
First lecture

What we'll cover

● General course structure
● What is programming?
● Why use programming?
● The Unix environment.

General course

● First six weeks are the fundamentals of
programming

● Second six are special topics
● Feel free to bring in your programming

challenges

Literature

● "Practical Computing for Biologists"
(Haddock and Dunn)
○ Great for beginners
○ Mostly geared towards text editing

● O'Reilly Books
○ "Bioinformatics Programming in Python"

■ In Python 3, but good methodology

● http://greenteapress.com/thinkpython/thinkpython.pdf
○ Free!

http://greenteapress.com/thinkpython/thinkpython.pdf
http://greenteapress.com/thinkpython/thinkpython.pdf

Literature - The internet

● Stack Overflow
○ The answer is there, but it might be snarky

● Software Carpentry
○ Lot's of great free lessons
○ Host lectures - keep an eye out

What is a program?

How to get inside your computer

What is a program?

● A series of commands for your computer

What is a program?

● A series of commands for your computer
○ Computers are dumb

What is a program?

● A series of commands for your computer
○ Computers are dumb
○ Computers read binary (0s and 1s)

What is a program?

● A series of commands for your computer
○ Computers are dumb
○ Computers read binary (0s and 1s)

● So we write programs in a language that is
more readable to humans
○ These are translated to binary by an assembler

language that is in-between your script and the
computer itself.

What is programming?

● One or more scripts saved in text files
○ Must be accessible to the operating system

● Creating software and scripts is the goal.
○ Your operating system itself is just a collection of

scripts that interoperate

● Why programming?

Repeatability

● A script can be a record of what happened
○ Especially important when things go wrong
○ Publishing scripts is cool - you want to be cool

● Software builds on itself
○ Take advantage and be part of evolution

● E.g.:
○ Make a software pipeline to collect, catalogue, and

align sequences in a repeatable and well-
documented fashion. Now give it to somebody else
so they can do it too.

Faster

● The first and most central goal of computer
science
○ People have been working on this for over 50yrs.

Take advantage of them.

● E.g.:
○ "I wrote down all this data, and now I need to divide

every number by 4.28!"
○ "My NGS text file is too big to be opened by any text

editor known to man!"

Automation

● Do the same thing lots of times
○ Let's face it, some tasks are simply below you.
○ Nothing is below a computer, and it's way better at

this than you are anyway.

● E.g.:
○ "I collected two months of data on color, sex, body

size, and gut content of five different species at 7
different field sites, but my advisor says only take
sex and color from 2 species at 5 field sites. How do
I put all this in one text file in under 2 seconds?"

Elements of Style

● Which language to use?
● Is your code readable by others?
● Is your code readable by you?
● How can you appropriately break up tasks?

Languages!

● There are many, many computer
programming languages.

Languages!

● There are many, many computer
programming languages.

● Things to consider:

Languages!

● There are many, many computer
programming languages.

● Things to consider:
○ Speed versus readability

Languages!

● There are many, many computer
programming languages.

● Things to consider:
○ Speed versus readability
○ Documentation

Languages!

● There are many, many computer
programming languages.

● Things to consider:
○ Speed versus readability
○ Documentation

● What are people in your field are using?
○ Stats - R
○ Dense computation - C & C++
○ Next-Gen - Perl & Python & Unix
○ Unix is often used as "glue" in workflows

Why Python?

● General concepts almost universal

Why Python?

● General concepts almost universal
● Readable

Why Python?

● General concepts almost universal
● Readable
● Popular

Why Python?

● General concepts almost universal
● Readable
● Popular
● Well-documented

Why Unix?

● General concepts almost universal

Why Unix?

● General concepts almost universal
● Operating system written in C

Why Unix?

● General concepts almost universal
● Operating system written in C
● Very fast

Why Unix?

● General concepts almost universal
● Operating system written in C
● Very fast
● Almost universally used in computers,

supercomputers and file systems
○ This is how most programmers manage and

organize files

A taste of Eunuchs

● Commands are small programs
○ Type name of command and hit "enter"
○ Unix searches for the program's text file, and

executes it.
● Programs have preset arguments which

change their behavior
○ Find these in the manual pages

● They interact with files that are in the folder
(directory) that you're in

A taste of Unix

● Interact with Unix via a "shell"
○ The shell channels information between the user

and the Unix programs through "standard streams"

● Information on screen is called standard
output or "stdout"

● Input to programs is "stdin"

● Also, "sterr" - will be useful later

File systems

● Your computer contains a nested hierarchy
of directories.

File systems

● Your computer contains a nested hierarchy
of directories.
○ Keeping track of where you are in the file structure of

your computer is an important component of
programming.

File systems

● Your computer contains a nested hierarchy
of directories.
○ Keeping track of where you are in the file structure of

your computer is an important component of
programming.

○ The highest level is the root (denoted: /)

File systems

● Your computer contains a nested hierarchy
of directories.
○ Keeping track of where you are in the file structure of

your computer is an important component of
programming.

○ The highest level is the root
● There are several high-level directories that

users don't usually go into where programs
files are stored
○ /usr/bin
○ /usr/lib

A note on backups

● Everyone should back up their computer
regularly

● We will discuss some commands today that
can remove files
○ They can be strung together to remove your whole

file system

File path

● Every file has an address on your computer
○ This is the filepath

File path

● Every file has an address on your computer
○ This is the filepath

● If you are going to do an operation on a file,
you'll need it's address

File path

● Every file has an address on your computer
○ This is the filepath

● If you are going to do an operation on a file,
you'll need it's address

● Bash has a few filepaths where it
automatically looks for program files
○ This is useful for calling programs
○ You can check which filepaths these are by typing

"echo $PATH"

A few important paths
Here .

One level up ..

Home ~ or $HOME

Root /

.. and . -----> "relative paths"

~ or /usr/bin -----> "absolute paths"

Commands for Getting Around

1.) Common commands

2.) Working on files

3.) Stringing them together

nano

● nano is Unix's default text editor
● Type 'nano' to access it
● This will open a text editor within your

terminal
● Saving, exiting and other file functions are

controlled with ctrl + letter keys
● If you create a document and write to it,

saving it will add the document to the current
directory

Commands for Getting Around

cd Change Directory

mkdir make directory

ls List

rm Remove

pwd Print working directory

man Manual

Commands for Getting Around
cd cd : takes you home

cd .. : takes you up one
level (to the containing
directory)

mkdir mkdir filename

ls ls -a : shows hidden files
ls -l : shows files along with
sizes and timestamps

rm rm -r : remove recursively
rmdir: remove directory
CAUTION
with power comes danger!

Getting Comfortable

tab Auto complete

* Wildcard

Up arrow Last command

Ctrl + C Escape process

Ctrl + L Clear screen

Getting Comfortable

tab Enter enough unique
characters and press tab.
This will complete the
filepath or command.

* Matches every character
in a filename.

File operations

grep print line with matching
plain text string

cat Concatenate, stream to
"standard out"

head/tail Print the first or last lines
in file

| Send output of one
command or program to
another as input

wc Word count

cp and mv Copy and move

File operations
grep grep word filename

cat cat file1

head/tail head -n1 file1
tail -n4 file1

| ls -l | wc -l

wc wc -l counts number of lines
wc filename counts the
words in the file

cp and mv cp file folder makes a copy
of a file into a folder
mv file folder moves that file,
leaving no copy

File operations

**Looking at the manual for all the
commands we are showing you is worth
your while. Typing 'man command name'
will show the manual file

Or just Google it!

Redirection

● > versus >>
○ > overwrites file content with whatever is on the left

side of the redirect symbol
○ >> appends whatever is on the left side to the file on

the right side
● Between the pipe and the redirect, you can

write a one-line custom program for text
editing
○ "Get all sequence names from a sequence file"
○ grep ">" file1.fas | cut -d ">" -f 2 >> seqs.txt

Tasks

● Create a file and a directory. Put some
words in the file. Copy the file into it. Now,
go into the directory and delete the file.
Change back into the original directory and
move the file into the directory. How is this
different than copying?

● Create a second file and move it into your
directory. Count how many files are in the
directory using a simple script.

● Copy the first line of each of your files to a
new file

Bonus task

● Copy all the tree files to home
● Remove all the tree file in home
● Concatenate all the tree files in a file called trees.txt in

home
● How many trees are in this file?
● The second tree is unrooted and has node labels.

Make a new file with just the second tree from each of
the tree files called trees2.txt

