Discrete Differentiation

Nicholas Paine
5/2/12

Problem

* Robots use encoders to measure joint angles

* Encoders measure angles (position)

e What if we want to know velocities or
accelerations?

Common Approaches

1. Use velocity/acceleration sensors

— Requires lots of sensors which is complicated
and expensive

2. Perform simple signal processing to
approximate time derivatives
— In my experience this is what most people do
— Simple and inexpensive
— Noisy, especially after 15t derivative

Digital Measurements

Digital measurements have error from both
guantization and temporal sampling

A <> sampling

f(t)i::::i":::::

Both lead to “stair step” waveforms

Simple Differentiation Technique

A velocity approximation can be obtained as

follows:
vin] = X[n] —Tx[n —1]

S

The same applies for acceleration:

vin]—v[n-1]
T

S

aln] =

Any problem with this?

Simple Differentiation Technique

Quantization and temporal sampling lead to
instantaneous changes in measured position

A
MOV b A] FE

Which lead to instantaneous changes in
velocity and acceleration

Simple Differentiation Technique

What does this actually look like?

200

190 o~

180 \

170 \

160 \

150 \

140 \
N\
120 \ ———

110

Position

100

Simple Differentiation Technique

What does this actually look like?

1000

500

0

-500

-1000

-1500

Velocity

-2000

-2500

-3000

-3500

-4000

Simple Differentiation Technique

What does this actually look like?

60000

50000

40000

30000

20000

Acceleration

-10000 -~

-20000

-30000

-40000

-50000

10000 -

0
Ll

19
37

Simple Differentiation Technique

What does this actually look like?

200

180 \
160 \

120

Iion

Pos

100

91
109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433
451
469
487
505
523
541
559
577
595
613
631
649
667
685
703
721
739
757
775
793

1000

-1000

-2000

Velocity

-3000

-4000
60000
40000
20000 i

-20000 e - N NN ™ < < S < NMmmMmInmOOOOOKRNNNKNN
-40000
-60000

Acceleration
o

The ‘s’ operator

e ‘s’ is the continuous time derivative operator

* We approximated this in discrete time with
the following:
x(n) —x(n—1) 1-2z71
>
[I
 Where x(n) is the current sample, and x(n-1) is
the previous sample and T_s is the sample

period

S &

Tustin Transform

* The Tustin Transform improves on our simple
approximation by dividing by an averaging
term

T, 1421

* The Tustin Transform does a better job of
preserving the transfer function than our
simple method

Velocity transfer function

* |f we use the s operator with a low pass filter,
we can produce a higher quality time
derivative signal

v(s) S

X(s) (%))2 +1.4142(%)C)+1

Acceleration transfer function

* We can do the same thing for acceleration

a(s) S°

Xs) (%))2 +1.4142(%)C)+1

Discretization

* Both of these transfer functions can be
discretized using the Tustin Transform so that
they may be implemented on a computer as a

digital filter
* See appendix

Matlab code

$generates digital filter coefficients for acceleration calculation

clear all
format compact;
format long g:

A fc = 5; $LPF cutoff freq (hz)
Ts = 0.001; $sampling

[an,ad] = butter(2,A fc*2*pi,'s'); %generate LPF coeffs
QO A = tf(an,ad); 3ILPF tfr function

Afilt = t£([1 0 0],1) * Q A; %Imultiply by s"2

$3print digital filter coefficients
Hd = c2d(Afilt,Ts, 'tustin');
[num,den] = tfdata (Hd):
num = cell2mat (num) ;
den = cellZmat (den)
-jfor i = 1:length (num)
inCoeffs (i) = num(i);

|for i = 2:1length{den)
outCoeffs (i-1) = -den(i);

end

disp('input coefficients * (1 n-1 n-2 ... n-m)')
inCoeffs

disp('output coefficients * (n-1i n-2 ... n-m)')

outCoeff

disp('a(n) = IN COEFFi*x(n) + IN COEFF2*x(n-1) + IN COEFF3*x(n-2) + OUT COEFFi*a(n-1) + OUT COEFF2*a(n-2)')

us

tin/LPF Technique

ition

Velocity Pos

Acceleration

200
180
160
140
120
100

1000

-1000

-2000

-3000

-4000

4000
2000

-2000

-4000

19

37

55

73

91
109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433
451
469
487
505
523
541
559
577
595
613
631
649

667
685
703
721
739
757
775
793

325
343
361
379
397

1000

500

-500

-1000

-1500

-2000

-2500

-3000

-3500

-4000

Velocity Comparison

281
301
321
341
361
381
401
421
441
461
481
501

Motor Velocity Simple(rpm)

Motor Velocity(rpm)

Appendix

e Output of the Tustin Transform is of the form:
az’ + bz +c
P = i e
Which is just a discrete time transfer function

Y(z) az®*+bz+c
X(z) z%2+4+dz+e

H(z) =

Appendix

Y(z) az®+bz+c
X(z) z%2+4+dz+e

Cross multiplying yields:
Y(2)(z? +dz + e) = X(z)(az? + bz + c)
Then dividing by z*2 and rearranging:

Y(2)=X@)(a+ bz t+cz7?) =Y (2)(dz™! + ez™?)

Appendix

Y(z2) =X2)(a+ bzt +cz7?)-Y(2)(dz™! + ez™?)
* This equation represents what is called a

digital filter (an IIR filter to be precise)

 The output (Y) is a function of the current and

previous inputs (X) and of the previous
outputs

e Remember the z*-1 operator represents the
previous sample

e We can write code for this

Appendix

Y(z2) =X2)(a+ bzt +cz7?)-Y(2)(dz™! + ez™?)

Code:
y[0] = a*x[0] + b*x[1] + c*x[2]

- d*y[1] - e*y[2];
x[2] = x[1];
x[1] = x[0];
y[2] = y[1];
y[1] = y[e.
return y[0];

