

Off-Line Basecaller User Guide ii

This document and its contents are proprietary to Illumina, Inc. and its affiliates ("Illumina"), and are
intended solely for the contractual use of its customer in connection with the use of the product(s)
described herein and for no other purpose. This document and its contents shall not be used or distributed
for any other purpose and/or otherwise communicated, disclosed, or reproduced in any way whatsoever
without the prior written consent of Illumina. Illumina does not convey any license under its patent,
trademark, copyright, or common-law rights nor similar rights of any third parties by this document.

The Software is licensed to you under the terms and conditions of the Illumina Sequencing Software
License Agreement in a separate document. If you do not agree to the terms and conditions therein,
Illumina does not license the Software to you, and you should not use or install the Software

The instructions in this document must be strictly and explicitly followed by qualified and properly trained
personnel in order to ensure the proper and safe use of the product(s) described herein. All of the contents
of this document must be fully read and understood prior to using such product(s).

FAILURE TO COMPLETELY READ AND EXPLICITLY FOLLOW ALL OF THE INSTRUCTIONS
CONTAINED HEREIN MAY RESULT IN DAMAGE TO THE PRODUCT(S), INJURY TO PERSONS,
INCLUDING TO USERS OR OTHERS, AND DAMAGE TO OTHER PROPERTY.

ILLUMINA DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE IMPROPER USE OF THE
PRODUCT(S) DESCRIBED HEREIN (INCLUDING PARTS THEREOF OR SOFTWARE) OR ANY USE
OF SUCH PRODUCT(S) OUTSIDE THE SCOPE OF THE EXPRESS WRITTEN LICENSES OR
PERMISSIONS GRANTED BY ILLUMINA IN CONNECTION WITH CUSTOMER'S ACQUISITION OF
SUCH PRODUCT(S).

FOR RESEARCH USE ONLY

© 2009-2010 Illumina, Inc. All rights reserved.

Illumina, illuminaDx, Solexa, Making Sense Out of Life, Oligator, Sentrix, GoldenGate,
GoldenGate Indexing, DASL, BeadArray, Array of Arrays, Infinium, BeadXpress, VeraCode,
IntelliHyb, iSelect, CSPro, GenomeStudio, Genetic Energy, HiSeq, HiScan, Eco, and TruSeq are
registered trademarks or trademarks of Illumina, Inc. All other brands and names contained herein are the
property of their respective owners.

This software contains the SeqAn Library, which is licensed to Illumina and distributed under the
following license:

Copyright © 2010, Knut Reinert, FU Berlin, All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are
met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 Neither the name of the FU Berlin or Knut Reinert nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Off-Line Basecaller User Guide iii

RevisionHistory

Part # Revision Date Description of Change

15009920 C November
2010

Supports in-line sample prep controls; separate pre-
determined calibration tables for Genome Analyzer and
HiSeq data; deprecated image analysis; base calling generates
BCL files by default; updated base calling algorithms.

15009920 B June 2010 Contains the BCL Converter; updated image analysis and
base calling algorithms.

15009920 A November
2009

Launch

iv Part # 15009920 RevC

Off-Line Basecaller User Guide v

Table ofContents

Revision History iii
Table of Contents v
List of Tables vii

Chapter 1 Overview 1
Introduction 2
Installation 5
What’s New 6
Reporting Problems 7

Chapter 2 Core Data Analysis Concepts 9
Introduction 10
Base Calling Module 11
Understanding the Run Folder 12
Calibration and Input Parameters 16

Chapter 3 Using Bustard 19
Introduction 20
Invoking Bustard for Base Calling 21
Running Off-Line Basecalling 22
Command Line Options for Bustard 23
Analysis Output File Descriptions 27

Chapter 5 Converting BCL Files 37
Introduction 38
Converter Input Files 39
Converter Usage 40
Converter Output Files 43

Appendix A Requirements and Software Installation for OLB 45
Network Infrastructure 46
Analysis Computer 47
Installation Prerequisites 48
Installing the OLB Software 50

Appendix B Using Parallelization in OLB 51
Introduction 52
“Make” Utilities 53

Index 57

vi Part # 15009920 RevC

Technical Assistance 59

Off-Line Basecaller User Guide vii

List of Tables

Table 1 File Naming Conventions 15
Table 2 File Naming Components 15
Table 3 Illumina General Contact Information 59
Table 4 Illumina Customer Support Telephone Numbers 59

viii Part # 15009920 RevC

C
h
a
p
te
r1

Off-Line Basecaller User Guide 1

 Chapter 1 Overview

Overview

Introduction 2
Installation 5
What’s New 6
Reporting Problems 7

O
ve
rv
ie
w

2 Part # 15009920 RevC

Introduction

This user guide documents the Off-Line Basecaller (OLB), which performs base calling
and bcl to qseq conversion for the HiSeq or Genome Analyzer.
The standard workflow is to perform base calling using on-instrument real time
analysis (RTA), after which CASAVA performs alignment using the base calling results.
If needed, OLB provides the option to perform data analysis off-line. In addition, OLB
allows you to convert per-cycle base call files (*.bcl) into per read base call files (*_
qseq.txt).
The basic functionalities of the modules in OLB are described below.

Analysis of Sequencing Data
After the sequencing platform generates the sequencing images, the data is analyzed in
two steps: image analysis and base calling. CASAVA then uses the sequencing output
to align the reads to a genome, call SNPs, detect indels, and count reads (for RNA
sequencing).
Base calling uses cluster intensities and noise estimates to output the sequence of bases
read from each cluster, a confidence level for each base, and whether the read passes
filtering. Base calling is performed by RTA by default, but can be done off-line by OLB.

Introduction

Off-Line Basecaller User Guide 3

Figure 1 OLB Data Analysis Steps

BCLConversion
The standard sequencing output for the HiSeq2000 consists of *.bcl files, which contain
the base calls and quality scores per cycle. CASAVA v1.8 can use *.bcl files as input, but
older versions of CASAVA (v1.7 and older), as well as some third-party software, need
*_qseq.txt files. To convert *.bcl files into *_qseq.txt files, use the BCL Converter in OLB.

Figure 2 HISeq2000 Data Analysis StandardWorkflow

O
ve
rv
ie
w

4 Part # 15009920 RevC

NOTE
The BCL conversion should be started only after completion of the run. RTA
updates the config.xml on every cycle and this interferes with the configuration of
the BCL Converter. Running the BCL Converter while RTA is still updating the
BaseCalls directory will lead to errors that can be difficult to detect, identify and
diagnose.
For intermediate BCL conversions (before completion of the run), Illumina
recommends to do the base calling offline, from the CIF files, using 'bustard.py'.

Analysis Computing Systems
Base calling can either be performed in real time or off-line by two different analysis
computing systems:
} Real time analysis (RTA), which runs on the sequencing platform instrument com-
puter. RTA performs real-time image analysis and base calling.

} The Off-Line Basecaller (OLB), which runs on a Linux analysis server.
Bcl to qseq conversion should be done using OLB.

NOTE
OLB v1.9 contains the Bustard base calling module which uses the same
algorithms as RTA v1.9 and v1.10.

Run Folder
The output data produced by the Off-Line Basecaller are stored in a hierarchical folder
structure called the Run Folder. The Run Folder includes all data folders generated from
the sequencing platform and the data analysis software. For a detailed description of the
Run Folder structure, see Understanding the Run Folder on page 12.
OLB requires a Linux system with specific processing and data storage capacity. For
specific requirements, see System Requirements on page 1.

../../../../../Content/Vault/Informatics/Sequencing_Analysis/OLB/swSEQ_mOLB_System_Requirements.htm#App_Installation_OLB_2171226099_1031465
../../../../../Content/Vault/Informatics/Sequencing_Analysis/OLB/swSEQ_mOLB_System_Requirements.htm#App_Installation_OLB_2171226099_1031465
../../../../../Content/Vault/Informatics/Sequencing_Analysis/OLB/swSEQ_mOLB_System_Requirements.htm#App_Installation_OLB_2171226099_1031465
../../../../../Content/Vault/Informatics/Sequencing_Analysis/OLB/swSEQ_mOLB_System_Requirements.htm#App_Installation_OLB_2171226099_1031465
../../../../../Content/Vault/Informatics/Sequencing_Analysis/OLB/swSEQ_mOLB_System_Requirements.htm#App_Installation_OLB_2171226099_1031465

Installation

Off-Line Basecaller User Guide 5

Installation

1 Install the OLB prerequisites on a suitable Linux system. See Installation Prerequisites
on page 48.

2 Install the OLB software and compile OLB using the “make” command. See
Installing the OLB Software on page 50.

3 Set up the “Instruments” directory for parameters files. See Directory Setup on page
50.

O
ve
rv
ie
w

6 Part # 15009920 RevC

What’s New

Important Changes in OLB v1.9
} Supports in-line sample prep controls.
} Generates ControlsReport.csv in-line controls output file.
} Separate pre-determined calibration tables for Genome Analyzer and HiSeq data;
OLB automatically detects which one to use.

} Image analysis has been deprecated.
} Base calling generates BCL files by default.
} Supports formatted (_pos.txt), binary (.locs), or compressed binary (.clocs) position
files.

} Updated base calling algorithms, conforming to RTA v1.9 and v1.10.

Important Changes in OLB v1.8
} OLB v1.8 contains the BCL Converter.
} OLB v1.8 has updated image analysis and base calling algorithms, as used by RTA
v1.8.

Important Changes in OLB v1.6
} OLB contains Firecrest image analysis and Bustard base calling modules that use
the same algorithms as RTA v1.6.

R
eporting

P
roblem

s

Off-Line Basecaller User Guide 7

ReportingProblems

Contact Illumina Technical Support to report any issues with OLB.
When reporting an issue, it is critical to capture all the output and error messages
produced by a run. This is done by redirecting the output using “nohup” or the
facilities of a cluster management system. For an explanation of “nohup,” see Nohup
Command on page 22. It helps to attach the makefile corresponding to the part of OLB
that is causing the problem.

8 Part # 15009920 RevC

C
h
a
p
te
r2

Off-Line Basecaller User Guide 9

 Chapter 2 Core Data Analysis Concepts

CoreData Analysis
Concepts

Introduction 10
Base Calling Module 11
Understanding the Run Folder 12
Calibration and Input Parameters 16

C
or
e
D
at
a
A
na
ly
si
s
C
on
ce
pt
s

10 Part # 15009920 RevC

Introduction

The main module of OLB performs off-line basecalling. During an analysis run, a
defined folder structure is generated that captures the output of an instrument run in
text files and also contains the configuration files. Configuration files contain calibration
and input settings that optimize your analysis run. This chapter describes these core
concepts of the Off-Line Basecaller.

B
ase

C
alling

M
odule

Off-Line Basecaller User Guide 11

BaseCallingModule

OLB contains the Bustard for base calling. Bustard deconvolves the signal from the
clusters and applies correction for cross-talk, phasing, and prephasing.
} Frequency cross-talk—The sequencing platform uses two lasers and four filters to
detect four dyes attached to the four types of nucleotide, respectively. The emission
spectra of these four dyes overlap so that the four images are not independent. OLB
uses a frequency cross-talk matrix to correct for this cross-talk (for more information,
see Frequency Cross-Talk Matrix on page 16).

} Phasing/Prephasing—Depending on the efficiency of the fluidics and chemistry of
the sequencing reactions, a small number of molecules in each cluster may run
ahead of (prephasing) or fall behind (phasing) the current incorporation cycle. This
effect is mitigated by applying corrections during the base calling step (for more
information, see Phasing/Prephasing Estimates on page 17).

Figure 3 Phasing and Prephasing

Use of Module
For base calling starting with image analysis data generated by RTA, use the bustard.py
script. Using Bustard on page 19 describes the use of bustard.py.

Running the OLBModules
OLB is divided into modules that are managed by the “make” utility. The “make”
utility is commonly used to build executables from source code and is designed to
model dependency trees by specifying dependency rules for files. These dependencies
are stored in a file called a makefile. Each OLB module is a collection of Perl or Python
scripts and C++ executables, and has its own makefile associated with the analysis task.
“Make” has a dual purpose within the OLB software:
} To build executables from source code
} To perform data analysis steps using the software
A run of OLB is a two-stage process:

1 Generate the folders and makefiles using one of the above scripts.

2 Start OLB analysis by executing “make.”
The process is described in Using Bustard on page 19.

C
or
e
D
at
a
A
na
ly
si
s
C
on
ce
pt
s

12 Part # 15009920 RevC

Understanding theRunFolder

OLB operates in a specific directory called the Run Folder where the analysis output
files are saved by default in a consistent hierarchical structure. A Run Folder containing
RTA data is very similar to a Run Folder containing only OLB analysis data.
The figure below illustrates a typical Run Folder after image analysis and base calling.

Figure 4 Run Folder Directory Structure

The standardized structure, file naming conventions, and file formats of the Run Folder
allow for the following:
} A single point of data storage, logging, and analysis output during and after a run.
} Encoding sufficient information to trace the history of the data in the Run Folder
back to the laboratory notebook without confusion between instruments, exper-
iments, or sites.

} Standardized input and output enabling component software to operate flawlessly,
regardless of the instrument generating the data.

U
nderstanding

the
R
un

Folder

Off-Line Basecaller User Guide 13

} Capturing and encoding enough information to independently reanalyze the data at
any time, in such a way that existing extractions of sequence and related data are
preserved, and parameters used during any point of the extraction process are cap-
tured and related to the subsequent output data.

} Subsequent analyses to be stored in the Run Folder.
} The software tools and other user software to implement and enforce these struc-
tures and standards.

Run Folder Structure
The Run Foldercontains the Data folder as illustrated in Understanding the Run Folder on
page 12 above. The Data folder contains Intensities folders and the Intensities folders
contain Basecall folders which will contain the GERALD folder once alignment is
started. The Data folder is created by the sequencing platform when a run starts. Any
analysis performed on the data, including RTA, is saved within the Data folder.
Each run of the main OLB analysis modules creates a subdirectory in the Data folder of
the Run Folder as follows (see Understanding the Run Folder on page 12 above):
} Each run of the OLB base calling software (Bustard) creates a new subdirectory in
the image analysis subdirectory on which the base calls are based, resulting in a
tree-like structure of analyses.

} Parameters and versions for any given analysis run are logged in the folder struc-
ture to make it possible to reconstruct any previous analysis run.

You can do multiple analyses of the data using different analysis parameters and the
results will not be overwritten. The default naming convention for folders generated by
OLB consists of the number of cycles run, the version of the software used for the
operation (Bustard), the date the analysis initiated, and the login of the user. If the user
initiates a second analysis on the same day, a new folder structure is created and the
results from the previous analysis are not overwritten.

Data Folder
The Data folder contains a hierarchical structure that consists of the image analysis
output folder (Intensities), then the base calling output folder (Basecalls or Bustard_x_x_
x), and then the sequence alignment output folder where CASAVA will output
alignment results (GERALD).
A new subfolder is generated when a set of images is processed by RTA. The data are
kept in one file per tile for raw intensities. RTA reports image analysis results in the
binary .cif format (intensities).
The Data folder contains one config.xml file in each image analysis folder generated as
a result of analyzing sets of images.The config.xml file explicitly records which cycle-
image folders were used to generate the raw intensities and noise files, and any
parameters used. For a detailed description of the parameters file, see
Configuration/Parameters on page 15.

Base Calling Folders
Each image analysis folder may hold multiple sequence folders with the output of
different runs of a base caller package. The base calling folders have the following
naming structure:
} The base calling folder generated by RTA is called BaseCalls.

C
or
e
D
at
a
A
na
ly
si
s
C
on
ce
pt
s

14 Part # 15009920 RevC

} Each base calling folder generated by Bustard is named using the following con-
vention:
<analysis module><analysis module-version>_<date>_<user>[.<version-number>]
For example, the folder name Bustard1.8.8_08-11-2005_myuser.3 represents the
third run of the Bustard base caller on 8th of November 2005 by the user “myuser.”

Each base calling folder also holds a config.xml that records any relevant information
about the run of the base caller module.

Run Folder Naming
The top level Run Folder name is generated using three fields to identify the
<ExperimentName>, separated by underscores. For example, YYMMDD_machinename_
NNNN. You should not deviate from the Run Folder naming convention, as this may
cause OLB to stop.

1 The first field is a six-digit number specifying the date of the run. The YYMMDD
ordering ensures that a numerical sort of Run Folders places the names in
chronological order.

2 The second field specifies the name of the sequencing machine. It may consist of
any combination of upper or lower case letters, digits, or hyphens, but may not
contain any other characters (especially not an underscore). It is assumed that the
sequencing instrument is synonymous with the PC controlling it, and that the
names assigned to the instruments are unique across the sequencing facility.

3 The third field is a four-digit counter specifying the experiment ID on that
instrument. Each instrument should be capable of supplying a series of
consecutively numbered experiment IDs (incremental unique index) from the
onboard sample tracking database or a LIMS.

NOTE
It is desirable to keep Experiment-IDs (or Sample-ID) and instrument names
unique within any given enterprise. You should establish a convention under
which each machine is able to allocate Run Folder names independently of other
machines to avoid naming conflicts.

A Run Folder named 070108_instrument1_0147 indicates experiment number 147, run
on instrument 1, on the 8th of Jan 2007. While the date and instrument name specify a
unique Run Folder for any number of instruments, the addition of an experiment ID
ensures both uniqueness and the ability to relate the contents of the Run Folder back to
a laboratory notebook or LIMS.
Additional information is captured in the Run Folder name in fields separated by an
underscore from the first three fields. For example, you may want to capture the flow
cell number in the Run Folder name as follows: YYMMDD_machinename_XXXX_
FCYYY.

NOTE
When publishing the data to a public database, it is desirable to extend the
exclusivity globally, for instance by prefixing each machine with the identity of
the sequencing center.

File Naming
OLB uses the following format for file naming:

U
nderstanding

the
R
un

Folder

Off-Line Basecaller User Guide 15

File Description Naming Convention
*.bcl Base call and quality score file <sample>_<lane>_<tile>.bcl
*.stats File containing base calling statistics <sample>_<lane>_<tile>.stats
*.filter File containing filter results <sample>_<lane>_<read>_

<tile>.filter
*_pos.txt Positions file <sample>_<lane>_<tile>_pos.txt
*.locs Template locations file <sample>_<lane>_<tile>.locs
*.clocs Compressed version of locs file <sample>_<lane>_<tile>.clocs
*.cif Cluster intensity file <sample>_<lane>_<tile>.cif
*_qseq.txt File containing base calls and quality

scores per read
<sample>_<lane>_<read>_<tile>_
qseq.txt

Table 1 File Naming Conventions

When a given file type is split on a read basis, the read always appears in the name,
even for single-read analysis. Example: s_5_1_0030_qseq.txt is a valid filename.

Component Description
<sample> Alphanumeric string (always “s”)
<lane> Single-digit number identifying a flow cell lane
<read> Single-digit number identifying the read (starts at 1)
<tile> Four-digit number identifying a tile location in a flow cell lane
<cycle> Two- or three-digit number identifying a sequencing cycle
<id> Single-digit number to distinguish files; for example, the different reads of a

paired-end read
<type> Alphabetical string identifying the type of content stored in the file
<filesuffix> Suffix to identify the traditional file type

Table 2 File Naming Components

Configuration/Parameters
The Data Folder and subfolders can all contain a configuration file (config.xml), and the
top level Run Folder a related .params file. This is intended to contain any parameter
data specific to the given level of information held in the folder.
For an example of the parameters file, see Configuration/Parameters File Format on page
32.

C
or
e
D
at
a
A
na
ly
si
s
C
on
ce
pt
s

16 Part # 15009920 RevC

Calibrationand InputParameters

For an optimal analysis run, OLB needs a number of calibration and input parameters.
By default, OLB auto-generates these parameters for each analysis.

Quality Scoring
Base quality value calibration now uses a pre-determined calibration table in Bustard,
supplied with the software. There are separate quality tables for Genome Analyzer and
HiSeq data, and OLB automatically detects which one to use.
The quality scoring scheme is the Phred scoring scheme, encoded as an ASCII character
by adding 64 to the Phred value. A Phred score of a base is:

Q
phred

=-10 log
10
(e)

where e is the estimated probability of a base being wrong.

NOTE
You can always check whether bases have been called with the default GA qtable
(no switch) or using --quality-table /path/to/HiSeqTable.txt by looking at the log
files for the run.

Frequency Cross-Talk Matrix
The sequencing platform uses two different lasers to excite the dye attached to each
nucleotide. The emission spectra of these four dyes overlap, so the four images are not
independent. As in Sanger sequencing, the frequency cross-talk has to be deconvolved
using a frequency cross-talk matrix.
As of OLB v1.9, four cycles are used for cross-talk matrix estimation. The advantage to
using multiple cycles for matrix estimation is that it is more likely to get correct
estimation even for less diversified samples, the matrix estimation is more robust.
The frequency cross-talk is estimated during the base calling run and captured in a file
called s_<cycle>_matrix.txt. The s_<cycle>_matrix.txt file is located in the base calling
folder in the Matrix subfolder.
The following is an example of a typical s_matrix.txt file:

The lines starting with a greater than symbol (“>”) specify the order of the rows and
columns in terms of the bases they represent.
The matrix elements show how the C, A, T, and G dyes/nucleotides (columns) cross-talk
into the C, A, T, and G channels. A normal matrix should be diagonally dominant
(diagonal elements tend to be the largest values) with the exception of the top-left and
bottom-right corners (A/C and G/T cross-talk respectively). These are not as well-
separated due to the fact that both corresponding dyes are excited by the same laser.

C
alibration

and
InputP

aram
eters

Off-Line Basecaller User Guide 17

Phasing/Prephasing Estimates
Depending on the efficiency of the fluidics and the sequencing reactions, a small
number of molecules in each cluster may run ahead (prephasing) or fall behind
(phasing) the current incorporation cycle. This effect can be mitigated by applying
corrections during the base calling step.
The phasing estimates are produced before a run of the base caller module and
captured in a file called phasing.xml. The phasing.xml file is located in the Phasing
folder within the base calling directory.
As the estimation uses statistical averaging over many clusters and sequences to
estimate the correlation of signal between different cycles, the phasing estimates tend to
be more accurate for tiles with larger numbers of clusters and a mixture of different
sequences. Samples containing only a small number of different sequences do not
produce reliable estimates.

18 Part # 15009920 RevC

C
h
a
p
te
r3

Off-Line Basecaller User Guide 19

 Chapter 3 Using Bustard

UsingBustard

Introduction 20
Invoking Bustard for Base Calling 21
Running Off-Line Basecalling 22
Command Line Options for Bustard 23

U
si
ng

B
us
ta
rd

20 Part # 15009920 RevC

Introduction

This section describes the typical analysis run and command line options for Bustard.
Use Bustard when you want to perform OLB analysis starting with the image analysis
data.
The intensity data should be organized within a standard Run Folder directory
structure as described in Run Folder Structure on page 13. To successfully initiate base
calling, you need intensity and position files for every lane and cycle, and a
configuration (config.xml) file in the Run Folder.

Invoking
B
ustard

forB
ase

C
alling

Off-Line Basecaller User Guide 21

InvokingBustard forBaseCalling

Although several different software programs are involved in an analysis run, a single
command generates the analysis folders, then a second command (`make all') can be
used to start a complete analysis.
Below is the standard invocation of OLB when starting with image analysis data, for
which the Bustard.py script needs to invoked. Arguments contained in brackets [] are
optional.

/path-to-olb/bin/bustard.py <image-analysis-directory>

--CIF [--bin-controls] [--no-controls] [--control-lane=5]

[--make] [--matrix=mymatrix.txt|auto|auto<n>]

[--phasing=0.01|auto|auto<n>] [--prephasing=0.01]

[--with-qseq] [--with-sig2] [--with-seq] [--with-qval]

[--GERALD=/path/config.txt] [--with-second-call]

Some of the arguments above have sample values displayed.
The only compulsory arguments is the path to the Run Folder that is to be analyzed.
Generally, the --CIF argument is also required to indicate that analysis is started from
*.cif files.
See Command Line Options for Bustard on page 23 for a detailed description of the
options.

U
si
ng

B
us
ta
rd

22 Part # 15009920 RevC

RunningOff-LineBasecalling

Prerequisites Using Image Analysis Data
To process RTA data with OLB, you need the following:
} Experiment run folder containing the image analysis results folder must have been
copied to the off-line server (for example /<RunFolder>/Data/Intensities)

} Config.xml files for the experiment have been copied to
/<RunFolder>/Data/Intensities

Data Analysis
The RTA generated image analysis data can be analyzed in OLB in the following way:

1 Generate OLBmakefiles and analysis structure - this is done by invoking the
bustard.py script :
/path-to-olb/bin/bustard.py --CIF <RunFolder>/Data/Intensities

--make

All standard OLBparameters are available for use.

2 Execute the make files :
Navigate to the Bustard sub-directory generated in the Intensities directory. The
"Makefile" for base calling generated in step one should be there. Do one of the
following:
• To perform base calling only , execute the makefile in the Bustard directory
using :

make all

Paired reads
The standard method to analyze paired-read data assumes that you have a single Run
Folder containing the image analysis files for both reads, with a continuously
incremented cycle count. OLB automatically knows where the second read starts.

Parallelization Switch
If your system supports automatic load-sharing to multiple CPUs, you can parallelize
the analysis run to <n> different processes by using the “make” utility parallelization
switch.

make recursive -j n

For more information on parallelization, see Using Parallelization in OLB on page 51.

Nohup Command
You should use the Unix nohup command to redirect the standard output and keep the
“make” process running even if your terminal is interrupted or if you log out. The
standard output will be saved in a nohup.out file and stored in the location where you
are executing the makefile.

nohup make recursive -j n &

The optional “&” tells the system to run the analysis in the background, leaving you
free to enter more commands.

C
om

m
and

Line
O
ptions

forB
ustard

Off-Line Basecaller User Guide 23

CommandLineOptions forBustard

You can invoke the bustard.py scripts with a number of optional command line
arguments.

General Options
Any of the following general options can be included in any order on a single
command line.

--make
The --make command creates the analysis directory and a makefile in the relevant
analysis directory. You can start the analysis by changing to the directory and typing
“make.” If this option is omitted, OLB will not write any information to your Run
Folder.

--new-read-cycle=<cycle>
Use this command to denote a new read in a paired-end run. The calculation of the
matrix correction and the application of the phasing correction will be reset at the
specified cycle.

--tiles=<tile>|<lane>[,<tile>|<lane>,...]
Use this command to select certain tiles for analysis. For example, specifying --tiles=s_
1,s_2_01,s_3_0001,s_5_0002 selects all tiles in lane 1, all tiles starting with “01” in lane
 2, position 1 in lane 3, and position 2 in lane 5.
You can also specify certain tiles for analysis from every lane. For example, specifying --
tiles=_0010,_0020 selects only tiles 10 and 20 from every lane.

--compression=<method>
Use “--compression” to reduce the size of the output. Allowed values are “none” and
“gzip” (the default).

--GERALD=<config.txt>
Use this command to start the makefile generator for the GERALD alignment module in
CASAVA. This happens after the Bustard folder is created, and passes the relevant
analysis information to GERALD. You can specify multiple GERALD files by repeating
the option with different configuration file names. For each GERALD configuration file
specified, a separate GERALD subfolder is generated (under the same Bustard folder)
with that configuration.
For more information on the GERALD configuration file, see the CASAVA Software
User Guide.

NOTE
For the --GERALD option to work, the bin directory of CASAVA has to be
specified in the PATH environment variable. Type the following in your
command line:

export PATH=path/to/CASAVA/bin

This path will now be valid for the current terminal session. See also your LINUX
documentation for instructions.

U
si
ng

B
us
ta
rd

24 Part # 15009920 RevC

Bustard Options
Use the following options with the bustard.py script.

--bin-controls, --no-controls
By default OLB will assume there are in-line controls, which control various sample
preparation steps; see In-Line Control Report on page 29. OLB will write this information
in the output files. There are two options you can use when there are no controls in the
sample:
--bin-controls: this option tells OLB to assume there are controls, but they will be
reported as reads that did not pass filter, so that no downstream analysis gets broken.
--no-controls: this option tells OLB that there are no controls in this sample.

--CIF
Indicates that analysis is started from *.cif files. Is required in most cases.

--control-lane=<n>
Use this command to select a lane <n> that is to be used to estimate phasing and matrix
correction for all other lanes. This option is synonymous with --phasing=auto<n> --
matrix=auto<n>. Control lanes are necessary for samples with skewed base
compositions.

--matrix=<filename> | auto | auto<n> | lane
Use the --matrix command to specify the frequency cross-talk matrix file, where
filename refers to the path of the matrix file.
If no matrix is specified, or if you set the value to the default behavior “auto,” OLB
auto-generates the matrix. A value of auto<n>, where <n> is a lane number between 1
and 8, is analogous to the --phasing=auto<n> option and allows the matrix estimation
to be derived from only one lane. The value lane calculates a separate correction for
each lane from data in that lane alone.

--matrix-cycles=n
The --matrix-cycles option specifies the number of cycles to be used for cross-talk matrix
estimation.Default = 4.

--phasing=<x> | auto | auto<n> | lane
Use the --phasing command to apply a particular phasing correction. If you set the
value to the default behavior “auto,” OLB auto-generates the phasing and prephasing
values.
A value of auto<n>, where <n> is a lane number between 1 and 8, uses the automated
phasing estimates from the corresponding lane. This is useful for samples with an
uneven base composition (such as in gene expression), for which the current phasing
estimator does not work reliably and phasing needs to be estimated from a single
control lane. The value lane calculates a separate correction for each lane from data in
that lane alone.
You can specify a phasing value directly. For example, --phasing=0.01 indicates a
phasing correction with a rate of 1% per cycle (1% of molecules in a cluster fall behind

C
om

m
and

Line
O
ptions

forB
ustard

Off-Line Basecaller User Guide 25

the other molecules). In this case, the option is normally combined with the --
prephasing option.

--prephasing=<x>
Use the --prephasing command to apply a particular prephasing correction. For
example, using --prephasing=0.01 sets a correction for prephasing with a prephasing
rate of 1% per cycle.
The command --prephasing=auto is not recognized. Use --phasing=auto instead. By
default OLB autogenerates phasing and pre-phasing estimates.

--with-qseq, --with-sig2, --with-seq, --with-qval
Use these commands to generate the qseq, sig2, seq, and qval files respectively. These
files are not generated by default.

--with-second-call
When this flag is set, the second best base calls will be generated in the subdirectory
SecondCall. The second best base calls are in sequence output files that mirror the
original sequence output files, with an exact one-to-one match.
All information from the sequence output files in the SecondCall directory is exactly the
same as that from the original sequence output files in the base calls directory, except
for the sequence and quality scores:
} The second best base calls are based on the second highest value of the corrected
intensities.

} The corresponding quality scores are set so that the sum of the probabilities of the
actual base call and of the second best base call is equal to 1.

Paired Reads
The following additional variations on the bustard.py options are supported for paired
reads.

--phasing=<read>:value, --phasing=<read>:<read>
Use either of these option formats to specify phasing for one specific read of a pair.
The following example uses the default phasing option for read 1 but uses base phasing
estimates from lane 5 for read 2:

--phasing=1:auto --phasing=2:auto5

The following example uses the phasing estimate for the second read and applies it to
both read 1 and read 2:

--phasing=1:2

--matrix=<read>:value, --matrix=<read>:<read>
Use either of these option formats to specify the matrix for one specific read of a pair.
They are analogous to the phasing options listed above.

Makefile Targets
The bustard.py scripts generate makefiles in the relevant image analysis and base caller
directories that allow the complete analysis to be run by GNU Make. The makefiles

U
si
ng

B
us
ta
rd

26 Part # 15009920 RevC

have the following advantages:
} Not all of the analysis needs to be run immediately.
} On a multiprocessor system or cluster, the analysis can easily be parallelized by
specifying the “-j” option for “make.”

} In case of any failure or interruption during an analysis run, the run can easily be
restarted at the last point.

The following optional targets are used with the “make” command.

all
All is the default makefile target. It runs the complete analysis in the current directory
(image analysis or base caller).

-j <n>
This parallelization switch can be used with the “make” command to execute the OLB
run in parallel over <n> number of processor cores. For a description, see Using
Parallelization in OLB on page 51.

clean
This target removes all analysis output files. You would use “make clean” when you
are low on disk space.

WARNING
Using “make clean” removes all analysis results from the folder where the
command is executed. Use with care.

recursive
This target performs the analysis in the current directory and in all available
subdirectories. Use this target to start a complete analysis run all the way up to the
sequence alignment using a single command.
The following example starts recursive full analysis:

make recursive

Specify the target by setting the TARGET environment variable. The following example
removes all analysis results from ALL subfolders:

make recursive TARGET=clean

The recursive option is not compatible with tile and lane-specific targets.

compress
This target uses gzip to apply a loss-less compression to the output files after an
analysis run. This significantly reduces the size of the analysis folders. Typically, the
output folders are reduced to 1/3 and 1/4 of their original size.
In the compressed state, no further analysis is possible. The folder must be
uncompressed in order to reanalyze it.

uncompress
This target uncompresses a folder that has previously been compressed and returns it to
its original state.

A
na
ly
si
s
O
ut
pu
tF
ile
D
es
cr
ip
tio
ns

27 Part # 15009920 RevC

AnalysisOutput File Descriptions

This section describes the file types and file formats of the intermediate data output
produced during an analysis run.

Output File Types
The main output files for Bustard are:
} *.bcl files, which contain the sequence data
} *.filter files, which contain the information whether the reads passed filter, and
whether the read is an in-line control.

} *.stats files, which contain real time statistics for each cycle regarding associated
*.bcl files, such as number of calls and average intensity.

In addition, Bustard can produce a number of optional files.
These files are described in this section; the location of these files is depicted in the
image below.

Figure 5 Run Folder Structure and Output File Types

Bcl Files
The *.bcl files can be found in the BaseCalls directory:

<run directory>/Data/Intensities/BaseCalls/L<lane>/C<cycle>.1

They are named as follows:
s_<lane>_<tile>.bcl

The *.bcl files are binary base call files with the format described below.

A
na
ly
si
s
O
ut
pu
tF
ile
D
es
cr
ip
tio
ns

28 Part # 15009920 RevC

Bytes Description Data type
Bytes 0–3 Number N of cluster Unsigned 32bits little

endian integer
Bytes 4–(N+3)
Where N is the
cluster index

Bits 0-1 are the bases, respectively [A, C, G, T]
for [0, 1, 2, 3]:
bits 2-7 are shifted by two bits and contain the
quality score.

Unsigned 8bits integer

Stats Files
The stats files can be found in the BaseCalls directory:

<RunDirectory>/Data/Intensities/BaseCalls/L<lane>/C<cycle>.1

They are named as follows:
s_<lane>_<tile>.stats

The Stats file is a binary file containing base calling statistics; the content is described
below. The data is for clusters passing filter only.

Start Description Data
type

Byte 0 Cycle number integer
Byte 4 Average Cycle Intensity double
Byte 12 Average intensity for A over all clusters with intensity for A double
Byte 20 Average intensity for C over all clusters with intensity for C double
Byte 28 Average intensity for G over all clusters with intensity for G double
Byte 36 Average intensity for T over all clusters with intensity for T double
Byte 44 Average intensity for A over clusters with base call A double
Byte 52 Average intensity for C over clusters with base call C double
Byte 60 Average intensity for G over clusters with base call G double
Byte 68 Average intensity for T over clusters with base call T double
Byte 76 Number of clusters with base call A integer
Byte 80 Number of clusters with base call C integer
Byte 84 Number of clusters with base call G integer
Byte 88 Number of clusters with base call T integer
Byte 92 Number of clusters with base call X integer
Byte 96 Number of clusters with intensity for A integer
Byte 100 Number of clusters with intensity for C integer
Byte 104 Number of clusters with intensity for G integer
Byte 108 Number of clusters with intensity for T integer

Filter Files
The filter files can be found in the BaseCalls directory:

<run directory>/Data/Intensities/BaseCalls/L<lane>/

They are named as follows:
s_<lane>_<read>_<tile>.filter

The *.filter files are binary files containing filter results; the format is described below.

A
nalysis

O
utputFile

D
escriptions

Off-Line Basecaller User Guide 29

Bytes Description
Bytes 0–3 Zero value (for backwards compatibility)

Bytes 4–7 Filter format version number

Bytes 8–11 Number of clusters

Bytes 12–(2xN+11)
Where N is the cluster
index

The first byte is an unsigned char which indicates the identity
of the control to which the read was matched, or is zero if the
read wasn't identified as a control. The second byte has bit
flags that are used as follows:
• Bit 0 is pass or failed filter
• Bit 1: Read was flagged as a control
• Bit 2: Control match was ambiguous
• Bit 3-7: Reserved for future use

In-Line Control Report
OLB reports the presence of in-line controls. The best way to view the control results is
to open the report in the Sequencing Analysis Viewer (SAV). See the Sequencing Analysis
Viewer User Guide for information.
If you want to analyze the raw data, use the ControlsReport.csv file. This file contains
the columns Lane, Tile, Read, ControlName, Index, and Count.

Figure 6 ControlsReport.csv File Opened in Excel 2007

The in-line controls are added during the sample prep to check whether these steps are
performed correctly, and OLB identifies them based on their sequence. The following
controls are included:

Step Reaction Enzyme Control
End-Repair Chew-back of 3’ overhangs/ fill-in of 5’

overhangs
DNA Polymerase CTE1

End-Repair Phosphorylation of 5’ OH groups Polynucleotide
Kinase

CTE2

A Tailing Add 3’ A overhang DNA Polymerase CTA
Adapter
ligation

Join adapters to inserts DNA Ligase CTL

A
na
ly
si
s
O
ut
pu
tF
ile
D
es
cr
ip
tio
ns

30 Part # 15009920 RevC

A successful run should have a positive signal for all four controls at one or two
adjacent sizes. The reported size should correspond to the excised fragment. The
absolute number of reads for each control does not matter much, but there should be a
clear peak near the expected size.
If a certain control is not found in the sequencing sample, and it is the last control not
found in that sample, it likely means that the corresponding reaction was inefficient. For
example, if CTE1, CTE2 (End-repair controls), and CTA (A-tailing control) are absent,
then probably the A tailing step went wrong, because that one happens after the end
repair step.

Qseq Files
The _qseq files are not generated by default with the introduction of the *.bcl files, but
can be saved using the switches --with-qseq as described in Bustard Options on page
24. They have the following format:
} Machine name: (hopefully) unique identifier of the sequencer.
} Run number: (hopefully) unique number to identify the run on the sequencer.
} Lane number: positive integer (currently 1-8).
} Tile number: positive integer.
} X: Xcoordinate of the spot. As of RTA v1.6, OLB v1.6, and CASAVA v1.6, the X and
Y coordinates for each clusters are calculated in a way that makes sure the com-
bination will be unique. The new coordinates are the old coordinates times 10,
+1000, and then rounded.

} Y: Ycoordinate of the spot. As of RTA v1.6, OLB v1.6, and CASAVA v1.6, the X and
Y coordinates for each clusters are calculated in a way that makes sure the com-
bination will be unique. The new coordinates are the old coordinates times 10,
+1000, and then rounded.

} Index: positive integer. No indexing should have a value of 0.
} Read Number: 1 for single reads; 1 or 2 for paired ends.
} Sequence
} Quality: the calibrated quality string.
} Filter: Did the read pass filtering? 0 - No, 1 - Yes.

NOTE
The quality scoring scheme Illumina uses is the Phred scoring scheme, encoded as
an ASCII character by adding 64 to the Phred value. A Phred score of a base is:
Q
phred

=-10 log
10
(e)

where e is the estimated probability of a base being wrong.

Illumina's Read Segment Quality Control Metric
A number of factors can cause the quality of base calls to be low at the end of a read.
For example, phasing artifacts can degrade signal quality in some reads, and the
affected portions of these reads have high error rates and unreliable base calls.
Typically, the increase in phasing causes quality scores to be low in these regions, and
thus these unreliable bases are scored correctly.
However, the occurrence of phasing artifacts may not always correlate with segments of
high miscall rates and biased base calls, and therefore these low quality segments are
not always reliably detected by our current quality scoring methods. We therefore mark
all reads that end in a segment of low quality, even though not all marked portions of
reads will be equally error prone.

A
nalysis

O
utputFile

D
escriptions

Off-Line Basecaller User Guide 31

The read segment quality control metric identifies segments at the end of reads that may
have low quality, and unreliable quality scores. If a read ends with a segment of mostly
low quality (Q15 or below), then all of the quality values in the segment are replaced
with a value of 2 (encoded as the letter B in Illumina's text-based encoding of quality
scores). We flag these regions specifically because the initially assigned quality scores
do not reliably predict the true sequencing error rate. This Q2 indicator does not predict
a specific error rate, but rather indicates that a specific final portion of the read should
not be used in further analyses.
This is not a read-level filter; the occurrence of consecutive Q2 values in a read does not
indicate that the read itself is unreliable, but rather that only the base calls flagged with
Q2 are unreliable. Note, however, that these regions are included in the Gerald error rate
calculations for aligned reads. In typical sequencing runs, most reads are reliable over
their entire length, and are not marked with Q2 indicators. Of the reads that are marked
with the Q2 indicator, most are flagged only in the final few cycles. The number of
reads marked by the quality control indicator, and the extent of the marking, can be
used as an overall run quality metric.

Seq Files
The seq files are not generated by default with the introduction of the qseq files, but can
be saved using the switches --with-seq as described in Bustard Options on page 24.
The data found in the sequence files (_seq.txt) located in the Bustard folder are raw
sequences in the following condition:
} Trimming of any primer bases and splitting of a paired-read into two reads has not
been applied.

} Signal purity filtering of low quality data has not been applied.
} There is one file per tile, resulting in 960 files in total for the GA

IIx.
Use the sequence.txt files in the GERALD folder for which all the above points have
been applied.
The base calls are kept in one file per tile for the concomitant base calls, and use the
extension _seq.txt. For a given intensity file, following base calling, we have a sequence
file of the same name. For example, from an intensity file called s_1_0001_int.txt you
would get a base called file named s_1_0001_seq.txt.
Each sequence file has a sequence per row similar to the intensity files. Each row uses
the same format as the intensity file, with the <lane>,<tile>,<X-offset>,<Y-offset>
providing a unique key and a global co-ordinate for the sequence, and relating
sequences to a cluster on the images. Following this format, the output is a string with
one character for each base call in tab-delimited fields.
Another file holds the base caller confidence score that follows the format:

<channel><TAB><tile><TAB><X><TAB><Y><TAB><sequence><LF>

Efficiency
To allow efficient handling by any software packages, there is one intensity and
sequence file per tile. However, a single file can easily be created by simple
concatenation of the individual files. With real time analysis generated intensities the
files are further broken down per cycle

A
na
ly
si
s
O
ut
pu
tF
ile
D
es
cr
ip
tio
ns

32 Part # 15009920 RevC

Configuration/Parameters File Format

.Params File
The top level Run Folder contains a parameters file, named <Run FolderName>.params,
and is written in the following format:

<experiment>

<run>

...

</run>

<run>

...

</run>

</experiment>

For each restart of the instrument, a new run tag with corresponding parameter tags is
added to the parameters file. For most experiments, there will only be one run.
The XML tags in the parameters file are self-explanatory. The following shows an
example of a parameters file:

<experiment>

<run>

<instrument>slxa-b1</instrument>

</run>

</experiment>

Config.xml Files
In the top level of the Data folder you will find the config.xml file that records any
information specific to the generation of the subfolders. This contains a tag-value list
describing the cycle-image folders used to generate each folder of intensity and sequence
files.

<?xml version="1.0"?>

<ImageAnalysis>

<Run Name="C1-24_Firecrest1.9.0_30-07-2007_user">

<Cycles First="1" Last="24" Number="24" />

<ImageParameters>

<AutoOffsetFlag>1</AutoOffsetFlag>

<AutoSizeFlag>0</AutoSizeFlag>

<DataOffsetFile>/data/070813_ILMN-1_0217_FC1234/Data/default_

offsets.txt</DataOffsetFile>

<Fwhm>2.700000</Fwhm>

<InstrumentOffsetFile></InstrumentOffsetFile>

<OffsetFile>/data/070813_ILMN-1_0217_FC1234/Data/default_

offsets.txt</OffsetFile>

<Offsets X="0.000000" Y="0.000000" />

<Offsets X="0.790000" Y="-0.550000" />

<Offsets X="-0.240000" Y="-0.140000" />

<Offsets X="0.190000" Y="0.650000" />

<RemappingDistance>1.500000</RemappingDistance>

<SizeFile></SizeFile>

A
nalysis

O
utputFile

D
escriptions

Off-Line Basecaller User Guide 33

<Threshold>4.000000</Threshold>

</ImageParameters>

<RunParameters>

<AutoCycleFlag>0</AutoCycleFlag>

<BasecallFlag>1</BasecallFlag>

<Compression>gzip</Compression>

<CompressionSuffix>.gz</CompressionSuffix>

<Deblocked>0</Deblocked>

<DebugFlag>0</DebugFlag>

<ImagingReads Index="1">

<FirstCycle>1</FirstCycle>

<LastCycle>24</LastCycle>

<RunFolder>/data/070813_ILMN-1_0217_FC1234</RunFolder>

</ImagingReads>

<Instrument>ILMN-1</Instrument>

<MakeFlag>1</MakeFlag>

<MaxCycle>-1</MaxCycle>

<MinCycle>-1</MinCycle>

<Reads Index="1">

<FirstCycle>1</FirstCycle>

<LastCycle>24</LastCycle>

<RunFolder>/data/070813_ILMN-1_0217_FC1234</RunFolder>

</Reads>

<RunFolder>/data/070813_ILMN-1_0217_FC1234</RunFolder>

<Software Name="Firecrest" Version="1.x.x" />

<TileSelection>

<Lane Index="8">

<Sample>s</Sample>

<Tile>10</Tile>

<Tile>20</Tile>

<Tile>30</Tile>

</Lane>

</TileSelection>

<Time>

<Start>30-07-07 12:50:45 BST</Start>

</Time>

<User Name="user" />

</Run>

<Run Name="C1-24_Firecrest1.x.x_30-07-2007_user.2">

...

</Run>

</ImageAnalysis>

In each image analysis folder there is another config.xml file containing the meta-
information about the base caller runs.

<?xml version="1.0"?>

<BaseCallAnalysis>

<Run Name="Bustard1.9.0_30-07-2007_user">

<BaseCallParameters>

<Matrix Path="">

<AutoFlag>1</AutoFlag>

A
na
ly
si
s
O
ut
pu
tF
ile
D
es
cr
ip
tio
ns

34 Part # 15009920 RevC

<AutoLane>0</AutoLane>

<Cycle>2</Cycle>

<FirstCycle>1</FirstCycle>

<LastCycle>24</LastCycle>

<Read>1</Read>

</Matrix>

<MatrixElements />

<Phasing Path="">

<AutoFlag>1</AutoFlag>

<AutoLane>0</AutoLane>

<Cycle>1</Cycle>

<FirstCycle>1</FirstCycle>

<LastCycle>24</LastCycle>

<Read>1</Read>

</Phasing>

<PhasingRestarts />

</BaseCallParameters>

<Cycles First="1" Last="24" Number="24" />

<Input Path="C1-24_Firecrest1.9.0_30-07-2007_user.2" />

<RunParameters>

<AutoCycleFlag>0</AutoCycleFlag>

<BasecallFlag>1</BasecallFlag>

<Compression>gzip</Compression>

<CompressionSuffix>.gz</CompressionSuffix>

<Deblocked>0</Deblocked>

<DebugFlag>0</DebugFlag>

<ImagingReads Index="1">

<FirstCycle>1</FirstCycle>

<LastCycle>24</LastCycle>

<RunFolder>/data/070813_ILMN-1_0217_FC1234</RunFolder>

</ImagingReads>

<Instrument>ILMN-1</Instrument>

<MakeFlag>1</MakeFlag>

<MaxCycle>-1</MaxCycle>

<MinCycle>-1</MinCycle>

<Reads Index="1">

<FirstCycle>1</FirstCycle>

<LastCycle>24</LastCycle>

<RunFolder>/data/070813_ILMN-1_0217_FC1234</RunFolder>

</Reads>

<RunFolder>/data/070813_ILMN-1_0217_FC1234</RunFolder>

</RunParameters>

<Software Name="Bustard" Version="1.9.0" />

<TileSelection>

<Lane Index="5">

<Sample>s</Sample>

<TileRange Max="5" Min="5" />

</Lane>

</TileSelection>

<Time>

<Start>30-07-07 18:01:50 BST</Start>

A
nalysis

O
utputFile

D
escriptions

Off-Line Basecaller User Guide 35

</Time>

<User Name="user" />

</Run>

</BaseCallAnalysis>

RunInfo.xml File
The top level Run Folder contains a RunInfo.xml file. The file RunInfo.xml (normally
generated by SCS) identifies the boundaries of the reads (including index reads).
The XML tags in the RunInfo.xml file are self-explanatory. The following shows an
example of a RunInfo.xml file:

<?xml version="1.0"?>

<RunInfo>

<Run Id="071112_SLXA-EAS1_0089_FC20120_R1" Number="89" >

<Instrument>SLXA-EAS1</Instrument>

<Reads>

<Read FirstCycle="1" LastCycle="30" />

<Read FirstCycle="31" LastCycle="37" >

<Index Name="xxx" FirstCycle="31" LastCycle="37" />

</Read>

</Reads>

<SecondEnd FirstCycle="38" />

<ActualIndex>

<Cycle>31</Cycle> <Cycle>32</Cycle>

<Cycle>33</Cycle> <Cycle>34</Cycle>

<Cycle>35</Cycle> <Cycle>36</Cycle>

</ActualIndex>

</Run>

</RunInfo>

36 Part # 15009920 RevC

C
h
a
p
te
r5

Off-Line Basecaller User Guide 37

 Chapter 5 Converting BCL Files

ConvertingBCLFiles

Introduction 38
Converter Input Files 39
Converter Usage 40
Converter Output Files 43

C
on
ve
rt
in
g
B
C
L
Fi
le
s

38 Part # 15009920 RevC

Introduction

The standard sequencing output for the HiSeq™ and Genome Analyzer consists of *.bcl
files, which contain the base calls and quality scores per cycle. Older versions of
CASAVA (before v1.8) and third-party software use *_qseq.txt files as input. To convert
*.bcl files into *_qseq.txt files, use the BCL Converter.

The BCL Converter script (setupBclToQseq.py) sets up the following steps:
} Conversion of the *.bcl files into *_qseq.txt files. This operation also requires *.filter
files, and the following position files:
• *.clocs files from a HiSeq (RTA 1.10) run
• *.locs files from a GA (RTA 1.9) run
• *_pos.txt files

} Conversion of the stats files into the corresponding SignalMeans/s_<lane>_
<tile>_all.txt files.

} Completion of the building of the BaseCalls directory.

NOTE
The BCL conversion should be started only after completion of the run. RTA
updates the config.xml on every cycle and this interferes with the configuration of
the BCL Converter. Running the BCL Converter while RTA is still updating the
BaseCalls directory will lead to errors that can be difficult to detect, identify and
diagnose.
For intermediate BCL conversions (before completion of the run), Illumina
recommends to do the base calling offline, from the CIF files, using 'bustard.py'.

C
onverterInputFiles

Off-Line Basecaller User Guide 39

Converter Input Files

The BCL Converter needs the following input files from RTA:
} *.stats files. For a description of this format, see Stats Files on page 28.
} *.filter files. For a description of this format, see Filter Files on page 28.
} *.bcl files. For a description of this format, see Bcl Files on page 27.
} *_pos.txt, *.locs, or *.clocs files
} config.xml file
RTA is configured to copy these files off the instrument computer machine to the
BaseCalls directory on the analysis server. The files are decribed below.

Position Files

Locs files
The locs files can be found in the Intensities directory:

<run directory>/Data/Intensities/L<lane>

They are named as follows:
s_<lane>_<tile>.locs.

Clocs files
The clocs files are compressed versions of locs file and can be found in the Intensities
directory:

<run directory>/Data/Intensities/L<lane>

They are named as follows:
s_<lane>_<tile>.clocs.

Pos Files
The *_pos.txt files can be found in the Intensities directory:

<run directory>/Data/Intensities

They are named as follows:
s_<lane>_<tile>_pos.txt

The *_pos.txt files are text files with 2 columns and a number of rows equal to the
number of clusters. The first column is the X-coordinate and the second column is the
Y-coordinate. Each line has a <cr><lf> at the end.

Config.xml File
The config.xml file can be found in the BaseCalls directory:

<run directory>/Data/Intensities/BaseCalls

The config.xml file contains contains meta-information about the run, image analysis, and base
calling meta-information about the run, image analysis, and base calling.

C
on
ve
rt
in
g
B
C
L
Fi
le
s

40 Part # 15009920 RevC

ConverterUsage

Typical uses of the BCL Converter are documented below.
Note that OLB detects which version of RTA was used for base calling, based on the
position and format of the *.filter files. OLB then uses the filter file and positions file
locations and formats that were generated by default for that RTA version.
If OLB cannot find the proper files it will state so in an error message, and you can
specify the non-standard locations and formats by using the -f, -p, and -P options
described in BCL Converter Options on page 40.

Convert BCL into BaseCalls Directory
The recommended workflows for converting .bcl files into *_qseqs.txt files are as
follows:

1 Move to the BaseCalls directory:
cd path/to/BaseCalls

2 Run the setupBclToQseq.py script to generate the make file:
{path}/bin/setupBclToQseq.py -b path/to/BaseCalls

-o path/to/output/directory

3 Run the make file:
make -j 8

Convert BCL and RunGERALD
The --GERALD option allows setting up alignments. This requires GERALD.pl
(from CASAVA 1.7 or above) to be accessible via the PATH environment variable.
Typical usage is:

1 Move to the BaseCalls directory:
cd path/to/BaseCalls

2 Run the setupBclToQseq.py script to generate the make file:
{path}/bin/setupBclToQseq.py -b path/to/BaseCalls

-o path/to/output/directory --GERALD path/to/config.txt

3 Run the make file:
make recursive -j 8

Use recursive to recursively run make in the GERALD sub directories

BCLConverter Help
The list of command line options is available with:

bin/setupBclToQseq.py --help

BCLConverter Options
The command line options are explained below.

C
onverterU

sage

Off-Line Basecaller User Guide 41

-b, --base-calls-directory

The base calls directory (or Bustard directory) containing the Lane subdirectories with
the bcl files. This parameter is required.

-o, --output-directory

The user-selected output directory. It can be any non-existing directory, or an existing
one when the --overwrite parameter is used. You need to either specify this
parameter, or use the parameter --in-place, which will write output directly to the
BaseCalls folder.

--overwrite

Forces the tool to accept using an existing directory as output directory. It will overwrite
the previous analysis in that existing folder.

--in-place

This option will write output directly to the BaseCalls directory (--base-calls-
directory), because it takes -b (--base-calls-directory) and turns it in the output
directory. You need to either use this parameter, or specify the output directory using
the parameter -o or --output-directory.

-f, --filter-directory

The directory containing the filter files. This option is only necessary if the filter files are
not located in the directory OLB expects, based on the version of RTA OLB has detected.
If the -f option is used, OLB will automatically assume the filter files are in the format
generated by OLB v1.8 and RTA v1.8.

-p, --positions-directory

The directory that leads to the position files. Default value is the standard location that
is produced by the version of RTA that OLB has detected.
For RTA v1.8 or older, this is the directory that contains the *_pos.txt files. For RTA v1.9
or v1.10, this is the directory that contains the lanes directories that store the *.locs or
*.clocs files.

-P, --positions-format

The format of the positions files. Allowed values: -P _pos.txt, -P .locs, and -P .clocs.
Default value is the standard type of position file that is produced by the version of
RTA that OLB has detected.

-i, --intensities-directory

The path to the Intensities directory; only change if the Intensities directory is not
located directly above BaseCalls folder.

-c, --include-controls

By default, OLB reports controls as reads that did not pass filter, so that no downstream
analysis is affected. This option can be used by OLB to report controls using the last

C
on
ve
rt
in
g
B
C
L
Fi
le
s

42 Part # 15009920 RevC

field in the _qseq.txt file, as described in Converter Output Files on page 43. This option
should not be used for files that will be analyzed by any version of CASAVA.

--ignore-missing-bcl

If any *.bcl files are missing, OLB will not continue by default. This option tells OLB to
continue even if *.bcl files are missing. Instead of a base call, OLB writes "." in the _
qseq.txt file as the base for that cycle.

--ignore-missing-stats

If any *.stats files are missing, OLB will not continue by default. This option tells OLB to
continue even if *.stats files are missing. OLB will use the value 0 for any stat that was
supposed to come from the missing stats file for that cycle.

-j, --jobsLimit

If your system supports automatic load-sharing to multiple CPUs, you can parallelize
the analysis run to <n> different processes by using the “make” utility parallelization
switch -j n.

--GERALD

Configures the alignment sub-directory (similar to the equivalent option in OLB). This
requires the PATH environment variable to contain the full path to the CASAVA bin
directory. This is a required option if performing alignment.

--help

Use the --help command line option for more information.

C
onverterO

utputFiles

Off-Line Basecaller User Guide 43

ConverterOutput Files

The BCL Converter generates the following output files:
} *_qseq.txt base call and quality score files
The main sequencing output files for the BCL Converter are the _qseq files. They
contain base calls and quality scores per read, and are stored in the BaseCalls
directory. The *_qseq.txt files have the following format:

Field Description
Machine
name

Identifier of the sequencer.

Run
number

Number to identify the run on the sequencer.

Lane
number

Positive integer (currently 1-8).

Tile
number

Positive integer.

X X coordinate of the spot. Integer.
Y Y coordinate of the spot. Integer.
Index Index sequence or 0. For no indexing, or for a file that has not been

demultiplexed yet, this field should have a value of 0.
Read
Number

1 for single reads; 1 or 2 for paired ends or multiplexed single reads; 1, 2, or 3 for
multiplexed paired ends.

Sequence Called sequence of read.
Quality The quality string.
Filter Did the read pass filtering? 0 - No, 1 - Yes.

If the --include-controls option is used (see BCL Converter Options on page
40), this field reports passing filter and control status as follows:
• The first byte is an unsigned char which indicates the identity of the control to
which the read was matched, or is zero if the read wasn't identified as a control.

• The second byte has bit flags that are used as follows:
• Bit 0 is pass or failed filter
• Bit 1: Read was flagged as a control
• Bit 2: Control match was ambiguous
• Bit 3-7: Reserved for future use

As of RTA v1.6, OLB v1.6, and CASAVA v1.6, the X and Y coordinates for each
clusters are calculated in a way that makes sure the combination will be unique.
The new coordinates are the old coordinates times 10, +1000, and then rounded.

} *_all.txt stat files.
The *_all.txt file contains the mean value of each channel for all cycles. The files can
be found in the SignalMeans subdirectory of the BaseCalls directory.

} The BCL Converter also outputs all the plots that are in a normal Bustard directory
(see the OLB User Guide for a description).

} The BCL Converter generates a BustardSummary.xml file.
} The BCL Converter also copies the RTA Phasing.xml file.
These output files can now be used by the demultiplexer or go straight into GERALD.
They may also be used in third party software that accepts *_qseq.txt files.

44 Part # 15009920 RevC

A
p
p
e
n
d
ix
A

Off-Line Basecaller User Guide 45

Appendix A Requirements and Software Installation for OLB

Requirements andSoftware
Installation forOLB

Network Infrastructure 46
Analysis Computer 47
Installation Prerequisites 48
Installing the OLB Software 50

R
eq
ui
re
m
en
ts
an
d
S
of
tw
ar
e
In
st
al
la
tio
n
fo
rO

LB

46 Part # 15009920 RevC

Network Infrastructure

These large data volumes mean that you will need:

1 A high-throughput ethernet connection (1 Gigabit recommended) or other data
transfer mechanism.

2 A suitably large holding area for the analysis output (1 TB per run). As there will
almost certainly some overlap between copying, analysis, possible reanalysis, 2–3
 TB is an absolute minimum.

3 You need to consider which parts of the data you want to store long-term and what
storage infrastructure you want to provide. OLB provides the option to perform
loss-less data compression.

Storage Configurations
You can configure your analysis server with either local storage or external network
storage.
} Local server storage can be internal to the server, or Direct Attached Storage (DAS),
which is a separate chassis attached to the server.
• Internal—Simple but not scalable. Results data must be moved off to network
storage at some point to make room for subsequent runs.

• DAS—External chassis that is scalable since more than one DAS can be
connected to the server. The server is an application server running OLB and a
file server providing access to results and receiving incoming raw data files.

} External network storage is either Network Attached Storage (NAS) or Storage Area
Network (SAN). NAS and SAN are functionally equivalent, but SAN is larger, with
higher performance, more connections, and more management options.
• NAS—External chassis connected via an Ethernet to the server, instrument PC,
and other clients on the network. NAS devices are scalable and highly
optimized.

• SAN—The most scalable with the highest performance. They have a very high
bandwidth and support many simultaneous clients, but are complex to manage
and significantly more expensive.

Server Configurations
You can use either a single multi-processor, multi-core computer running Linux, or a
cluster of Linux servers with a head node. OLB can take advantage of clustered and
multi-processing servers.
} Single multi-processor, multi-core server—Simple but not scalable. It can only
analyze data from one sequencing platform, or two depending on power and your
turn-around requirements.

} Linux Cluster—Highly scalable and capable of running multiple jobs simul-
taneously. It requires one server as a management node and a minimum number of
computational notes to be as efficient as a standalone server. By adding com-
putational nodes, the cluster can service more instruments.

A
nalysis

C
om

puter

Off-Line Basecaller User Guide 47

Analysis Computer

OLB may run on any 64-bit Unix variant, if all of the prerequisites described in this
section are met. However, Illumina does not support any platform other than RedHat
Enterprise Linux 5.x and it's free alternative, CentOS.
Illumina recommends the IlluminaCompute data processing solution for OLB.
IlluminaCompute is available as a multi-tier option, with the volume of instrument
data output per week determining the recommended Tier level. For more information,
contact Illumina Support.
For example, for a laboratory generating 200 GB of sequence per week, the Tier 1
IlluminaCompute solution is recommended, for which the specifications are listed
below (non-IlluminaCompute systems satisfying these requirements are also fully
supported):
} 1 APC Netshelter: 40U Rack with 1U KMM console
} 3 Dell R610 Server: 8 CPU cores, 48 GB RAM
} 3 Isilon IQ12000x storage modules
} 1 Serial MGT Console 16
} 2 Cisco 3750e switches
OLB parallelization is built around the multi-processor facilities of the “make” utility
and scales very well to beyond eight nodes. Substantial speed increases are expected for
parallelization across several hundred CPUs. For a detailed description, see Using
Parallelization in OLB on page 51.

R
eq
ui
re
m
en
ts
an
d
S
of
tw
ar
e
In
st
al
la
tio
n
fo
rO

LB

48 Part # 15009920 RevC

InstallationPrerequisites

The following software is required to run the Off-Line Basecaller:
} Perl 5.8 or later; it's best to install the RedHat rpms for Perl.
} Python 2.4 or later
} GNU make 3.78 or later
(qmake from Sun Grid Engine (SGE) 6.1 has been reported to work)

} gnuplot 3.7 or later (4.0 is recommended)
} ImageMagick 5.4.7 or later
} Ghostscript
} xsltproc
} SMTP server (for optional automated email run reports)
} zlib
} bzlib
For a compilation from source, the following additional software is required:
} gcc >= 4.0.0, except 4.0.2 (including g++)
} headers (-devel RPMs) for the required tools and libraries
} Optimized FFT library
(Only one of the following three FFT libraries are required, not all three)
• FFTW 3.0.1 or greater (3.1 is recommended); GPLed. To download files, see
http://www.fftw.org.

• The single-precision version of FFTW is required (libfftw3f.a). This is produced
by specifying the --enable-single option to the ./configure procedure of FFTW as
follows:
./configure --enable-single
make
make install

• Intel Maths Kernel Library
• IBM ESSL

NOTE
On some systems (including BSD), the ncurses headers might be required.

If you are running the Linux distribution Red Hat, the required dependencies listed
above are satisfied by the Red Hat packages perl-XML-Dumper, perl-XML-Grove, perl-
XML-LibXML, perl-XML-NamespaceSupport, perl-XML-Parser, perl-XML-SAX, perl-
XML-Simple, perl-XML-Twig, gnuplot, ImageMagick, ghostscript, libxml2, libxml2-
devel, libxml2-python, ncurses, ncurses-devel, gcc, gcc-c++, libtiff, libtiff-devel, bzip2,
bzip2-devel, zlib, zlib-devel, PyXML as well as their respective prerequisites. fftw3
needs to be downloaded separately and installed from source.

Boost Libraries
OLB uses the boost libraries version 1.42.0, which is included with the distribution
tarball. By default, the OLB installer will built the required components of the boost
libraries, but for this it is important to make sure that the BOOST_ROOT and
BOOSTROOT environment variables are unset:

unset BOOST_ROOT

unset BOOSTROOT

Installation
P
rerequisites

Off-Line Basecaller User Guide 49

If boost 1.42.0 is already installed on your system, and if you want to use it instead of
the version provided in the OLB tarball, simply set BOOST_ROOT to the directory
where boost 1.42.0 is already installed before starting the installation of OLB.

R
eq
ui
re
m
en
ts
an
d
S
of
tw
ar
e
In
st
al
la
tio
n
fo
rO

LB

50 Part # 15009920 RevC

Installing theOLBSoftware

To install OLB, you obtain the source code and then compile the software. Compiling
the software will first build all C++ code, and then copy the relevant executables into the
appropriate bin and lib subdirectories, which contain the scripts and makefile
generators.

1 Go to the location where you want to install OLB and type the following:
tar xvfz OLB-version.tar.gz

where version is of the archive you have. You may have to adjust the path to the archive.

2 Change to the OLB directory and type:
make install

Compiling onOther Platforms
Compiling OLB with the current makefiles works on all platforms, including many 64-
bit Linux versions and Solaris. However, if your compilation does not succeed on a less
commonly used platform (like platforms other than Linux), you may have to make
manual changes to the makefiles. Compilation problems may require you to adapt the
platform-specific gcc-compiler flags.
Illumina does not support any platform other than Linux.

Directory Setup
Create a directory called Instruments/<instrument_name> for each sequencing platform
in the same directory as the Run Folder, where <instrument_name> is the hostname of
the computer that is attached to the sequencing platform.
For example, the directory for the Run Folder /data/070813_ILMN-1_0217_FC1234
would be called /data/Instruments/ILMN-1/.
Use the environment variable INSTRUMENT_DIR, to override the default location of
the Instruments directory:

export INSTRUMENT_DIR=/home/user/Instruments

If no instrument directory exists, OLB will create one for you.

A
p
p
e
n
d
ix
B

Off-Line Basecaller User Guide 51

Appendix B Using Parallelization in OLB

UsingParallelization inOLB

Introduction 52
“Make” Utilities 53

U
si
ng

P
ar
al
le
liz
at
io
n
in
O
LB

52 Part # 15009920 RevC

Introduction

One of the main considerations behind the current OLB architecture is the ability to use
the parallelization facilities present on almost all SMP machines and on most
Linux/Unix clusters. Parallelization is scalable and makes use of all available CPU
power.

“M
ake”

U
tilities

Off-Line Basecaller User Guide 53

“Make”Utilities

Parallelization is built around the ability of the standard “make” utility to execute in
parallel across multiple processes on the same computer. Since version 0.2.2, OLB also
provides a series of checkpoints and hooks that enables you to customize the
parallelization for your computing setup. See Customizing Parallelization on page 53 for
details.

Standard “Make”
The standard “make” utility has many limitations, but it is universally available and
has a built-in parallelization switch (“-j”). For example, on a dual-processor, dual-core
system, running “make -j 4” instead of “make,” executes the OLB run in parallel over
four different processor cores, with an almost 4-fold decrease in analysis run time. On a
4-way SMP system, “-j 8” or more may be advisable.

Distributed “Make”
There are several distributed versions of “make” for cluster systems. Frequently used
versions include “qmake” from Sun Grid Engine and “lsmake” from LSF.
To use “qmake,” a short wrapper script is required. See the grid engine documentation
for details.
There are known issues with the use of “lsmake” that prevent parts of OLB from
running. Therefore, Illumina does not recommend using “lsmake” to run OLB.

NOTE
Distributed cluster computing may require significant system administration
expertise.
Illumina does not support external installations.

Customizing Parallelization
Many parts of OLB are intrinsically parallelizable by lane or tile. However, some parts
of OLB cannot be parallelized completely. OLB has a series of additional hooks and
check-points for customization.
OLB base calling can be divided further into a series of steps with different levels of
scalability where synchronization “barriers” cause OLB to wait for each of the tasks
within a step to finish before going to the next step.
You can parallelize the steps at the run level (no parallelization), the lane level (up to
eight jobs in parallel), and the tile level (up to thousands of jobs in parallel). Each step
is initiated by a “make” target. After completion of each of these steps, OLB produces a
file or a series of files at the lane/tile level, that determines whether all jobs belonging to
the step have finished. Finally, hooks are provided upon completion of the step to issue
user-defined external commands.

Example of Parallelization
Typing “make” in the Firecrest folder is equivalent to the following series of commands:

make default_offsets.txt

make s_1; make s_2; make s_3; make s_4; make s_5;

make s_6; make s_7; make s_8

U
si
ng

P
ar
al
le
liz
at
io
n
in
O
LB

54 Part # 15009920 RevC

make all

This command addresses each lane sequentially. Using parallelization, you can run all
eight commands on the second line in parallel, as long as you make sure that they all
finish before the final “make all” is issued. There are several ways to parallelize these
jobs. For example, you could send them to the queue of a batch system, or just use “ssh”
or “rsh” to send them to a predetermined analysis computer.
In the following example, the second step is automatically started after the first step
(make s_1;) as the external command, “cmdf1.” The external command will be issued
after completion of the first step.

make -j 2 default_offsets.txt cmdf1='make s_1;

make s_2; make s_3; make s_4; \

make s_5; make s_6; make s_7; make s_8;' \

cmdf2='if [[-e s_1_finished.txt && -e s_2_finished.txt && -e

s_3_finished.txt \

&& -e s_4_finished.txt && -e s_5_finished.txt

&& -e s_6_finished.txt \

&& -e s_7_finished.txt && -e s_8_finished.txt]]; then make

all ; fi #'

This only makes sense if you parallelize the eight “make” commands instead of using
“make s_1,” as shown in the following example:

nohup ssh <mycomputenode1> make -j 4 s_1

—or—
bsub make s_1

After completing the eight “make” commands in the second step, the shell command
“cmdf2” is run to check for the existence of all eight checkfiles. The next make
command (make all) will be issued only after the completion of the first seven lanes.

if [[-e s_1_finished.txt && -e s_2_finished.txt

&& -e s_3_finished.txt \

&& -e s_4_finished.txt && -e s_5_finished.txt

&& -e s_6_finished.txt \

&& -e s_7_finished.txt && -e s_8_finished.txt]]; then make

all ; fi #

The reason for the final comment symbol (#) at the end of the shell command above is
that OLB automatically supplies an argument to all commands issued at the lane level
and is used as an identifier for the actual lane analyzed. In the example above, this
argument is not used, and so it needs to be commented out.

NOTE
There is no need to declare the full shell command on the command line. You
could put all of the shell commands into a shell script and call that script instead.

Base Calling
This section lists the steps, corresponding make targets, checkfiles, and hooks for base
calling by the Bustard module.

Parallelization
Level

Run Lane Tile

Target matrix_1_
finished.txt ...

Matrix/s_1_0001_02_mat.txt ...
(more tiles/cycles)

Check File matrix_1_
finished.txt ...

Matrix/s_1_0001_02_mat.
txt ... (more tiles/cycles)

“M
ake”

U
tilities

Off-Line Basecaller User Guide 55

Parallelization
Level

Run Lane Tile

Hook cmdb5 (none)
Target matrix
Check File matrix_

finished.txt
Hook cmdb6
Target phasing_1_

finished.txt ...
Phasing/s_1_0001_01_phasing.
txt ... (more tiles/cycles)

Check File phasing_1_
finished.txt ...

Phasing/s_1_0001_01_phasing.
txt ... (more tiles/cycles)

Hook cmdb1 (none)
Target phasing
Check File phasing_

finished.txt
Hook cmdb2
Target s_1 ... s_1_0001 ...
Check File s_1_finished.txt ...
Hook cmdb3 (none)
Target all
Check File finished.txt
Hook cmdb4

Depending on the number of reads in the sequencing run, there may be multiple tile-
specific targets in the matrix and phasing estimation. Matrix estimation is typically
done on the second cycle of a read, phasing estimation from the first cycle onwards.

Parallelization Limitations
The analysis works on a per-tile basis, so the maximum degree of parallelization
achievable is equal to the total number of tiles scanned during the run. However, some
parts of OLB operate on a per-lane basis, and a few parts on a per-run basis, which
means that scaling will cease to be linear at some stage for more than 8-way
parallelization.

Memory Limitations
OLB requires a minimum of 2 GB RAM available per concurrent process. For most OLB
tools, the amount of memory requires is linear in the number of clusters per tile and the
number of sequencing cycles.

56 Part # 15009920 RevC

Index

Off-Line Basecaller User Guide 57

Index

A
all 26
analysis output 4
raw sequences 31

B
base calling 2
BaseCalls folder 13
BCL Conversion 3
BCL Converter
basecalls directory 40
controls 40
filter directory 40
GERALD 40
help 40
in place 40
input directory 40
input files 39
jobs limit 40
missing files 40
options 40
output directory 40
overwrite 40
positions 40
usage 40
bcl files 27
Bustard 11, 21
controls 24
options 23-24
output 27

C
calibration parameters 16
CIF files 24
clean 26
clocs files 39
compression 23, 26
config.xml 32-33
base calling folder 14
Data folder 13
config.xml file 39
configuration files 15
contents 10
control lanes 24
control report 29
ControlsReport.csv file 29
cross-talk matrix 24
customer support 59

D
data folder 13
documentation 59

F
file naming 14
filter files 28
frequency cross-talk 11, 16, 24

G
GERALD 23

H
help
reporting problems 7
help, technical 59

I
input parameters 16
installation 5, 50

L
Linux Red Hat 48
locs files 39

M
make 11, 23, 53
make recursive 26
makefile targets 26
matrix file 24
matrix.txt file 16

N
network requirements 46
new-read-cycle 23
nohup 22

O
off-line basecalling 22

P
paired reads 22
command line variations 25
parallelization 22, 26, 52
limitations 55
parameters files 15
image analysis folder 14

In
de
x

58 Part # 15009920 RevC

params file 32
phasing 11, 24
phasing.xml file 17
Phred scoring scheme 16
pos.txt files 39
position files 39
prephasing 11, 25

Q
qseq files 25, 30, 43
quality scoring 16
qval files 25

R
Read Segment Quality Control 30
real time analysis 4, 11
RTA See real time analysis 4
Run Folder 4, 12
naming 14
structure 13
RunInfo.xml file 35

S
second-call 25
seq files 25
sig2 files 25
software requirements 48
stats files 28

T
technical assistance 59
tile selection 23

W
what’s new 6

TechnicalA
ssistance

Off-Line Basecaller User Guide 59

TechnicalAssistance
For technical assistance, contact Illumina Customer Support.

Illumina Website http://www.illumina.com

Email techsupport@illumina.com

Table 3 Illumina General Contact Information

Region Contact Number
North America toll-free 1.800.809.ILMN (1.800.809.4566)
United Kingdom toll-free 0800.917.0041
Germany toll-free 0800.180.8994
Netherlands toll-free 0800.0223859
France toll-free 0800.911850
Other European time zones +44.1799.534000
Other regions and locations 1.858.202.ILMN (1.858.202.4566)

Table 4 Illumina Customer Support Telephone Numbers

MSDSs
Material safety data sheets (MSDSs) are available on the Illumina website at
http://www.illumina.com/msds.

Product Documentation
If you require additional product documentation, you can obtain PDFs from the
Illumina website. Go to http://www.illumina.com/support/documentation.ilmn. When
you click on a link, you will be asked to log in to iCom. After you log in, you can
view or save the PDF. To register for an iCom account, please visit
https://icom.illumina.com/Account/Register.

http://www.illumina.com/
http://www.illumina.com/msds

Illumina, Inc.
9885TowneCentreDrive
SanDiego,CA92121-1975
+1.800.809.ILMN (4566)
+1.858.202.4566 (outsideNorth America) techsupport@illumina.com
www.illumina.com

	Revision History
	Table of Contents
	List of Tables
	 Chapter 1 Overview
	Introduction
	Installation
	What’s New
	Reporting Problems

	 Chapter 2 Core Data Analysis Concepts
	Introduction
	Base Calling Module
	Understanding the Run Folder
	Calibration and Input Parameters

	 Chapter 3 Using Bustard
	Introduction
	Invoking Bustard for Base Calling
	Running Off-Line Basecalling
	Command Line Options for Bustard
	Analysis Output File Descriptions

	 Chapter 5 Converting BCL Files
	Introduction
	Converter Input Files
	Converter Usage
	Converter Output Files

	Appendix A Requirements and Software Installation for OLB
	Network Infrastructure
	Analysis Computer
	Installation Prerequisites
	Installing the OLB Software

	Appendix B Using Parallelization in OLB
	Introduction
	“Make” Utilities

	Index
	Technical Assistance

