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Problem

* Robots use encoders to measure joint angles

* Encoders measure angles (position)

e What if we want to know velocities or
accelerations?




Common Approaches

1. Use velocity/acceleration sensors

— Requires lots of sensors which is complicated
and expensive

2. Perform simple signal processing to
approximate time derivatives
— In my experience this is what most people do
— Simple and inexpensive
— Noisy, especially after 15t derivative



Digital Measurements

Digital measurements have error from both
guantization and temporal sampling

A <> sampling

f(t)i::::i":::::

Both lead to “stair step” waveforms



Simple Differentiation Technique

A velocity approximation can be obtained as

follows:
vin] = X[ n] —Tx[n —1]

S

The same applies for acceleration:

vin]—v[n-1]
T

S

aln] =

Any problem with this?



Simple Differentiation Technique

Quantization and temporal sampling lead to
instantaneous changes in measured position

A
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Which lead to instantaneous changes in
velocity and acceleration




Simple Differentiation Technique

What does this actually look like?
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Simple Differentiation Technique

What does this actually look like?
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Simple Differentiation Technique

What does this actually look like?

60000

50000

40000

30000

20000

Acceleration

-10000 -~

-20000

-30000

-40000

-50000

10000 -

0
Ll

19
37




Simple Differentiation Technique

What does this actually look like?
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The ‘s’ operator

e ‘s’ is the continuous time derivative operator

* We approximated this in discrete time with
the following:
x(n) —x(n—1) 1-2z71
>
[ I
 Where x(n) is the current sample, and x(n-1) is
the previous sample and T_s is the sample

period

S &



Tustin Transform

* The Tustin Transform improves on our simple
approximation by dividing by an averaging
term

T, 1421

* The Tustin Transform does a better job of
preserving the transfer function than our
simple method



Velocity transfer function

* |f we use the s operator with a low pass filter,
we can produce a higher quality time
derivative signal

v(s) S

X(s) (%))2 +1.4142(%)C)+1




Acceleration transfer function

* We can do the same thing for acceleration

a(s) S°

Xs) (%))2 +1.4142(%)C)+1




Discretization

* Both of these transfer functions can be
discretized using the Tustin Transform so that
they may be implemented on a computer as a

digital filter
* See appendix




Matlab code

$generates digital filter coefficients for acceleration calculation

clear all
format compact;
format long g:

A fc = 5; $LPF cutoff freq (hz)
Ts = 0.001; $sampling

[an,ad] = butter(2,A fc*2*pi,'s'); %generate LPF coeffs
QO A = tf(an,ad); 3ILPF tfr function

Afilt = t£([1 0 0],1) * Q A; %Imultiply by s"2

$3print digital filter coefficients
Hd = c2d(Afilt,Ts, 'tustin');
[num,den] = tfdata (Hd):
num = cell2mat (num) ;
den = cellZmat (den)
-jfor i = 1:length (num)
inCoeffs (i) = num(i);

|for i = 2:1length{den)
outCoeffs (i-1) = -den(i);

end

disp('input coefficients * (1 n-1 n-2 ... n-m)')
inCoeffs

disp('output coefficients * (n-1i n-2 ... n-m)')

outCoeff

disp('a(n) = IN COEFFi*x(n) + IN COEFF2*x(n-1) + IN COEFF3*x(n-2) + OUT COEFFi*a(n-1) + OUT COEFF2*a(n-2)')
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Appendix

e Output of the Tustin Transform is of the form:
az’ + bz +c
P = i e
Which is just a discrete time transfer function

Y(z) az®*+bz+c
X(z) z%2+4+dz+e

H(z) =



Appendix

Y(z) az®+bz+c
X(z) z%2+4+dz+e

Cross multiplying yields:
Y(2)(z? +dz + e) = X(z)(az? + bz + c)
Then dividing by z*2 and rearranging:

Y(2)=X@)(a+ bz t+cz7?) =Y (2)(dz™! + ez™?)



Appendix

Y(z2) =X2)(a+ bzt +cz7?)-Y(2)(dz™! + ez™?)
* This equation represents what is called a

digital filter (an IIR filter to be precise)

 The output (Y) is a function of the current and

previous inputs (X) and of the previous
outputs

e Remember the z*-1 operator represents the
previous sample

e We can write code for this



Appendix

Y(z2) =X2)(a+ bzt +cz7?)-Y(2)(dz™! + ez™?)

Code:
y[0] = a*x[0] + b*x[1] + c*x[2]

- d*y[1] - e*y[2];
x[2] = x[1];
x[1] = x[0];
y[2] = y[1];
y[1] = y[e.
return y[0];




