Experimental Design

4 Main Stages

1

Biological Question 2

Design & Conduct Experiment

3

Prepare NGS Library & Sequence 4

Sequencing Analysis

Class time

2

Design & Conduct Experiment

2. DESIGN & CONDUCT EXPERIMENT

Types of sequencing

- Clonal sequencing
 - Expect a single genome to be present. Highly resilient to sequencing errors.
- Population sequencing
 - Multiple subpopulations and genomes expected to be present. Highly susceptible to sequencing errors especially when making quantitative analysis.
- Amplicon/targeted sequencing
 - Know all/most reads correspond to specific genomic locations. Can be dominated by sequencing errors.

3

Prepare NGS Library & Sequence

3. PREPARE NGS LIBRARY & SEQUENCE

Standard Library Prep

- 1. Fragment DNA
 - 1. Enzymatic, sonication, acoustic, nebulization
- 2. Blunt DNA
- 3. "A"-Tail DNA
- 4. Ligate adapters
- 5. PCR

Standard library prep sufficient

- Clonal samples
 - Each base 0 or 100%
 - 50% possible in diploids
- Low to moderate coverage depth populations (<100)
 - Standard Illumina error rate 1%
 - Much more on this later
- Good reference
 - Typical want DNA fragment sizes 350 700 bp
 - miSeq: 700 1500 bp

Standard library prep lacking

- High coverage populations (>100)
 - Error rate of 1% sets limit of detection at 1% regardless of depth
 - Error rate reduction
- Non-model organism
 - Difficult to generate good reference assemblies using 300 - 700bp
 - Mate-pair libraries several kb inserts
 - Combine with other long read sequencing solutions
- Repeat-mediated rearrangements
 - Repeats often 1.5kb+ long, difficult to get reads on both sides
 - Mate-pair libraries again

3. Prepare NGS Library & Sequence

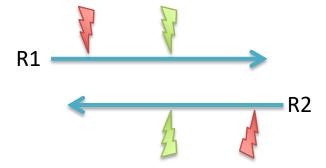
ERROR RATE REDUCTION

Basic Principle

- Because majority of errors are randomly distributed along reads, several alternative library preparation methods exist to read the same original fragment of DNA multiple times to reduce error rates.
- 3 main ways.
 - 1. Molecular indexing
 - 2. Circle sequncing
 - 3. Short insert size approximately read length

Alternative Library Preparation

- Duplex sequencing (<u>Schmidt et al 2012 PNAS</u>)
 - Molecular index to identify original DNA fragments



- Circle sequencing (<u>Lou et al 2013 PNAS</u>)
 - Rolling circle amplification to reread same fragment

Alternative Library Preparation

- Double read
 - Fragment DNA size to ~read length.
 - Can be done with any paired end read.

3. Prepare NGS Library & Sequence

"LONGER" READS

Illumina Options

- Technology:
 - Illumina: 2 x 300 miSeq runs
- Mate pair library:
 - Generates 2 outwardly facing reads separated by up to 25kb.
 - Allows connection of otherwise distant locations on a single read.

4

Sequencing Analysis

Read Sequence Quality control

4. SEQUENCING ANALYSIS

Garbage In, Garbage Out

Data Preprocessing

 Massaging standard Illumina data is always less effective than better experimental planning and design using alternative library preparation methods.

Read Sequence Quality Control Questions

- Contaminated with other samples?
- Adapter dimers present?
 - Reads with no insert present.
- Adapters present on ends of reads?
 - Insert size smaller than read length.
- 3' end of reads quality decline?

About the Tutorials.

- Some more basic bash/linux interrogation about reads, and working with TACC.
- FastQC can answer all questions about raw read quality and is pretty much the only game in town.
- Cutadapt is a tool for quickly improving data when you identify a problem.

FASTQC WALK THROUGH