hash positions to be used per seed.

Jump Database
-j	 specifies the jump database
	 filename stub.

MOSAIK Documentation� 11

Michael Strömberg
2009-10-14�

2.3. MosaikSort
MosaikSort takes the alignment output and prepares it
for multiple sequence alignment. For single-ended reads,
MosaikSort simply resorts the reads in the order they occur on
each reference sequence.

For mate-pair/paired-end reads, MOSAIK resolves the reads
according to user-specified criteria before resorting the reads
in the order they occur on each reference sequence.

Paired-End Read Resolution
When both mate-pairs are available, MosaikSort first samples
the fragment lengths from uniquely aligned reads. Using this
information, a minimum and maximum fragment length is
calculated using the empirical 99.73% confidence interval.

When one mate is unique and the other is non-unique, the
paired-end read is resolved if the program finds at most one
alignment that occurs within the desired confidence interval
(Figure 2.9). Similarly when both mate-pairs are non-unique,
the paired-end read is resolved if the program finds at most
one combination of alignments that fit the confidence interval.

Phase I. Resolve unique reads

calculate confidence interval

ref

Phase II. Resolve unique vs non-unique reads

ref

Phase III. Resolve non-unique vs non-unique reads

ref

Paired-end Terminology

We use the term mate to mean one of the reads at
each end of the fragment. In MosaikAligner, each
mate is aligned separately. Sometimes one mate
aligns, but the other does not. We use the term
orphaned reads to describe such an event.

Figure 2.9 Paired-End Read Resolution

Box 2.2 MosaikAligner Parameters Continued.

Pairwise Alignment Scores
-ms	 the match score. Default: 10.

-mms	 the mismatch score. Default: -9.

-gop	 the gap open penalty. Default: 15.

-gep	 the gap extend penalty.
	 Default: 6.66.

-hgop	 the gap open penalty used in
	 homopolymer stretches when
	 aligning with 454 reads. Default: 4.

MOSAIK Documentation� 12

Michael Strömberg
2009-10-14�

Read Name Mangling
Some downstream utilities (such as consed) require that each
alignment has a unique name. When the -consed option is
used, the following adjustments are made to read names:

when a single-ended read aligns to multiple locations, •	
a period is appended along with the current alignment
number. e.g. IL7_1_1_203_187.27 would indicate the 27th
alignment for this read

when a paired-end/mate-pair read is resolved, a forward •	
slash is appended followed by the mate number. e.g.
IL7_1_1_203_187/1 indicates the first mate

orphaned paired-end/mate-pair read names are not •	
modified.

Duplicate Removal
When used in conjunction with MosaikDupSnoop,
MosaikSort can remove duplicates (-dup) with respect to the
originating sequencing library.

Using MosaikSort:

MosaikSort -in yeast_aligned.dat -out yeast_sorted.dat

In the example above we specify an input alignment file (-in)
containing paired-end reads and a sorted output alignment file
(-out).

Box 2.3 MosaikSort Parameters.

Input & Output
-in	 specifies the input alignment
	 archive.

-out	 specifies the output alignment
	 archive.

-dup	 enables duplicate filtering with
	 databases in the specified directory.

-mem	 specifies how many alignments to
	 cache. Default: 6,000,000.

Single-end Options
-nu	 include non-unique reads.

Paired-end Options
-afl	 allows all fragments lengths when
	 evaluating unique read pairs.

-ci	 sets the fragment length confidence
	 interval. Default: 0.9973.

-sa	 samples fragment lengths from all
	 unique read pairs.

Paired-end Resolution
-iuo	 ignore unique orphaned reads.

-iuu	 ignore unique vs unique read pairs.

-ium	 ignore unique vs multiple read
	 pairs.

-rmm	 resolve multiple vs multiple read
	 pairs.

MOSAIK Documentation� 13

Michael Strömberg
2009-10-14�

2.4. MosaikMerge
MosaikMerge is not normally a part of the MOSAIK
pipeline. It takes multiple sorted alignment archives from
MosaikSort and merges them into a single alignment archive
that can be processed by MosaikAssembler, MosaikText, or
MosaikCoverage.

When aligning multiple runs belonging to different sequence
libraries, the best practice is to use MosaikSort on each lane or
run and then combine them with MosaikMerge. This practice
avoids the unintended consequences of attempting to resolve
paired-end reads when multiple fragment length distributions
are present.

Another common use of MosaikMerge is to combine runs
from different read technologies. This allows the researcher to
combine 454, Illumina, Helicos, SOLiD, and Sanger capillary
technologies into one co-assembly.

Using MosaikMerge:

MosaikMerge -in 454_aligned.dat -in helicos_aligned.dat
-in illumina_alignments/ -out coassembly.dat

In this example we combine the alignments from the two
files, 454_aligned.dat and helicos_aligned.dat, with all of the
alignments contained in the directory illumina_alignments.
The merged output will be saved in coassembly.dat.

Box 2.4 MosaikMerge Parameters.

Options
-in	 specifies either an input alignment
	 archive or a directory containing
	 alignment archives. This parameter
	 can be used multiple times.

-out	 specifies the merged output
	 alignment archive.

-mem	 specifies how many alignments to
	 cache. Default: 6,000,000.

MOSAIK Documentation� 14

Michael Strömberg
2009-10-14�

2.5. MosaikAssembler
MosaikAssembler takes the sorted alignment file and produces
a multiple sequence alignment which is saved in an assembly
file format. At the moment, MosaikAssembler saves the
assembly in the phrap ace format and the GigaBayes gig
format.

MosaikAssembler has been completely rewritten to take
advantage of the sorted alignment files. As a result, assembly
file creation is now orders of magnitude faster than before and
limited only by sequential hard disk transfer speeds rather
than slower random-access transfer speeds.

By default MosaikAssembler will assemble each reference
sequence where reads aligned. Since the sorted alignment
archives incorporate an index, a specific reference sequence
can be assembled quickly with the region of interest (-roi)
parameter.

Using MosaikAssembler:

MosaikAssembler -in yeast_sorted.dat -ia yeast.dat -out
yeast_assembly -roi chrX

In this example, a sorted alignment file (-in) and a binary
reference sequence file (-ia) are specified as input.
MosaikAssembler will use the provided filename stub
(-out) when generating an assembly specifically for the X
chromosome (-roi).

Box 2.5 MosaikAssembler Parameters.

Input & Output
-in	 specifies the input alignment
	 archive.

-out	 specifies the assembly output
	 filename stub.

-ia	 specifies the input reference
	 sequence archive.

Options
-f	 specifies the assembly file format:
	 ace or gig. Default: ace.

-roi	 specifies the name of the reference
	 sequence to assemble.

MOSAIK Documentation� 15

Michael Strömberg
2009-10-14�

3. Utilities
MOSAIK contains four additional utility programs to
facilitate data analysis: MosaikText, MosaikCoverage,
MosaikDupSnoop, and MosaikJump.

3.1. MosaikText
MosaikText converts alignments to different text-based
formats. Currently it supports the BLAT axt (-axt) format, the
BAM format (-bam), the UCSC Genome Browser bed format
(-bed), the SAM format (-sam), and the Illumina ELAND
(-eland) format. Alternatively alignments can be dumped
directly to the screen (-screen) in an axt-like format.

In addition to examining alignment archives, MosaikText
supports dumping the contents of read archives.

Using MosaikText:

MosaikText -in yeast_aligned.dat -bam yeast_aligned.bam

In this example, the supplied alignment archive (-in) is
exported to a BAM file (-bam).

3.2. MosaikCoverage
MosaikCoverage is a handy program for investigating
representational bias. This utility parses the alignment file
and produces a base-accurate coverage plot (no binning)
for each reference sequence that has coverage. In addition
to the coverage plot, a simple space delimited coverage file
is produced (Figure 3.1). MosaikCoverage uses gnuplot to
generate the coverage graphs in PostScript. If available, it will
call ps2pdf to convert the graphs into more portable pdf files.

When running MosaikCoverage, output similar to this will be
seen:

- calculating coverage statistics:
* coverage statistics for 22 (34851311 bp): 33062466 bp
(94.9 %), mean: 11.3x

In this example, the coverage for chromosome 22 is given.
Chromosome 22 has 34 Mbp of sequence containing { A, C,
G, T }. 33 Mbp (94.9 %) of the chromosome has at least 1x
coverage and the mean coverage is 11.3x.

Box 3.1 MosaikText Parameters.

Read Archive
-ir	 specifies the input read archive.

-fastq	 stores the data in the specified
	 FASTQ file.

-screen	 displays the reads on the screen.

Alignment Archive
-in	 specifies the input alignment
	 archive.

-u	 limits the output to show only
	 uniquely aligned reads.

-axt	 stores the data in the specified
	 BLAT AXT file.

-bam	 stores the data in the specified
	 BAM file.

-bed	 stores the data in the specified
	 UCSC Genome Browser bed file.

-eland	 stores the data in the specified
	 Illumina ELAND file.

-sam	 stores the data in the specified SAM
	 file.

-screen	 displays the alignments on the
	 screen in an AXT-like format.

Figure 3.1 Using MosaikCoverage in Excel.

This graph depicts the observed coverage in S.
cerevisiae chromosome 12 from an Illumina data
set.

MOSAIK Documentation� 16

Michael Strömberg
2009-10-14�

Using MosaikCoverage:

MosaikCoverage -in h_sapiens_aligned.dat -ia h.sapiens.dat
-u -od graphs -cg

In the example above, the coverage is calculated from all of
the reads in the alignment file h_sapiens_aligned.dat (-in)
for each sequence specified in the reference sequence file
h.sapiens.dat (-ia). By enabling the -u parameter, only unique
alignments will be used to calculate coverage. All resulting
files will be placed in the output directory graphs (-od) and pdf
graphs will be generated (-cg).

3.3. MosaikDupSnoop
MosaikDupSnoop inspects a specified set of alignment
archives and stores the aligned fragment locations with respect
to the sequencing library. If duplicates are encountered, the
fragment with the highest alignment quality is recorded.
When used in conjunction with MosaikSort (-dup), all of the
duplicate fragments with a lower alignment quality will be
discarded.

MosaikDupSnoop treats paired-end/mate-pair reads
differently from single-ended reads. For paired-end reads,
all reads that share the same start coordinate but have end
coordinates that differ by up to 2 bp will be treated as
duplicates. Likewise reads the share the same end coordinate
but have start coordinates that differ by up to 2 bp are also
considered duplicates. For single-ended reads, only reads
that share the exact start and end coordinates are considered
duplicates.

Using MosaikDupSnoop:

MosaikDupSnoop -in yeast_aligned.dat -od fragData/

In the example above, the fragments in yeast_aligned.dat (-in)
will be recorded in sequencing library databases located in the
fragData directory (-od).

3.4. MosaikJump
MosaikJump is a tool that converts a reference sequence
archive into a “jump database”. As discussed earlier in
section 2.2, the jump database is a custom data structure that
separates seeds and hash positions in a manner that is fast and
collision-free. As such, it works as a drop-in replacement for
the traditional hash maps that MOSAIK normally uses.

Box 3.3 MosaikDupSnoop Parameters.

Input & Output
-in	 specifies the input alignment
	 archive.

-od	 specifies the output directory.

Paired-end Options
-afl	 allows all fragments lengths when
	 evaluating unique read pairs.

-ci	 sets the fragment length confidence
	 interval. Default: 0.9973.

-iuo	 ignore unique orphaned reads.

-iuu	 ignore unique vs unique read pairs.

-ium	 ignore unique vs multiple read
	 pairs.

-rmm	 resolve multiple vs multiple read
	 pairs.

Box 3.2 MosaikCoverage Parameters.

Input & Output
-in	 specifies the input alignment
	 archive.

-ia	 specifies the input reference
	 sequence archive.

-u	 limits the output to show only
	 uniquely aligned reads.

-od	 specifies the output directory.

-cg	 creates coverage graphs if gnuplot is
	 installed.

MOSAIK Documentation� 17

Michael Strömberg
2009-10-14�

An added benefit of using the jump database is that the user
can choose which components should remain on disk and
which should be loaded into memory. Maximum performance
is realized when the entire jump database is loaded into
memory.

The positions file is directly proportional to the number of hash
positions in the reference sequences as well as the number of
seeds present. e.g. Using a hash size of 15, there are roughly
2.9 billion hash positions in the human genome and 550,000
unique seeds. Assuming an integer is used to store each seed
grouping and hash position, the positions file will be 12.7 GB.

The keys file stores the offsets for each seed grouping in the
positions file. The keys file grows exponentially with each
increasing hash size. e.g. Using a hash size of 15, the required
file size is 5 GB (5 * 415). However if a hash size of 13 is used,
the resulting file is only 313 MB. Due to the exponentially
growing file size, the upper practical bounds for the jump
database is a hash size of 15.

Using MosaikJump:

MosaikJump -ia h.sapiens.dat -out h.sapiens_15 -hs 15

In the example above, MosaikJump will use the reference
sequence file (-in) to generate the jump database files for hash
size 15 (-hs) that start with the specified filename stub (-out).
To improve performance during jump database creation, the
keys file will be kept in memory (-km).

Box 3.4 MosaikJump Parameters.

Input & Output
-ia	 specifies the input reference
	 sequence archive.

-out	 specifies the output filename stub
	 for the jump database.

Options
-mem	 specifies the amount of RAM (GB)
	 to use when sorting the hashes.

-hs	 specifies the hash size [4 - 32].

-mhp	 specifies the maximum number of
	 hash positions to be used per seed.

MOSAIK Documentation� 18

Michael Strömberg
2009-10-14�

4. Understanding Program Output
A lot of effort has been put into making the program output
as easy to understand as possible. Sometimes the items that
seem simple and obvious to us, may seem foreign and vague to
others. To help bridge that gap, we will discuss what the values
actually mean in this section.

4.1 MosaikBuild

Handling N’s

By default MosaikBuild will trim off the N’s that
occur in the beginning or at the end of each read.

If more than a specified number of N’s occur
internally within the read, that read will be
discarded. During alignment, an N base will
always count as a mismatch. Therefore it’s wise
to filter out any reads with more N’s than your
maximum number of allowed mismatches.

Keeping Time

All MOSAIK tools will report both a CPU time and a wall time
when finished. CPU time reflects the aggregate time spent on all
processors while wall time reflects time passed in the real world.
e.g. a disk intensive tool will likely have a longer wall time than
CPU time. In contrast, a CPU intensive task using 8 processors
for 1 minute will return a CPU time of 480 seconds and a wall
time of 60 seconds.

MOSAIK Documentation� 19

Michael Strömberg
2009-10-14�

4.2 MosaikAligner Alignment Statistics (mates)

This section of the program output displays the
statistics with respect to the individual sequences.
Each paired-end read will usually have two mates
sequences associated with it, whereas single-
ended reads only have one sequence per read.

Failed Hash
A failed hashing attempt simply means that
a hash size of contiguous bases that match
the reference couldn’t be found. e.g. if the
user selects a hash size of 15, but the read has
a sequencing error every 12 bases; the aligner
will fail to successfully seed the alignment. If this
percentage is too high, consider reducing the hash
size.

Filtered Out
The user has a lot of flexibility in specifying
how to filter out good alignments from bad
alignments. The most common used filter is the
maximum number of allowed mismatches. e.g. If
ther user specifies that up to 4 mismatches should
be allowed, but the best alignment results in 5
mismatches; the read will be filtered out. If this
percentage is too high, consider relaxing the filter
criteria.

Unique vs Non-Unique
An read is considered to be aligned uniquely
if it can be aligned to only one location in
the reference given the current alignment
parameters. Everything else is considered non-
unique.

Alignment Statistics (reads)

This section of the program output is shown when aligning
paired-end/mate-pair reads. Orphaned reads occur when only
one of the mate sequences align to the reference. In addition to
the unaligned and orphaned reads, statistics are also shown for
various uniqueness conditions. Reads where both of the mate
sequences are unique have a higher efficiency at being resolved
than reads where one or both mates are non-unique.

Total Reads Aligned
You may have noticed that the “total reads aligned” statistic in
the reads section is different than the one in the mates section.
In the paired-end section, a read is considered to be aligned if at
least one of the mate sequences is aligned to the reference. In the
mates section, the statistic reflects all of the mate sequences in
the entire data set.

Alignment Candidates/s

In MOSAIK, an alignment candidate refers to
any region that has been clustered after hashing
that meets the minimum criteria for pairwise
alignment. This statistic gives the user a sense
of how many Smith-Waterman alignments are
occurring per second.

MOSAIK Documentation� 20

Michael Strömberg
2009-10-14�

4.3 MosaikSort

Paired-end Resolution Efficiency

For each of the paired-end categories (orphaned,
unique vs unique, unique vs multiple, and
multiple vs multiple), the original number of
reads will be displayed as well as the number that
were successfully resolved.

During paired-end resolution, reads are checked
for the proper order, orientation, and that
one and only one mate is located within the
fragment length confidence interval. Orphaned
reads are resolved if the proper order and
orientation is consistent.

For example, 71.0 % of the aligned paired-end
reads were in the category “both mates unique”.
After paired-end resolution, that percentage
drops to 70.7 %. i.e. 0.3 % of the reads failed the
aforementioned filtering criteria.

0.7 % of the “both mates non-unique” failed the
filtering criteria.

By default, paired-end resolution of reads in the
category “both mates non-unique” is disabled due
to the potential source for misalignment error.
This category can be enabled using the -rmm
option.

Fragment Statistics

Many aligners use a user-specified 3σ standard deviation or
a median absolute deviation approach when calculating the
endpoints for the fragment length distribution. Often these
approaches rely on approximate values and are prone to outlier
bias. MOSAIK calculates the values in realtime based on the
empirical fragment length distribution of unique vs unique
read pairs.

MOSAIK Documentation� 21

Michael Strömberg
2009-10-14�

5. Performance
All statistics were measured on a lightly loaded computer with
two 3.0 GHz Intel Xeon X5450 quadcore processors and 64 GB
memory.

There is a direct correlation between MOSAIK alignment
speed and the aggregate length of the reference sequences
(the target genome). MOSAIK is extremely fast when
processing yeast or roundworm-sized genomes and is faster
than many aligners when processing mammalian genomes.

5.1. Speeding Up Alignments
There are a number of steps you can take to increase alignment
speed.

Algorithmically speaking, the parameters that will help
increase alignment speed are the following: hash size (-hs),
alignment candidate threshold (-act), the maximum hash
position threshold (-mhp), and the banded Smith-Waterman
bandwidth (-bw). The crux is that you want to maximize the
improvement in speed while minimizing any negative impact
on alignment accuracy and the percentage of reads aligned.

The larger the hash size, the more likely that hash will be
unique in the reference sequence. Therefore increasing the
hash size, reduces the number of spurious hash hits in the
reference sequence. The consequence of increasing the hash
size is that it also increases the number of bases that must
exactly match the reference sequence. Our lab uses a hash size
of 15 for most of our current analysis projects.

The alignment candidate threshold effectively dictates the
minimum size of hash clusters before being submitted
for pairwise alignment. Increasing this threshold reduces
the number of spurious alignments being aligned. The
consequence of increasing the threshold is that a read with a
combination of sequencing errors and polymorphisms may
also be filtered if the threshold is not met.

The maximum hash position threshold speeds up the
alignment by reducing the number of hash positions that
need to be clustered. In the human genome, each seed has an
average of 5.25 hash positions when using hash size 15. Setting
the threshold to 100 in such a case has minimal affect on the
alignments while increasing the alignment speed considerably.
The consequence of setting the threshold too low is that
alignments in highly repetitive regions might no longer be
seeded.

MOSAIK Documentation� 22

Michael Strömberg
2009-10-14�

One of the new improvements in MOSAIK is a banded
Smith-Waterman alignment algorithm. As the bandwidth is
reduced, alignment performance will improve - especially in
longer Roche 454 or Sanger capillary reads. If the bandwidth is
reduced too much, alignment artifacts may result. In Box 5.1
we have recorded the bandwidths used in our own projects.

Perhaps the most obvious way to speed up alignments is to use
more processors. MosaikAligner is fully multi-threaded and
can handle any number of processors. The caveat is that the
input/output and memory bandwidth may become saturated.
e.g. On some of our 16 core systems, we have discovered that
using 12 cores is usually faster than using 16 processor cores.
You may have to perform a bioinformatics titration experiment
where you align a subset of reads with an increasing number
of processor cores in order to choose the configuration that
works best for your system.

5.2. Yeast Alignments
MosaikBuild converted a SOLiD run of 61,516,412 reads (35
bp) in 7.4 minutes (139,000 reads/s).

MosaikAligner aligned the run in 9.5 minutes (109,000
reads/s) to the entire pichia stipitis genome (15.4 Mbp) using
8 processor cores. We used the hash size 13 jump database for
this experiment, so our total memory usage was 468 MB. 57.1
% of the reads aligned in this unfiltered data set.

MosaikSort sorted the uniquely aligned reads in 3.0 minutes.

MosaikAssembler produced a GigaBayes assembly file with
27,592,793 Illumina alignments in 64 seconds (431,000
reads/s).

5.3. Roundworm Alignments
MosaikBuild converted an Illumina run of 11,386,260 reads
(35 bp) in 38 seconds (308,000 reads/s).

MosaikAligner aligned the run in 4.8 minutes (40,000
reads/s) to the entire C. elegans genome (100 Mbp) using 8
processor cores. We used the hash size 15 jump database for
this experiment, so our total memory usage was 5.8 GB. 91.6 %
of the reads aligned in this data set.

MosaikSort sorted the output in 1.6 minutes.

MosaikAssembler produced a GigaBayes assembly file with
12,323,293 Illumina alignments in 31 seconds (398,000
reads/s).

Box 5.2 Yeast Alignment Parameters

-m unique -hs 13 -act 20 -mm 6 -mhp 100 -p 8
-j jumpdb/p.stipitis_13cs

Box 5.3 Roundworm Alignment Parameters

-m unique -act 20 -mm 4 -mhp 100 -p 8
-j jumpdb/c.elegans_15

Box 5.1 Banded Smith-Waterman Parameters

Illumina (36 - 43 bp)	 -bw=13

Illumina (44 - 63 bp)	 -bw=17

Illumina (63+ bp)	 -bw=29

Roche 454 (Titanium)	 -bw=51

MOSAIK Documentation� 23

Michael Strömberg
2009-10-14�

5.4. Human Alignments
MosaikBuild converted a lane of 6,563,762 Illumina paired-end
reads (36 bp) in 2.9 minutes (53,000 reads/s).

MosaikAligner aligned the lane in 45.9 minutes (2,390
paired-end reads/s) to the entire human genome (2.9 Gbp)
using 8 processor cores. We used the hash size 15 jump
database for this experiment, so our total memory usage was
20 GB. 95.1 % of the mates aligned in this data set.

MosaikSort resolved the paired-end reads and sorted the
output in 37 minutes on a slower computer (2.0 GHz AMD
Opteron 270).

MosaikAssembler produced a GigaBayes assembly file with
2,589,439,852 Illumina mates in 4.1 hours (174,000 mates/s).

5.5. Aligner Settings By Sequencing Technology
By analyzing the performance characteristics and alignment
accuracy, we have compiled a list of aligner settings (Box 5.5)
that we typically use for each sequencing technology.

Box 5.5 Aligner Settings.

454 GS20 & FLX
-hs 15 -mm 0.05 -act 26

454 Titanium
-hs 15 -mm 0.05 -act 55

Illumina GA1 36 bp
-hs 15 -mm 4 -act 20

Illumina GA2 51 bp
-hs 15 -mm 6 -act 25

Illumina GA2 76 bp
-hs 15 -mm 12 -act 35

SOLiD 35 bp
-hs 15 -mm 4 -act 20

Box 5.4 Human Alignment Parameters

-act 20 -mm 4 -mhp 100 -p 8
-j jumpdb/h.sapiens_15

MOSAIK Documentation� 24

Michael Strömberg
2009-10-14�

6. Visualization
MOSAIK works well with two visualization programs: consed
and Gambit. Consed reads ACE assembly files while Gambit
reads BAM files. An ace file is easily created by running
the MosaikAssembler with the -f ace parameter on your
sorted alignment archive. BAM files can be exported from
MosaikText using the -bam parameter.

6.1. consed
Consed (left) is available from Phil Green’s webpage:

http://bozeman.mbt.washington.edu/consed/consed.html

When using consed with ace files created in MOSAIK, you
should run it with the -nophd switch to prevent it from
loading the non-existent phred sequence files.

6.2. Gambit
Gambit (right) is being developed in our lab by Derek Barnett.
Compared with consed, Gambit shows a more compact view
of the read assembly. Gambit’s strength is that it can show any
number of annotation tracks and features a robust analysis
plugin API to help provide context to the alignment data.

MOSAIK Documentation� 25

Michael Strömberg
2009-10-14�

7. Data Access (MosaikTools)
A common problem when evaluating bioinformatics tools is
data access. Users are often forced to write parsers for various
file formats or output log files. MosaikText provides alignment
data in several known text formats, but the MosaikTools API
provides even faster and easier access to the aligner results.

The API is written in C++ and can be found in the
MosaikTools directory contained in the MOSAIK package.
By using the SWIG (http://www.swig.org) package, a version
that is accessible in Perl is also available.

Here is a sample program that loads each read in a MOSAIK
alignment archive:

#include <iostream>
#include “AlignmentReader.h”

using namespace std;

int main(int argc, char* argv[]) {

	 // open the MOSAIK alignments file
	 Mosaik::CAlignmentReader reader;
	 reader.Open(“myreads_aligned.dat”);

	 // get some basic statistics
	 uint64_t numBases = reader.GetNumBases();
	 uint64_t numReads = reader.GetNumReads();

	 cout << “# of bases: “ << numBases << endl;
	 cout << “# of reads: “ << numReads << endl;

	 // keep reading all of the sequences
	 Mosaik::AlignedRead ar;
	 while(reader.LoadNextRead(ar)) {

		 // do something with each read
		 cout << “read name: “ << ar.Name << endl;
	 }

	 // close the alignments file
	 reader.Close();

	 return 0;
}

The MosaikTools directory contains two sample programs:
MosaikReaderMain.cpp & MosaikConversionMain.cpp.
MosaikReaderMain.cpp loads and displays information
about each alignment in an alignment archive.
MosaikConversionMain.cpp loads each read from an alignment
archive and saves those reads into a new alignment archive.

Box 7.1 Read Data Structures

The AlignedRead data structure contains all of the
mate 1 and mate 2 alignments for one read. If the
read is single-ended, only the Mate1Alignments
vector will contain alignments.

struct AlignedRead {
	 string Name;
	 vector<Alignment> Mate1Alignments;
	 vector<Alignment> Mate2Alignments;
};

In the Alignment data structure, ReferenceBegin
and ReferenceEnd contain the start and
end locations on the reference sequence.
ReferenceName contains the name of the
reference sequence.

QueryBegin and QueryEnd contain the start and
end locations on the read.

The gapped pairwise alignment is contained in
the strings Reference and Query.

Each character in the BaseQualities string
contains a base quality for each pairwise aligned
base in the same orientation as the alignment.
Extra base qualities have NOT been introduced
for gaps in the alignment. There is no offset
between each character and the intended base
quality.

Quality contains the alignment quality which
measures the probability that an alignment has
been misaligned.

IsReverseStrand is set to true if the alignment is
on the 3’ or Crick strand.

struct Alignment {
	 unsigned int ReferenceBegin;
	 unsigned int ReferenceEnd;
	 unsigned short QueryBegin;
	 unsigned short QueryEnd;
	 unsigned char Quality;
	 bool IsReverseStrand;
	 char* ReferenceName;
	 string Reference;
	 string Query;
	 string BaseQualities;
};

MOSAIK Documentation� 26

Michael Strömberg
2009-10-14�

Appendix 1: Crib Sheet

MosaikBuild
MosaikBuild -fr myreads.fasta -fq myreads.fasta.qual -out myreads.dat

MosaikBuild -fr myreference.fasta -oa myreference.dat

-fr, -fr2	 specifies the FASTA files containing the bases for the first mate (-fr) and the second mate (-fr2).
-fq, -fq2	 specifies the FASTA files containing the base qualities for the first mate (-fq) and the second mate (-fq2).
-q, -q2	 specifies the FASTQ files for the first mate (-q) and the second mate (-q2).
-cs	 translates the reference sequence from base space to colorspace.
-st	 specifies the sequencing technology: 454, helicos, illumina, sanger, solid.
-out	 specifies the output file when converting reads.
-oa	 specifies the output file when converting the reference sequence.

MosaikAligner
MosaikAligner -in myreads.dat -out myreads_aligned.dat -ia myreference.dat -hs 15 -mm 4 -m all
			 -mhp 100 -act 20 -j myjumpdb -p 8

-in	 specifies the input read archive.
-out	 specifies the output alignment archive.
-ia	 specifies the input reference sequence archive.
-rur	 stores unaligned reads in a FASTQ file.
-m	 specifies the alignment mode: unique or all.
-hs	 specifies the hash size [4 - 32]. Default: 15.
-p	 uses the specified number of processors.
-act	 specifies the alignment candidate threshold.
-mm	 specifies the number of mismatches allowed. Default: 4.
-mmp	 specifies the maximum percentage of the read length are allowed to be errors. [0.0 - 1.0]
-minp	 specifies what minimum percentage of the read length should be aligned. [0.0 - 1.0]
-mmal	 when enabled, unaligned portions of the read will not count as a mismatch.
-mhp	 specifies the maximum number of hash positions to be used per seed.
-j	 specifies the jump database filename stub.
-ls	 enables local alignment search for paired-end/mate-pair reads.
-bw	 uses the banded Smith-Waterman algorithm for increased performance.

MosaikSort

MosaikSort -in myreads_aligned.dat -out myreads_sorted.dat

-in	 specifies the input alignment archive.
-out	 specifies the output alignment archive.
-ci	 sets the fragment length confidence interval. Default: 0.9973.
-dup	 enables duplicate filtering with databases in the specified directory.

MosaikAssembler

MosaikAssembler -in myreads_sorted.dat -ia myreference.dat -out myassembly

-in	 specifies the input alignment archive.
-out	 specifies the assembly output filename stub.
-ia	 specifies the input reference sequence archive.
-f	 specifies the assembly file format: ace or gig. Default: ace.
-roi	 specifies the name of the reference sequence to assemble.

