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1. Introduction
MOSAIK is a reference-guided assembler comprising of four 
main modular programs (Figure 1.1): 

• MosaikBuild 
• MosaikAligner 
• MosaikSort 
• MosaikAssembler. 

MosaikBuild converts various sequence formats into Mosaik’s 
native read format. MosaikAligner pairwise aligns each read 
to a specified series of reference sequences. MosaikSort 
resolves paired-end reads and sorts the alignments by the 
reference sequence coordinates. Finally, MosaikAssembler 
parses the sorted alignment archive and produces a multiple 
sequence alignment which is then saved into an assembly file 
format.

Historically, the workflow consists of supplying sequences 
in FASTA, FASTQ, Illumina Bustard & Gerald, or SRF 
file formats and producing assembly files (phrap ace and 
GigaBayes gig formats) which can be viewed with utilities 
such as consed.

Our lab has been developing a new SNP caller called 
BamBayes which uses the new BAM alignment file format. 
Our current workflow involves producing alignment files with 
MosaikAligner and then exporting the alignments to the BAM 
format with MosaikText.

1.1. What makes MOSAIK different?
Unlike many current read aligners, MOSAIK produces 
gapped alignments using the Smith-Waterman algorithm. 
Additionally, our program goes beyond producing pairwise 
alignments and produces reference-guided assemblies 
with gapped alignments. These features make it ideal for 
downstream single nucleotide polymorphism (SNP) and short 
insertion/deletion (INDEL) discovery.  

MOSAIK is written in highly portable C++ and currently 
targetted for the following platforms: Microsoft Windows, 
Apple Mac OS X, Linux/x86, Linux/Itanium2, and Sun Solaris/
UltraSPARC operating systems. Other platforms can easily be 
supported upon request. 

MOSAIK is multithreaded. If you have a machine with 8 
processors, you can use all 8 processors to align reads faster 
while using the same memory footprint as when using one 
processor.

Figure 1.1 MOSAIK Pipeline.

This figure illustrates the basic MOSAIK pipeline. 
MosaikBuild converts external read formats, 
MosaikAligner pairwise aligns the reads, 
MosaikSort sorts the alignments and resolves 
paired-end reads, and finally MosaikAssembler 
creates a gapped assembly file.

MosaikBuild

MosaikAligner

MosaikAssembler

MosaikSort
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MOSAIK supports multiple sequencing technologies. In 
addition to legacy technologies such as Sanger capillary 
sequencing, our program supports next generation 
technologies such as Roche 454, Illumina, AB SOLiD, and 
experimental support for the Helicos Heliscope.

MOSAIK aligns AB SOLiD reads in colorspace and then 
converts the reads seamlessly back to basespace. This enables 
the user to take advantage of the SOLiD platform without all 
of the downstream bioinformatics headaches associated with 
working in colorspace.

1.2. Overview
The primary MOSAIK programs (MosaikBuild, 
MosaikAligner, MosaikSort, MosaikMerge, and 
MosaikAssembler) are discussed individually in Chapter 2. 

The MOSAIK utility programs (MosaikText, MosaikCoverage, 
MosaikDupSnoop, and MosaikJump) are discussed 
individually in Chapter 3.

“MOSAIK output demystified” is probably an apt title for 
Chapter 4. Chapter 5 discusses how to fine tune performance 
for a variety of reference genomes and sequencing 
technologies.

The final two chapters discuss methods of visualizing and 
accessing the data after alignment. Chapter 6 mentions two 
visualization tools: consed & Gambit. Chapter 7 introduces 
the MOSAIK API for interacting with the alignment archives 
natively.

For the impatient, a one page crib sheet with the most 
important parameters to the primary MOSAIK programs is 
provided in the appendix.

1.3. Contact Information
Feel free to contact me to suggest improvements, submit bug 
reports, or just to offer some moral support while I write my 
Ph.D. dissertation:

Michael Strömberg 
Biology Department 
Boston College - Higgins Hall 
140 Commonwealth Ave 
Chestnut Hill, MA 02467 
USA

email: mikaels@bc.edu

Figure 1.2 Michael Strömberg.

Feel free to say “Hello” if you see this character 
at a conference. Offer him a Duvel and he might 
be able to get any feature you want put into 
MOSAIK.
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2. The MOSAIK suite
One of the author’s pet peeves are programs that require way 
too many command-line parameters when decent default 
values should suffice. As a result, MOSAIK has been revised 
to require as few command-line parameters as possible. In 
essence, most programs require only an input filename and 
an output filename. Parameters with default values have been 
marked blue in the information panels.

Apparently there are more than a few system administrators 
out who are threatening bodily harm to faithful MOSAIK 
users (Figure 2.1). MosaikSort, MosaikMerge, and 
MosaikAssembler store temporary files in /tmp or similar 
platform-specific directories. These programs delete the 
temporary files when they finish.

If the /tmp directory is too small or if your local system 
administrator is lurking over your cubicle with a knife in hand, 
you can specify another directory by setting the MOSAIK_
TMP environment variable. For example, Gàbor might use the 
following command in bash:

export MOSAIK_TMP = /home/marth/tmp

2.1. MosaikBuild
To speed up the assembly pipeline, compressed binary 
file formats are used extensively throughout MOSAIK. 
MosaikBuild translates external read formats to a format that 
the aligner can readily use. In addition to processing reads, the 
program also converts reference sequences from a FASTA file 
to an efficient binary format.

MosaikBuild readily converts FASTA, FASTQ, Illumina 
Bustard, Illumina Gerald, and SRF files. Pyrosequences in SFF 
files can be converted to the FASTA format with the PyroBayes 
utility (http://bioinformatics.bc.edu/marthlab/PyroBayes). 
With files containing both bases and base qualities, such as 
FASTQ and SRF, MosaikBuild can convert an entire directory 
of read files into a single MOSAIK read file. This is handy, for 
example, when converting a run of Illumina paired-end reads 
that are separated by lanes and mate-pairs.

MosaikBuild automatically handles FASTA and FASTQ in 
both the uncompressed or compressed (gzipped) state. There’s 
no need to uncompress the files prior to importing them into 
MOSAIK.

MosaikBuild stores the specified sequencing technology (-st 
parameter) and read type (single ended vs paired-end) so that 
it can be tracked throughout the entire pipeline.

Figure 2.1 Angry System Administrator.

This photo was taken moments before a user 
was savagely attacked by an angry system 
administrator for filling up the /tmp directory.
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Metadata
MOSAIK now supports the concept of read groups that was 
introduced by the SAM & BAM file format specification. The 
following data can now be associated with each read archive:

• center name (-cn) 
• description (-ds) 
• read group identifier (-id) 
• library name (-ln) 
• median fragment length (-mfl) 
• platform unit (-pu) 
• sample name (-sam) 
• sequencing technology (-st)

When using the local alignment search feature in 
MosaikAligner, the median fragment length metadata is used 
to define the search area.

Using MosaikBuild (reference sequences)
 
MosaikBuild -fr c_elegans_chr2_ref.fa.gz -oa  
c_elegans_chr2_ref.dat

Here we convert the reference sequence for chromosome 2 in 
C. elegans from a FASTA file to a native MOSAIK reference 
archive.

In all of the MOSAIK programs, parameters can be placed in 
any order.

Using MosaikBuild (reads)
 
MosaikBuild -q c_elegans_chr2_mate1.fq.gz -q2  
c_elegans_chr2_mate2.fq.gz -out c_elegans_chr2.dat -st 
illumina -p B_

Here we convert the paired-end Illumina reads from a pair of 
FASTQ files to a native MOSAIK read archive. In this example 
we prepend each read name with “B_” so that we know that 
these reads are from the Bristol strain during visualization and 
SNP discovery.

Box 2.1 MosaikBuild Parameters.

FASTA
-fr, -fr2	 specifies the files containing the 
	 bases for the first mate (-fr) and the 
	 second mate (-fr2).

-fq, -fq2	 specifies the files containing the  
	 base qualities for the first mate (-fq) 
	 and the second mate (-fq2).

-assignQual	 assigns a base quality for every 
	 base.

FASTQ
-q, -q2	 specifies the files for the first mate  
	 (-q) and the second mate (-q2).

SRF
-srf	 specifies the short read format file  
	 (currently only single-ended reads 
	 are supported).

Illumina Bustard
-bd	 specifies the Illumina Bustard  
	 directory.

-il	 specifies which lanes to use. e.g.  
	 -il 137 will select lanes 1, 3, and 7.

-split	 split the reads into two equal 
	 portions for paired-end reads.

Illumina Gerald
-gd	 specifies the Illumina Gerald  
	 directory.

-il	 specifies which lanes to use. e.g.  
	 -il 137 will select lanes 1, 3, and 7.

Shared Options
-cs	 translates the reference sequence  
	 from basespace to colorspace.

-p	 adds the specified prefix to each  
	 read name.

-st	 specifies the sequencing  
	 technology:  
	 454, helicos, illumina, sanger, solid

-out	 specifies the output file when  
	 converting reads.

-oa	 specifies the output file when 
	 converting the reference sequence.
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2.2. MosaikAligner
MosaikAligner performs pairwise alignment between every 
read in the read archive and a set of reference sequences 
(Figure 2.2). The program uses a hashing scheme similar to 
BLAT and BLAST and places all of the hashes (k-words or 
seeds) into a hash map or into a “jump database”. 

When presented with a new read, MosaikAligner hashes 
up the read in a similar fashion and retrieves the reference 
positions for each hash in the hash table. These hash positions 
are clustered together and then evaluated with a full Smith-
Waterman algorithm. Alignments are then screened according 
to the filter criteria specified by the user.

Hashing Strategy
The first incarnation of MOSAIK used a fast hashing strategy 
that stored one hash position per seed. If a seed was seen 
more than once in the reference sequence, it was marked non-
unique and removed from subsequent use. When clustering 
hash positions, the longest contiguous set of hash was used 
to seed the full Smith-Waterman alignment. While speedy, 
this strategy (FAST) was vulnerable to microrepeat structures 
in reference sequences and often produced read pile-ups in 
repeat regions.

Subsequently the hashing strategy was revised to store n 
number of hash positions per seed and all hash position 
clusters were used to seed the full Smith-Waterman alignment. 
As the number of hash positions per seed increased, so did 
alignment accuracy and the memory requirements. 

Three newer strategies are available: 

• SINGLE (stores 1 hash position per seed) 
• MULTI (stores 9 hash positions per seed) 
• ALL (stores all hash positions per seed). 

We have standardized on the use of the most accurate version 
(ALL) for all of our current lab projects.

Using Jump Databases
The aforementioned hashing strategies involve using hash 
maps as their primary data structure. However, putting 
an entire mammalian genome into a hash map is not very 
efficient. MosaikAligner consumes around 57 GB RAM when 
using the ALL strategy and aligning against the entire mouse or 
human genome!

Using a “jump database” makes full mammalian genome 
alignment possible (Figure 2.3). A jump database is comprised 
of two main files: the keys file and the positions file. The 

AAAA
AAAG » 20

AACA
AACG
AAGA
AAGG

AATA » 0
AATG

AAAC
AAAT
AACC
AACT
AAGC
AAGT
AATC

AATT » 8

1 0 2 6 11
1 16

key structure (4n) position structure (nhashes + npositions)

reference sequence: AATATGAATTTAATTCAAAG

Figure 2.3 The Jump Database Illustrated.

In this example we are hashing the reference 
sequence with a hash size of 4. The hashes 
are store in 2-bit notation and thus have an 
equivalent integer value. e.g. AAAA=0, AAAC=1, 
AAAG=2, etc.

Using the integer value we can jump directly in 
the keys file to retrieve the positions file offset. e.g. 
if we look into the bucket corresponding to hash 
AAAG, we retrieve a file offset of 20.

Every record in the positions file starts with a 
number indicating the hash position count and is 
followed by the hash positions. e.g. at file offset 
20, we discover one hash position at reference 
sequence offset 16.

Mosaik Read 
Archive

Jump DB

Hash Reference 
Sequences

Hash Read & Find 
Hits in Reference

Consolidate Hits 
into Candidates

Align Candidates 
w/Smith WatermanSave Alignments

Mosaik 
Alignment Archive

Reference 
Sequences

Figure 2.2 MosaikAligner Illustrated.
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positions file is a tightly packed file with all of the possible hash 
positions for each seed. The keys file is a sparse look up table 
that allows MOSAIK to find the relevant hash positions with 
only two hops in memory. This data structure guarantees no 
collisions, which is often prevalent in highly loaded hash maps.

What does this mean to the user? Instead of 57 GB, we can 
now deliver the same data at 19 GB RAM. Since there are no 
collisions, alignments are faster.

As an added bonus, the user can select whether the keys 
and positions files should remain on disk or be loaded into 
memory for additional performance. Technically, this means 
that a full genome alignment can be performed with as little 
as 4 GB RAM (used by the mammalian genome reference 
sequence). However the random access usage patterns in the 
“jump database” still make this alternative prohibitively slow. 
Flash-based memory such as solid state drives (SSDs) might 
make this feature more practical.

The Art of Being Ambiguous and Masking
Many aligners convert reads and reference sequences into 
an efficient 2-bit format. While this may reduce the memory 
footprint, it discards valuable information contained in the 
IUPAC ambiguity codes.

MOSAIK uses the full set of IUPAC ambiguity codes during 
alignment (Figure 2.4). For example, if you use a reference 
sequence where all of the major confirmed SNPs from dbSNP 
are marked with the appropriate ambiguity codes, alignment 
bias for one allele over the other can be avoided. i.e. if the 
reference genome has an ‘M’ allele, a read position with an ‘A’ 
or ‘C’ at that location will be scored as a match.

The only ambiguity code that is not strictly implemented is ‘N’. 
Many finished genomes uses large regions (often 50,000 bases) 
of N’s to denote where two contigs are linked but the actual 
genomic data is missing. In order to prevent every single 
read from aligning to those regions, ‘N’ is interpreted as ‘X’ 
(meaning this does not align to any of the four nucleotides).

MOSAIK has no problems with reference sequences that are 
hard masked with X’s.

Hash Size Selection (Speed vs. Sensitivity)
In general, using a larger hash size equates to a faster 
alignment speed. However this is often at the expense of 
sensitivity. e.g. using a hash size of 30 when aligning 35 bp 
reads will certainly be fast, but your reads will not be seeded if 
you have any internal sequencing errors or SNPs. In contrast, 

Figure 2.4 IUPAC Ambiguity Codes.

Bias against known SNPs can be reduced by 
using a reference sequence masked with IUPAC 
ambiguity codes. In the example, the alignment 
would result in one mismatch (the Y matches the 
C base, but M doesn’t match the T base).

ref A A A A A M A A CC C C C C C C C CG Y G G G G GTT T T T T T T T T T

dbSNP or HAPMAP SNPs

A A AC C C C C C CG G GTT T T TC T

 
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a hash size of 11 would guarantee that all reads with up to two 
mismatches are seeded but performance would suffer. 

When aligning mammalian reads, a hash size of 15 provides a 
happy medium between speed and sensitivity.

Limiting Hash Positions
While scaling up to mammalian alignments, we added a 
feature (-mhp) that places a maximum number of hash 
positions per seed. Alignment representation bias is 
minimized by selecting a random subset of the hash positions. 

When using a hash size of 15, each seed has an average of 5.25 
hash positions in the human genome. Limiting the number of 
hash positions to 100 increases alignment speed significantly 
while having little impact on alignment accuracy.

Setting a Minimum Cluster Size
A new feature that dramatically improves alignment speed 
with little impact on accuracy is the alignment candidate 
threshold (-act) (Figure 2.5). Normally all clusters are 
submitted for Smith-Waterman alignment. Initially we 
imposed a criterium (-dh) that two consecutive hashes had to 
be clustered before being aligned. This double-hit mechanism 
ensured that fewer spurious hash hits in the reference 
sequence would cause a full alignment to be performed.

The alignment candidate threshold extends this double-hit 
idea. An alignment candidate is simply the set of all seeds that 
form a cluster. The alignment candidate size is the length from 
the first base in the cluster to the last base in the cluster. 

e.g. If a hash size of 11 is used and two hashes form cluster 
separated by a SNP, the alignment candidate size is 23. If the 
act paramater had been set to -act 20, this read would be 
submitted for Smith-Waterman alignment.

Uniqueness and Filters
MosaikAligner has a strict, but simple definition of what 
makes a unique read different from a non-unique read. If the 
read aligns to more than one location according to the user 
criteria, the alignments are non-unique. If the read aligns to a 
single location according to the user criteria, the alignment is 
unique.

MOSAIK offers two different alignment modes: unique 
and all (Figure 2.6). When aligning in the unique mode (-m 
unique), alignment stops as soon as there is evidence that the 
read can be aligned to two places. Both alignments are saved 
to the alignment file which can be handled by downstream 
applications. When aligning in the all mode (-m all), the 

ref

Scenario A. Align only unique reads

ref

Scenario B. Align everywhere possible

ref

Scenario C. Align randomly

Figure 2.6 Alignment Mode.

MOSAIK has the ability to either place only the 
uniquely aligned reads (-m unique) or to place all 
reads (-m all). Other aligners choose a random 
location when placing non-unique reads, this 
benefit of this scenario confuses the author and 
therefore is not supported. 

ref

read

Figure 2.5 Alignment Candidate Threshold.

Before performing a pairwise alignment, 
MOSAIK hashes up each read and retrieves the 
hash positions for each seed in the reference 
sequence.

In this figure the hash positions are depicted as 
the horizontal blue lines. When we cluster these 
hash positions, three clusters are formed (orange 
boxes). Each cluster represents an alignment 
candidate that will be pairwise aligned.

Perhaps the middle cluster represents a spurious 
hit due to the repetitive nature of the reference 
sequence. To prevent spurious hits from eating 
up processing cycles, we can enforce that 
each cluster must have a specified length (the 
alignment candidate threshold) before being 
pairwise aligned.
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aligner finds all possible alignments. The all mode is suggested 
when trying to resolve paired-end reads.

When filtering reads, the mismatch threshold can be either 
a maximum number of mismatches allowed (-mm) or a 
maximum percentage of mismatches (-mmp) (w.r.t. read 
length). 

Since Smith-Waterman is a local alignment algorithm, 
undesirable subsequences may be aligned. Normally, unaligned 
portions of the read are counted as mismatches, but this 
behavior can be disabled with the -mmal parameter. When 
using this parameter, it may be useful to force the alignments 
to have a minimum length with respect to the original read 
length. This threshold can be set with the -minp parameter.

We regularly allow four mismatches (-mm 4) for 36 bp 
Illumina reads and allow up to 5 % mismatches (-mmp .05) 
with variable length read technologies such as Helicos and 454.

Local Alignment Search
When aligning paired-end/mate-pair libraries, sometimes one 
mate will align uniquely, but the other mate will end up in a 
highly repetitive region (like an ALU) resulting in thousands 
of potential locations. Depending on the chosen alignment 
parameters, the proper location that resolves with the unique 
mate might not be found.

To handle this situation, MOSAIK includes a local alignment 
search (-ls) parameter (Figure 2.7). This parameter uses the 
mean fragment length (-mfl) setting that was recorded when 
the read archive was created. The -ls parameter specifies a 
search radius relative to the mean fragment length.

Local Alignment Search

mean fragment length (-mfl)

ref

read

uniquely aligned mate

search radius (-ls)

rescued mate

For example, if the mean fragment length was set to 200 
bp and the search radius is set to 100 bp - the alignment 
algorithm will search 100 - 300 bp from the unique mate for an 
alignment that conforms to the proper paired-end/mate-pair 
orientation and ordering.

Figure 2.7 Local Alignment Search.

When aligning paired-end/mate-pair reads, 
MOSAIK now has the ability to locally search 
for a missing mate within a user-specified search 
radius.
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Alignment Qualities
Quality scores are calculated for each alignment in MOSAIK 
(Figure 2.8). Similar to base qualities, alignment qualities give 
the probability that a read has been misaligned. 

Alignment qualities occur on a logarithmic scale of 0 to 99. An 
alignment quality of 20 indicates that there is a 1 % chance that 
the alignment was misaligned, whereas an alignment quality of 
30 indicates that there is a 0.1 % chance of misalignment.

In an effort to create highly accurate alignment qualities, 
we used logistic regression to characterize reads that have a 
subsitution error model (Illumina/AB SOLiD) and reads that 
have an insertion/deletion error model (Roche 454). These 
models use reference sequence length, read length, a weighted 
mismatch metric, and information content as predictors.

A high complexity 36 bp Illumina read aligned to the human 
genome with zero mismatches, will receive an alignment 
quality of around 57. The predictors affect the alignment 
quality in the following manner:

• As reference sequence length ↑,	 alignment quality ↓ 
• As # of mismatches ↑, 		  alignment quality ↓ 
• As read length ↑, 			   alignment quality ↑ 
• As information content ↑, 		  alignment quality ↑.

At the moment, alignment qualities are not adjusted in 
resolved paired-end/mate-pair reads (some aligners sum 
up the two alignment qualities). However, the qualities are 
penalized if the chosen alignment parameters prevent the 
aligner from discovering all of the possible alignments for any 
given read.

Handling Colorspace
Despite the virtues of colorspace, the fact remains that many 
tools work only in basespace. Previously, MOSAIK has 
always stored the alignments in colorspace. In this version, 
alignments are converted seamlessly back to basespace directly 
after the Smith-Waterman algorithm.

Currently the algorithm used to translate dibase qualities 
involves taking the minimum of the two qualities that overlap 
a nucleotide in basespace.

There are a couple of advantages to handling the conversion 
immediately after alignment:

1. Conventional alignment parameters can be used. 
Allowing two mismatches means two bases that differ from the 
reference in basespace. In colorspace, two mismatches could 
mean one SNP or two sequencing errors.

Figure 2.8 Alignment Qualities.

The graph above shows how alignment qualities 
vary in the Illumina logistic regression model 
when aligning to the full human genome. The 
number of mismatches was locked at zero, but 
the information content varied from 0.4 bits to 
2.0 bits. For each information content curve, 
the alignment quality is plotted on a read length 
sweep from 30 - 100 bp.

The three dimensional surface plot below depicts 
the alignment qualities in the Illumina logistic 
regression model when aligning to the full human 
genome. The read length was locked at 36 bp, but 
the information content and mismatch metric 
were varied.
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2. Post-alignment tasks are all consistently performed in 
basespace. Data can be easily exported into various file 
formats. For example, the BAM file format cannot handle 
colorspace sequences natively.

How do you use MOSAIK in colorspace?
1. Use MosaikBuild to import your reads into a read archive.

2. Use MosaikBuild to create a reference sequence archive (this 
will naturally be in basespace).

3. Use MosaikBuild to create a reference sequence archive in 
colorspace using the -cs parameter.

4. Use MosaikAligner to align the read archive using the 
colorspace reference archive with the -ia parameter and the 
basespace reference archive with the -ibs parameter.

Using MosaikAligner:

MosaikAligner -in myreads.dat -out h_sapiens_aligned.
dat -ia h.sapiens.dat -hs 15 -mm 4 -mhp 100 -act 20 -j 
h.sapiens_15 -p 10

Here we specify an input read file (-in) and an output 
alignment file (-out) that stores all of the alignments. 
Additionally we specify a binary reference sequence file (-ia). 
All of the aforementioned parameters are required.

A hash size of 15 was specified (-hs) and a maximum of 4 
mismatches is allowed (-mm). 

A jump database (-j) will be used instead of the normal hash 
map. All hash positions are initially stored by the database, 
but only 100 random hash positions will kept for each seed 
(-mhp). In each seed cluster, a minimum length of 20 bp is 
required (-act).

A total of 10 processors (-p) will be used to increase alignment 
speed.

For some additional performance, try out the new banded 
Smith-Waterman algorithm (-bw) designed by Wan-Ping 
Lee. A bandwidth of 13 works well for 36 bp Illumina reads, 
29 works well for 76 bp Illumina reads, and 51 works well for 
Roche 454 Titanium reads.

Box 2.2 MosaikAligner Parameters.

Input & Output
-in	 specifies the input read archive.

-out	 specifies the output alignment 
	 archive.

-ia	 specifies the input reference  
	 sequence archive.

-ibs	 specifies the basespace input  
	 reference sequence archive when  
	 aligning SOLiD reads.

-rur	 stores unaligned reads in a FASTQ  
	 file.

Essential Parameters
-m	 specifies the alignment mode:  
	 unique or all. Default: all.

-hs	 specifies the hash size [4 - 32].  
	 Default: 15.

-p	 uses the specified number of  
	 processors. Default: 1.

-bw	 uses the banded Smith-Waterman 
	 algorithm for increased  
	 performance.

Filtering
-act	 specifies the alignment candidate  
	 threshold.

-mm	 specifies the number of mismatches  
	 allowed. Default: 4.

-mmp	 specifies the maximum percentage  
	 of the read length that are allowed  
	 to be errors. [0.0 - 1.0]

-mmal	 uses the aligned read length instead  
	 of the original read length when  
	 counting errors.

-minp	 specifies what minimum percentage  
	 of the read length should be  
	 aligned. [0.0 - 1.0]

-mhp	 specifies the maximum number of  
	 hash positions to be used per seed.

Jump Database
-j	 specifies the jump database 
	 filename stub.
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2.3. MosaikSort
MosaikSort takes the alignment output and prepares it 
for multiple sequence alignment. For single-ended reads, 
MosaikSort simply resorts the reads in the order they occur on 
each reference sequence. 

For mate-pair/paired-end reads, MOSAIK resolves the reads 
according to user-specified criteria before resorting the reads 
in the order they occur on each reference sequence.

Paired-End Read Resolution
When both mate-pairs are available, MosaikSort first samples 
the fragment lengths from uniquely aligned reads. Using this 
information, a minimum and maximum fragment length is 
calculated using the empirical 99.73% confidence interval.

When one mate is unique and the other is non-unique, the 
paired-end read is resolved if the program finds at most one 
alignment that occurs within the desired confidence interval 
(Figure 2.9). Similarly when both mate-pairs are non-unique, 
the paired-end read is resolved if the program finds at most 
one combination of alignments that fit the confidence interval.

Phase I. Resolve unique reads

calculate confidence interval

ref

Phase II. Resolve unique vs non-unique reads

ref

Phase III. Resolve non-unique vs non-unique reads

ref

Paired-end Terminology
 
We use the term mate to mean one of the reads at 
each end of the fragment. In MosaikAligner, each 
mate is aligned separately. Sometimes one mate 
aligns, but the other does not. We use the term 
orphaned reads to describe such an event.

Figure 2.9 Paired-End Read Resolution

Box 2.2 MosaikAligner Parameters Continued.

Pairwise Alignment Scores
-ms	 the match score. Default: 10.

-mms	 the mismatch score. Default: -9.

-gop	 the gap open penalty. Default: 15.

-gep	 the gap extend penalty.  
	 Default: 6.66.

-hgop	 the gap open penalty used in  
	 homopolymer stretches when 
	 aligning with 454 reads. Default: 4.
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Read Name Mangling
Some downstream utilities (such as consed) require that each 
alignment has a unique name. When the -consed option is 
used, the following adjustments are made to read names:

when a single-ended read aligns to multiple locations, •	
a period is appended along with the current alignment 
number. e.g. IL7_1_1_203_187.27 would indicate the 27th 
alignment for this read

when a paired-end/mate-pair read is resolved, a forward •	
slash is appended followed by the mate number. e.g. 
IL7_1_1_203_187/1 indicates the first mate

orphaned paired-end/mate-pair read names are not •	
modified.

Duplicate Removal
When used in conjunction with MosaikDupSnoop, 
MosaikSort can remove duplicates (-dup) with respect to the 
originating sequencing library.

Using MosaikSort:
 
MosaikSort -in yeast_aligned.dat -out yeast_sorted.dat

In the example above we specify an input alignment file (-in) 
containing paired-end reads and a sorted output alignment file 
(-out).

Box 2.3 MosaikSort Parameters.

Input & Output
-in	 specifies the input alignment 
	 archive.

-out	 specifies the output alignment  
	 archive.

-dup	 enables duplicate filtering with 
	 databases in the specified directory.

-mem	 specifies how many alignments to  
	 cache. Default: 6,000,000.

Single-end Options
-nu	 include non-unique reads.

Paired-end Options
-afl	 allows all fragments lengths when  
	 evaluating unique read pairs.

-ci	 sets the fragment length confidence  
	 interval. Default: 0.9973.

-sa	 samples fragment lengths from all  
	 unique read pairs.

Paired-end Resolution
-iuo	 ignore unique orphaned reads.

-iuu	 ignore unique vs unique read pairs.

-ium	 ignore unique vs multiple read  
	 pairs.

-rmm	 resolve multiple vs multiple read  
	 pairs.
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2.4. MosaikMerge
MosaikMerge is not normally a part of the MOSAIK 
pipeline. It takes multiple sorted alignment archives from 
MosaikSort and merges them into a single alignment archive 
that can be processed by MosaikAssembler, MosaikText, or 
MosaikCoverage.

When aligning multiple runs belonging to different sequence 
libraries, the best practice is to use MosaikSort on each lane or 
run and then combine them with MosaikMerge. This practice 
avoids the unintended consequences of attempting to resolve 
paired-end reads when multiple fragment length distributions 
are present.

Another common use of MosaikMerge is to combine runs 
from different read technologies. This allows the researcher to 
combine 454, Illumina, Helicos, SOLiD, and Sanger capillary 
technologies into one co-assembly.

Using MosaikMerge: 
 
MosaikMerge -in 454_aligned.dat -in helicos_aligned.dat 
-in illumina_alignments/ -out coassembly.dat
 
In this example we combine the alignments from the two 
files, 454_aligned.dat and helicos_aligned.dat, with all of the 
alignments contained in the directory illumina_alignments. 
The merged output will be saved in coassembly.dat.

Box 2.4 MosaikMerge Parameters.

Options
-in	 specifies either an input alignment  
	 archive or a directory containing  
	 alignment archives. This parameter 
	 can be used multiple times.

-out	 specifies the merged output  
	 alignment archive.

-mem	 specifies how many alignments to  
	 cache. Default: 6,000,000.
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2.5. MosaikAssembler
MosaikAssembler takes the sorted alignment file and produces 
a multiple sequence alignment which is saved in an assembly 
file format. At the moment, MosaikAssembler saves the 
assembly in the phrap ace format and the GigaBayes gig 
format.

MosaikAssembler has been completely rewritten to take 
advantage of the sorted alignment files. As a result, assembly 
file creation is now orders of magnitude faster than before and 
limited only by sequential hard disk transfer speeds rather 
than slower random-access transfer speeds.

By default MosaikAssembler will assemble each reference 
sequence where reads aligned. Since the sorted alignment 
archives incorporate an index, a specific reference sequence 
can be assembled quickly with the region of interest (-roi) 
parameter.

Using MosaikAssembler: 
 
MosaikAssembler -in yeast_sorted.dat -ia yeast.dat -out 
yeast_assembly -roi chrX
 
In this example, a sorted alignment file (-in) and a binary 
reference sequence file (-ia) are specified as input. 
MosaikAssembler will use the provided filename stub 
(-out) when generating an assembly specifically for the X 
chromosome (-roi).

Box 2.5 MosaikAssembler Parameters.

Input & Output
-in	 specifies the input alignment  
	 archive.

-out	 specifies the assembly output  
	 filename stub.

-ia	 specifies the input reference  
	 sequence archive.

Options 
-f	 specifies the assembly file format:  
	 ace or gig. Default: ace.

-roi	 specifies the name of the reference  
	 sequence to assemble.
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3. Utilities
MOSAIK contains four additional utility programs to 
facilitate data analysis: MosaikText, MosaikCoverage, 
MosaikDupSnoop, and MosaikJump.

3.1. MosaikText
MosaikText converts alignments to different text-based 
formats. Currently it supports the BLAT axt (-axt) format, the 
BAM format (-bam), the UCSC Genome Browser bed format 
(-bed), the SAM format (-sam), and the Illumina ELAND 
(-eland) format. Alternatively alignments can be dumped 
directly to the screen (-screen) in an axt-like format.

In addition to examining alignment archives, MosaikText 
supports dumping the contents of read archives.

Using MosaikText: 
 
MosaikText -in yeast_aligned.dat -bam yeast_aligned.bam
 
In this example, the supplied alignment archive (-in) is 
exported to a BAM file (-bam). 

3.2. MosaikCoverage
MosaikCoverage is a handy program for investigating 
representational bias. This utility parses the alignment file 
and produces a base-accurate coverage plot (no binning) 
for each reference sequence that has coverage. In addition 
to the coverage plot, a simple space delimited coverage file 
is produced (Figure 3.1). MosaikCoverage uses gnuplot to 
generate the coverage graphs in PostScript. If available, it will 
call ps2pdf to convert the graphs into more portable pdf files.

When running MosaikCoverage, output similar to this will be 
seen:

- calculating coverage statistics: 
* coverage statistics for 22 (34851311 bp): 33062466 bp 
(94.9 %), mean: 11.3x

In this example, the coverage for chromosome 22 is given. 
Chromosome 22 has 34 Mbp of sequence containing { A, C, 
G, T }. 33 Mbp (94.9 %) of the chromosome has at least 1x 
coverage and the mean coverage is 11.3x.

Box 3.1 MosaikText Parameters.

Read Archive
-ir	 specifies the input read archive.

-fastq	 stores the data in the specified  
	 FASTQ file.

-screen	 displays the reads on the screen.

Alignment Archive 
-in	 specifies the input alignment  
	 archive.

-u	 limits the output to show only  
	 uniquely aligned reads.

-axt	 stores the data in the specified  
	 BLAT AXT file.

-bam	 stores the data in the specified  
	 BAM file.

-bed	 stores the data in the specified  
	 UCSC Genome Browser bed file.

-eland	 stores the data in the specified  
	 Illumina ELAND file.

-sam	 stores the data in the specified SAM  
	 file.

-screen	 displays the alignments on the  
	 screen in an AXT-like format.

Figure 3.1 Using MosaikCoverage in Excel.

This graph depicts the observed coverage in S. 
cerevisiae chromosome 12 from an Illumina data 
set.
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Using MosaikCoverage: 
 
MosaikCoverage -in h_sapiens_aligned.dat -ia h.sapiens.dat 
-u -od graphs -cg
 
In the example above, the coverage is calculated from all of 
the reads in the alignment file h_sapiens_aligned.dat (-in) 
for each sequence specified in the reference sequence file 
h.sapiens.dat (-ia). By enabling the -u parameter, only unique 
alignments will be used to calculate coverage. All resulting 
files will be placed in the output directory graphs (-od) and pdf 
graphs will be generated (-cg).

3.3. MosaikDupSnoop
MosaikDupSnoop inspects a specified set of alignment 
archives and stores the aligned fragment locations with respect 
to the sequencing library. If duplicates are encountered, the 
fragment with the highest alignment quality is recorded. 
When used in conjunction with MosaikSort (-dup), all of the 
duplicate fragments with a lower alignment quality will be 
discarded.

MosaikDupSnoop treats paired-end/mate-pair reads 
differently from single-ended reads. For paired-end reads, 
all reads that share the same start coordinate but have end 
coordinates that differ by up to 2 bp will be treated as 
duplicates. Likewise reads the share the same end coordinate 
but have start coordinates that differ by up to 2 bp are also 
considered duplicates. For single-ended reads, only reads 
that share the exact start and end coordinates are considered 
duplicates.

Using MosaikDupSnoop: 
 
MosaikDupSnoop -in yeast_aligned.dat -od fragData/

In the example above, the fragments in yeast_aligned.dat (-in) 
will be recorded in sequencing library databases located in the 
fragData directory (-od).

3.4. MosaikJump
MosaikJump is a tool that converts a reference sequence 
archive into a “jump database”. As discussed earlier in 
section 2.2, the jump database is a custom data structure that 
separates seeds and hash positions in a manner that is fast and 
collision-free. As such, it works as a drop-in replacement for 
the traditional hash maps that MOSAIK normally uses. 

Box 3.3 MosaikDupSnoop Parameters.

Input & Output
-in	 specifies the input alignment  
	 archive.

-od	 specifies the output directory.

Paired-end Options
-afl	 allows all fragments lengths when  
	 evaluating unique read pairs.

-ci	 sets the fragment length confidence 
	 interval. Default: 0.9973.

-iuo	 ignore unique orphaned reads.

-iuu	 ignore unique vs unique read pairs.

-ium	 ignore unique vs multiple read  
	 pairs.

-rmm	 resolve multiple vs multiple read  
	 pairs.

Box 3.2 MosaikCoverage Parameters.

Input & Output
-in	 specifies the input alignment  
	 archive.

-ia	 specifies the input reference  
	 sequence archive.

-u	 limits the output to show only  
	 uniquely aligned reads.

-od	 specifies the output directory.

-cg	 creates coverage graphs if gnuplot is  
	 installed.
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An added benefit of using the jump database is that the user 
can choose which components should remain on disk and 
which should be loaded into memory. Maximum performance 
is realized when the entire jump database is loaded into 
memory.

The positions file is directly proportional to the number of hash 
positions in the reference sequences as well as the number of 
seeds present. e.g. Using a hash size of 15, there are roughly 
2.9 billion hash positions in the human genome and 550,000 
unique seeds. Assuming an integer is used to store each seed 
grouping and hash position, the positions file will be 12.7 GB.

The keys file stores the offsets for each seed grouping in the 
positions file. The keys file grows exponentially with each 
increasing hash size. e.g. Using a hash size of 15, the required 
file size is 5 GB (5 * 415). However if a hash size of 13 is used, 
the resulting file is only 313 MB. Due to the exponentially 
growing file size, the upper practical bounds for the jump 
database is a hash size of 15.

Using MosaikJump: 
 
MosaikJump -ia h.sapiens.dat -out h.sapiens_15 -hs 15
 
In the example above, MosaikJump will use the reference 
sequence file (-in) to generate the jump database files for hash 
size 15 (-hs) that start with the specified filename stub (-out). 
To improve performance during jump database creation, the 
keys file will be kept in memory (-km). 

Box 3.4 MosaikJump Parameters.

Input & Output
-ia	 specifies the input reference  
	 sequence archive.

-out	 specifies the output filename stub  
	 for the jump database.

Options
-mem	 specifies the amount of RAM (GB)  
	 to use when sorting the hashes.

-hs	 specifies the hash size [4 - 32].

-mhp	 specifies the maximum number of  
	 hash positions to be used per seed.



MOSAIK Documentation� 18

Michael Strömberg
2009-10-14�

4. Understanding Program Output
A lot of effort has been put into making the program output 
as easy to understand as possible. Sometimes the items that 
seem simple and obvious to us, may seem foreign and vague to 
others. To help bridge that gap, we will discuss what the values 
actually mean in this section.

4.1 MosaikBuild

Handling N’s
 
By default MosaikBuild will trim off the N’s that 
occur in the beginning or at the end of each read. 

If more than a specified number of N’s occur 
internally within the read, that read will be 
discarded. During alignment, an N base will 
always count as a mismatch. Therefore it’s wise 
to filter out any reads with more N’s than your 
maximum number of allowed mismatches.

Keeping Time
 
All MOSAIK tools will report both a CPU time and a wall time 
when finished. CPU time reflects the aggregate time spent on all 
processors while wall time reflects time passed in the real world. 
e.g. a disk intensive tool will likely have a longer wall time than 
CPU time. In contrast, a CPU intensive task using 8 processors 
for 1 minute will return a CPU time of 480 seconds and a wall 
time of 60 seconds.
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4.2 MosaikAligner Alignment Statistics (mates)
 
This section of the program output displays the 
statistics with respect to the individual sequences. 
Each paired-end read will usually have two mates 
sequences associated with it, whereas single-
ended reads only have one sequence per read.

Failed Hash
A failed hashing attempt simply means that 
a hash size of contiguous bases that match 
the reference couldn’t be found. e.g. if the 
user selects a hash size of 15, but the read has 
a sequencing error every 12 bases; the aligner 
will fail to successfully seed the alignment. If this 
percentage is too high, consider reducing the hash 
size.

Filtered Out
The user has a lot of flexibility in specifying 
how to filter out good alignments from bad 
alignments. The most common used filter is the 
maximum number of allowed mismatches. e.g. If 
ther user specifies that up to 4 mismatches should 
be allowed, but the best alignment results in 5 
mismatches; the read will be filtered out. If this 
percentage is too high, consider relaxing the filter 
criteria.

Unique vs Non-Unique
An read is considered to be aligned uniquely 
if it can be aligned to only one location in 
the reference given the current alignment 
parameters. Everything else is considered non-
unique.

Alignment Statistics (reads)
 
This section of the program output is shown when aligning 
paired-end/mate-pair reads. Orphaned reads occur when only 
one of the mate sequences align to the reference. In addition to 
the unaligned and orphaned reads, statistics are also shown for 
various uniqueness conditions. Reads where both of the mate 
sequences are unique have a higher efficiency at being resolved 
than reads where one or both mates are non-unique.

Total Reads Aligned
You may have noticed that the “total reads aligned” statistic in 
the reads section is different than the one in the mates section. 
In the paired-end section, a read is considered to be aligned if at 
least one of the mate sequences is aligned to the reference. In the 
mates section, the statistic reflects all of the mate sequences in 
the entire data set.

Alignment Candidates/s

In MOSAIK, an alignment candidate refers to 
any  region that has been clustered after hashing 
that meets the minimum criteria for pairwise 
alignment. This statistic gives the user a sense 
of how many Smith-Waterman alignments are 
occurring per second.
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4.3 MosaikSort

Paired-end Resolution Efficiency

For each of the paired-end categories (orphaned, 
unique vs unique, unique vs multiple, and 
multiple vs multiple), the original number of 
reads will be displayed as well as the number that 
were successfully resolved.

During paired-end resolution, reads are checked 
for the proper order, orientation, and that 
one and only one mate is located within the 
fragment length confidence interval. Orphaned 
reads are resolved if the proper order and 
orientation is consistent.

For example, 71.0 % of the aligned paired-end 
reads were in the category “both mates unique”. 
After paired-end resolution, that percentage 
drops to 70.7 %. i.e. 0.3 % of the reads failed the 
aforementioned filtering criteria.

0.7 % of the “both mates non-unique” failed the 
filtering criteria.

By default, paired-end resolution of reads in the 
category “both mates non-unique” is disabled due 
to the potential source for misalignment error. 
This category can be enabled using the -rmm 
option.

Fragment Statistics

Many aligners use a user-specified 3σ standard deviation or 
a median absolute deviation approach when calculating the 
endpoints for the fragment length distribution. Often these 
approaches rely on approximate values and are prone to outlier 
bias. MOSAIK calculates the values in realtime based on the 
empirical fragment length distribution of unique vs unique 
read pairs.
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5. Performance
All statistics were measured on a lightly loaded computer with 
two 3.0 GHz Intel Xeon X5450 quadcore processors and 64 GB 
memory.

There is a direct correlation between MOSAIK alignment 
speed and the aggregate length of the reference sequences 
(the target genome). MOSAIK is extremely fast when 
processing yeast or roundworm-sized genomes and is faster 
than many aligners when processing mammalian genomes.

5.1. Speeding Up Alignments
There are a number of steps you can take to increase alignment 
speed.

Algorithmically speaking, the parameters that will help 
increase alignment speed are the following: hash size (-hs), 
alignment candidate threshold (-act), the maximum hash 
position threshold (-mhp), and the banded Smith-Waterman 
bandwidth (-bw). The crux is that you want to maximize the 
improvement in speed while minimizing any negative impact 
on alignment accuracy and the percentage of reads aligned.

The larger the hash size, the more likely that hash will be 
unique in the reference sequence. Therefore increasing the 
hash size, reduces the number of spurious hash hits in the 
reference sequence. The consequence of increasing the hash 
size is that it also increases the number of bases that must 
exactly match the reference sequence. Our lab uses a hash size 
of 15 for most of our current analysis projects.

The alignment candidate threshold effectively dictates the 
minimum size of hash clusters before being submitted 
for pairwise alignment. Increasing this threshold reduces 
the number of spurious alignments being aligned. The 
consequence of increasing the threshold is that a read with a 
combination of sequencing errors and polymorphisms may 
also be filtered if the threshold is not met. 

The maximum hash position threshold speeds up the 
alignment by reducing the number of hash positions that 
need to be clustered. In the human genome, each seed has an 
average of 5.25 hash positions when using hash size 15. Setting 
the threshold to 100 in such a case has minimal affect on the 
alignments while increasing the alignment speed considerably. 
The consequence of setting the threshold too low is that 
alignments in highly repetitive regions might no longer be 
seeded.
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One of the new improvements in MOSAIK is a banded 
Smith-Waterman alignment algorithm. As the bandwidth is 
reduced, alignment performance will improve - especially in 
longer Roche 454 or Sanger capillary reads. If the bandwidth is 
reduced too much, alignment artifacts may result. In Box 5.1 
we have recorded the bandwidths used in our own projects.

Perhaps the most obvious way to speed up alignments is to use 
more processors. MosaikAligner is fully multi-threaded and 
can handle any number of processors. The caveat is that the 
input/output and memory bandwidth may become saturated. 
e.g. On some of our 16 core systems, we have discovered that 
using 12 cores is usually faster than using 16 processor cores. 
You may have to perform a bioinformatics titration experiment 
where you align a subset of reads with an increasing number 
of processor cores in order to choose the configuration that 
works best for your system.

5.2. Yeast Alignments
MosaikBuild converted a SOLiD run of 61,516,412 reads (35 
bp) in 7.4 minutes (139,000 reads/s).

MosaikAligner aligned the run in 9.5 minutes (109,000 
reads/s) to the entire pichia stipitis genome (15.4 Mbp) using 
8 processor cores. We used the hash size 13 jump database for 
this experiment, so our total memory usage was 468 MB. 57.1 
% of the reads aligned in this unfiltered data set. 

MosaikSort sorted the uniquely aligned reads in 3.0 minutes.

MosaikAssembler produced a GigaBayes assembly file with  
27,592,793 Illumina alignments in 64 seconds (431,000 
reads/s).

5.3. Roundworm Alignments
MosaikBuild converted an Illumina run of 11,386,260 reads 
(35 bp) in 38 seconds (308,000 reads/s).

MosaikAligner aligned the run in 4.8 minutes (40,000 
reads/s) to the entire C. elegans genome (100 Mbp) using 8 
processor cores. We used the hash size 15 jump database for 
this experiment, so our total memory usage was 5.8 GB. 91.6 % 
of the reads aligned in this data set. 

MosaikSort sorted the output in 1.6 minutes.

MosaikAssembler produced a GigaBayes assembly file with  
12,323,293 Illumina alignments in 31 seconds (398,000 
reads/s).

Box 5.2 Yeast Alignment Parameters

-m unique -hs 13 -act 20 -mm 6 -mhp 100 -p 8  
-j jumpdb/p.stipitis_13cs

Box 5.3 Roundworm Alignment Parameters

-m unique -act 20 -mm 4 -mhp 100 -p 8  
-j jumpdb/c.elegans_15

Box 5.1 Banded Smith-Waterman Parameters

Illumina (36 - 43 bp)	 -bw=13

Illumina (44 - 63 bp)	 -bw=17

Illumina (63+ bp)	 -bw=29

Roche 454 (Titanium)	 -bw=51



MOSAIK Documentation� 23

Michael Strömberg
2009-10-14�

5.4. Human Alignments
MosaikBuild converted a lane of 6,563,762 Illumina paired-end 
reads (36 bp) in 2.9 minutes (53,000 reads/s).

MosaikAligner aligned the lane in 45.9 minutes (2,390 
paired-end reads/s) to the entire human genome (2.9 Gbp) 
using 8 processor cores. We used the hash size 15 jump 
database for this experiment, so our total memory usage was 
20 GB. 95.1 % of the mates aligned in this data set.

MosaikSort resolved the paired-end reads and sorted the 
output in 37 minutes on a slower computer (2.0 GHz AMD 
Opteron 270).

MosaikAssembler produced a GigaBayes assembly file with 
2,589,439,852 Illumina mates in 4.1 hours (174,000 mates/s).

5.5. Aligner Settings By Sequencing Technology
By analyzing the performance characteristics and alignment 
accuracy, we have compiled a list of aligner settings (Box 5.5) 
that we typically use for each sequencing technology.

Box 5.5 Aligner Settings.

454 GS20 & FLX
-hs 15 -mm 0.05 -act 26

454 Titanium
-hs 15 -mm 0.05 -act 55

Illumina GA1 36 bp
-hs 15 -mm 4 -act 20

Illumina GA2 51 bp
-hs 15 -mm 6 -act 25

Illumina GA2 76 bp
-hs 15 -mm 12 -act 35

SOLiD 35 bp
-hs 15 -mm 4 -act 20

Box 5.4 Human Alignment Parameters

-act 20 -mm 4 -mhp 100 -p 8  
-j jumpdb/h.sapiens_15
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6. Visualization
MOSAIK works well with two visualization programs: consed 
and Gambit. Consed reads ACE assembly files while Gambit 
reads BAM files. An ace file is easily created by running 
the MosaikAssembler with the -f ace parameter on your 
sorted alignment archive. BAM files can be exported from 
MosaikText using the -bam parameter. 

 
 
 

 

6.1. consed
Consed (left) is available from Phil Green’s webpage:

http://bozeman.mbt.washington.edu/consed/consed.html

When using consed with ace files created in MOSAIK, you 
should run it with the -nophd switch to prevent it from 
loading the non-existent phred sequence files.

6.2. Gambit
Gambit (right) is being developed in our lab by Derek Barnett. 
Compared with consed, Gambit shows a more compact view 
of the read assembly. Gambit’s strength is that it can show any 
number of annotation tracks and features a robust analysis 
plugin API to help provide context to the alignment data.
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7. Data Access (MosaikTools)
A common problem when evaluating bioinformatics tools is 
data access. Users are often forced to write parsers for various 
file formats or output log files. MosaikText provides alignment 
data in several known text formats, but the MosaikTools API  
provides even faster and easier access to the aligner results.

The API is written in C++ and can be found in the 
MosaikTools directory contained in the MOSAIK package. 
By using the SWIG (http://www.swig.org) package, a version 
that is accessible in Perl is also available.

Here is a sample program that loads each read in a MOSAIK 
alignment archive:

#include <iostream> 
#include “AlignmentReader.h”

using namespace std;

int main(int argc, char* argv[]) {

	 // open the MOSAIK alignments file 
	 Mosaik::CAlignmentReader reader; 
	 reader.Open(“myreads_aligned.dat”);

	 // get some basic statistics 
	 uint64_t numBases = reader.GetNumBases(); 
	 uint64_t numReads = reader.GetNumReads();

	 cout << “# of bases: “ << numBases << endl; 
	 cout << “# of reads: “ << numReads << endl;

	 // keep reading all of the sequences 
	 Mosaik::AlignedRead ar; 
	 while(reader.LoadNextRead(ar)) { 
 
		  // do something with each read 
		  cout << “read name: “ << ar.Name << endl; 
	 }

	 // close the alignments file 
	 reader.Close();

	 return 0; 
}

The MosaikTools directory contains two sample programs: 
MosaikReaderMain.cpp & MosaikConversionMain.cpp. 
MosaikReaderMain.cpp loads and displays information 
about each alignment in an alignment archive. 
MosaikConversionMain.cpp loads each read from an alignment 
archive and saves those reads into a new alignment archive.

Box 7.1 Read Data Structures

The AlignedRead data structure contains all of the 
mate 1 and mate 2 alignments for one read. If the 
read is single-ended, only the Mate1Alignments 
vector will contain alignments.

struct AlignedRead { 
	 string Name; 
	 vector<Alignment> Mate1Alignments; 
	 vector<Alignment> Mate2Alignments; 
};

In the Alignment data structure, ReferenceBegin 
and ReferenceEnd contain the start and 
end locations on the reference sequence. 
ReferenceName contains the name of the 
reference sequence.

QueryBegin and QueryEnd contain the start and 
end locations on the read.

The gapped pairwise alignment is contained in 
the strings Reference and Query. 

Each character in the BaseQualities string 
contains a base quality for each pairwise aligned 
base in the same orientation as the alignment. 
Extra base qualities have NOT been introduced 
for gaps in the alignment. There is no offset 
between each character and the intended base 
quality.

Quality contains the alignment quality which 
measures the probability that an alignment has 
been misaligned.

IsReverseStrand is set to true if the alignment is 
on the 3’ or Crick strand.

struct Alignment { 
	 unsigned int ReferenceBegin; 
	 unsigned int ReferenceEnd; 
	 unsigned short QueryBegin; 
	 unsigned short QueryEnd; 
	 unsigned char Quality; 
	 bool IsReverseStrand; 
	 char* ReferenceName; 
	 string Reference; 
	 string Query; 
	 string BaseQualities; 
};
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Appendix 1: Crib Sheet

MosaikBuild
MosaikBuild -fr myreads.fasta -fq myreads.fasta.qual -out myreads.dat

MosaikBuild -fr myreference.fasta -oa myreference.dat

-fr, -fr2	 specifies the FASTA files containing the bases for the first mate (-fr) and the second mate (-fr2). 
-fq, -fq2	 specifies the FASTA files containing the base qualities for the first mate (-fq) and the second mate (-fq2). 
-q, -q2	 specifies the FASTQ files for the first mate (-q) and the second mate (-q2). 
-cs	 translates the reference sequence from base space to colorspace. 
-st	 specifies the sequencing technology: 454, helicos, illumina, sanger, solid. 
-out	 specifies the output file when converting reads. 
-oa	 specifies the output file when converting the reference sequence.

MosaikAligner
MosaikAligner -in myreads.dat -out myreads_aligned.dat -ia myreference.dat -hs 15 -mm 4 -m all  
			   -mhp 100 -act 20 -j myjumpdb -p 8

-in	 specifies the input read archive. 
-out	 specifies the output alignment archive. 
-ia	 specifies the input reference sequence archive. 
-rur	 stores unaligned reads in a FASTQ file. 
-m	 specifies the alignment mode: unique or all. 
-hs	 specifies the hash size [4 - 32]. Default: 15. 
-p	 uses the specified number of processors. 
-act	 specifies the alignment candidate threshold. 
-mm	 specifies the number of mismatches allowed. Default: 4. 
-mmp	 specifies the maximum percentage of the read length are allowed to be errors. [0.0 - 1.0] 
-minp	 specifies what minimum percentage of the read length should be aligned. [0.0 - 1.0] 
-mmal	 when enabled, unaligned portions of the read will not count as a mismatch. 
-mhp	 specifies the maximum number of hash positions to be used per seed. 
-j	 specifies the jump database filename stub. 
-ls	 enables local alignment search for paired-end/mate-pair reads. 
-bw	 uses the banded Smith-Waterman algorithm for increased performance. 
 
MosaikSort

MosaikSort -in myreads_aligned.dat -out myreads_sorted.dat

-in	 specifies the input alignment archive. 
-out	 specifies the output alignment archive. 
-ci	 sets the fragment length confidence interval. Default: 0.9973. 
-dup	 enables duplicate filtering with databases in the specified directory. 
 
MosaikAssembler

MosaikAssembler -in myreads_sorted.dat -ia myreference.dat -out myassembly

-in	 specifies the input alignment archive. 
-out	 specifies the assembly output filename stub. 
-ia	 specifies the input reference sequence archive. 
-f	 specifies the assembly file format: ace or gig. Default: ace. 
-roi	 specifies the name of the reference sequence to assemble.


