
Lecture Two
Work flows and mastering your environment



Today's Topics

● FAQ from lecture one
● Actually programing

○ Breaking up tasks
○ Logical flow
○ Not going insane

● Regular expressions
○ What is a regular expression?
○ How can you use them?

● Scripting with Bash
○ Accessing and organizing programs 
○ Variables, functions, and scope



FAQ

● How do I get out of man and less?
○ q



FAQ

● How do I get out of man and less?
○ q

● When using wildcard, tab completion or and 
other stdin, is Unix case-sensitive?
○ Yes
○ mv file1 .. will move file1
○ mv File1 .. will not move file1 and will search for 

File1



FAQ

● How do I get out of man and less?
○ q

● When using wildcard, tab completion or and 
other stdin, is Unix case-sensitive?
○ Yes
○ mv file1 .. will move file1
○ mv File1 .. will not move file1 and will search for 

File1
● Can Unix read spaces?

○ It reads spaces as the end of input. For example, mv 
My Data .. will search for a directory called 'My'



FAQ

● How can I rename a file in Unix?
○ mv filenameOld filenameNew



FAQ

● How can I rename a file in Unix?
○ mv filenameOld filenameNew

● Note on pipes and redirect
○ stdout | stdin
○ stdout >> file
○ program < stdin



FAQ

● How can I rename a file in Unix?
○ mv filenameOld filenameNew

● Note on pipes and redirect
○ stdout | stdin
○ stdout >> file
○ program < stdin

● File endings
○ They have no meaning
○ But use them for housekeeping purposes



Actually programing

● Tasks can be pretty monumental
● But if you program for hours at a time, you 

will burn out.
○ A lot of experts recommend ten minutes away from 

the screen for every 50 minutes at the screen



Actually programing

● But if you get up every hour, how will you 
remember what you were doing?



Actually programing

● But if you get up every hour, how will you 
remember what you were doing?
○ By breaking up tasks in a way that makes sense
○ If you stay organized from the get-go, it's easier to 

keep track of what you're doing



Breaking up tasks

● Most tasks can be broken up into a logical 
workflow
○ Ideally: develop many small tasks that you can code 

in an hour or a few hours



Breaking up tasks

● Most tasks can be broken up into a logical 
workflow
○ Ideally: develop many small tasks that you can code 

in an hour or a few hours
● Do I have to use different software?

○ Does this mean I need to take into account file 
conversions?



Breaking up tasks

● Most tasks can be broken up into a logical 
workflow
○ Ideally: develop many small tasks that you can code 

in an hour or a few hours
● Do I have to use different software?

○ Does this mean I need to take into account file 
conversions?

● Where can I check for errors?



For example

● I simulate and manipulate character matrices 
for phylogenetic estimation



For example

● I simulate and manipulate character matrices 
for phylogenetic estimation

● This is a dozen smaller tasks



Start with tree



Start with tree Simulate data



Start with tree Simulate data

Parse data for use with
other softwareAnalyze results



Start with tree Simulate data

Parse data for use with
other softwareAnalyze results

Formatting?

Parallelization?

Organize results?

a

Formatting?



Start with tree Simulate data

Parse data for use with
other softwareAnalyze results

Formatting?

Parallelization?

Organize results?

a

Formatting?

Error Checking?



Start with tree Simulate data

Parse data for use with
other softwareAnalyze results

Unix?

Regular 
Expressions?

R?
Take Notes?

a

Unix?



Regular Expressions 

● Program without programming!
○ These never quite fit anywhere in a programming 

course

● But they're so useful! 
○ Hence, we'll do them before moving any further



Regular Expression

● A flexible way of finding bits of text that 
match your input text



Regular Expression

● A flexible way of finding bits of text that 
match your input text
○ We saw this a little bit last week with grep



Regular Expression

● A flexible way of finding bits of text that 
match your input text
○ We saw this a little bit last week with grep

● Simplest way is to use regex in a text editor
○ Conventions may be subtly different, so watch out
○ Open search box (usually ^F)
○ You will be searching and replacing using text 

matching



An example

● In your DNA sequences, you have a 
repetitive element, AGA, and you want to 
find all the elements that have more than 
three repeats

● If you didn't know better, you might grep 
'AGAAGAAGA', 'AGAAGAAGAGAGA' etc

● With regex, you can type:
     'AGA{3,}'

And find sequences with between 3 and 
infinity replicates of AGA



Regex Syntax

● This can get a little hairy



Regex Syntax

● This can get a little hairy

● Regex consist of symbols compiled into little 
statements
○ There are a lot of possible symbols
○ http://regexpal.com/



Regex Syntax - common wildcards

\d Digit (0-9)

\w Letters,numbers, and '_'

\t Tab

\s White space character

\r, \n, or \r\n Line endings

Use these to search for patterns in your file



Regex Symbols

● [ ]
○ The brackets specify a class of characters (such as 

letters, numbers or punctuation) which you are going 
to search

○ [a-z] will find all lowercase letters a-z
● [^]

○ Except. This is the opposite of the above. Any text 
after the ^ will be excluded. 

● +
○ One or more of previous character
○ E.g., \w+ is one or more word characters



Regex Symbols

● \
○ The 'escape' character. This character breaks from 

any previous commands. This is useful because 
some commonly-used characters, especially 
punctuation have other meanings in computer 
language. For example, if you're looking for all 
characters a-c and for all periods, you could write 
your expression and add "\." to look for periods.

● . 
○ Speaking of the period, it means any character 

except newline
○ \n

■ How your computer knows to go to the next line
■ \r\n on Windows (annoying!)



Regex Symbols

● ^
○ Start of the text. For example, if you wanted to find 

all the text that begins with F, you could type ^F
● $

○ End of the text. The same as the above, but at the 
end. 

● |
○ Or. If you're looking for multiple patterns in the text, 

you might use or. For example, if I want to find Data 
from one of two field sites, I might use "Austin|Marfa"



Regex Syntax - Text Capture

● ()
○ Text within parentheses is stored in memory
○ In "Replace" box, to \1 or $1 to write the first 

captured text
● Example

Text in: Homo sapiens
Search: (\w)\w+ (\w\w\w)\w+
Replace: \1\2
Text out: Hsap



Putting it all together

● So, those are some useful symbols.
○ Use RegexPal for just a couple minutes to look at 

what they do.



Scripting with Unix

● We've seen how powerful command line 
programs are
a. Making them programs puts you in the driver's seat

● Programs should be
a. Easy to access
b. Easy to edit
c. Easy to read, and
d. Easy to understand

● Unfortunately, none of this is easy to do



Scripting with Unix

● Easy to access
○ How to execute programs from anywhere

● Easy to edit
○ Must know where it is (should only be one copy)
○ How to organize scripts

● Easy to read
○ How to take good notes -- "commenting"

● Easy to understand
○ The task should be clear and concise
○ Write modular programs
○ Have a clear goal



Quick Word on Access

● Code should compress functional tasks
○ Code ---> Command

● This is the basis of repeatability and 
efficiency

● Grep example



Controlling your environment

1. Keep your house in order
a. Make one scripts folder (for now)
b. One copy of each script

2. You want to access these from anywhere
a. Bash looks in current directory, and $PATH
b. You could direct Bash using absolute paths:

i. /home/ben/scripts/script1.sh file1.txt >> file2.txt
ii. But this is lame

c. You should edit $PATH to include your scripts folder
d. Can also use "aliases" or "functions"



Controlling your environment 
 edit $PATH

1. Look at $PATH variable
a. 'which' shows where programs live

i. which cd, which ls, which which, which bash
b. 'echo $PATH' shows where Bash looks for programs

2. Make a directory called scripts in your home
3. edit .bash_profile (OSX) or .bashrc (Ubuntu)

a. Hidden files in $HOME - "ls -a" reveals them
b. Add line at bottom:                                             

export PATH="$PATH:$HOME/scripts"
c. On some Macs, the syntax may be:
PATH="$HOME/scripts:${PATH}"

export PATH



Controlling your environment 
 edit $PATH

● Close terminal and reopen
○ Check with echo $PATH

● Bash now searches in ~/scripts for programs

● The syntax in the preceding commands is 
very important
○ If you have an error, make sure you have not 

inserted additional spaces
○ Make sure you don't mess with existing text - make a 

backup



Controlling your environment 
 alias and functions

● alias is a Unix command
○ alias short="really_long_command_name"
○ to permanently alias something, add to .bash_profile

● Can make functions in Unix
○ add to .bash_profile
○ funct can now be executed at command line

● More instructions on these in cheat sheet



Comments

● When you want to include information in 
your script that is not actual code, this is 
called a comment

● This is denoted by a # at the beginning of 
the line

● For example:
     # This line will copy my file into my directory

cp file1 Directory1
# This line will copy a file into a directory
cp file dir



Comments

● Comments make your code easier to read
○ What does this block do?
○ What's going on here?



Comments

● Comments make your code easier to read
○ What does this block do?
○ What's going on here?
○ and especially, Why?

● If you want people to use and cite your code, 
you need to have comments



Concepts

● Variable
○ A name and a value
○ The variable is assigned to a value with =

■ = is an operator
● Function

○ A modular block of code
○ Also called a sub-routine
○ Can be assigned to variables

● Scope
○ Where a variable can be interpreted

● Examples...



Permissions

● There's one more step
○ You've done such a good job...
○ Give yourself permission to execute your script

● chmod u+x script1.sh
○ you can now execute your script like so...
○ ./script1.sh

● With redirection...
○ ./script.sh < input_file



Exercises

● Break these big tasks into smaller ones. In a 
text editor, write down the steps in this task 
in the form of comments

● Obtain DNA sequences from GenBank and 
format them for an alignment program

● Format ten years of ecological data in ten 
different spreadsheets into one spreadsheet

● Isolate all of data points from a spreadsheet 
that fall beneath a threshold value


