
Type hierarchy: the standard types are not a simple list, but rather a hierarchy.
*Note: I will not list all the types. See Ch. 3 of The Python Language Reference or Ch. 5
of The Python Standard Library for more complete lists. Both are online.

None: this type has a single value, and only the object named ‘None’ has this value.
Hence, you cannot name anything else ‘None.’ True and False, which are the values of
the Boolean type (below) are also constants.

Numbers
 Integral
 Integer: Integer numbers between at least -2147483648 and 2147483647
 Boolean: Two values – True and False.
 Real
 Float: Supports some range of decimal places, depending on memory

Sequences: A finite ordered set. Can be “indexed” and “sliced,” (more on these later).
 Immutable Sequences: Cannot be changed after creation
 Strings: 0 or more characters (represented by ASCII)
 Tuples: Grouping of two objects: (1,2).  (1,) = singleton, () = empty tuple.
 Mutable Sequences: May be changed by functions after creation
 Lists: Grouping of N objects: [1,2,3]
 Arrays (available in extension modules only): like a multidimensional list

Set Types: Unordered, finite sets of unique, immutable objects. Good for fast

membership testing, but not much else as far as I can tell.
 Sets: Mutable sets, e.g. can be added to
 Frozen Set: Immutable

Mappings: Finite sets of unordered objects indexed by arbitrary index sets.

Dictionaries: Key-value pairs, represented {key:value}. Keys index values.
Values are arbitrary objects, but keys can only be immutable types.

*The following types get fancier, and we’ll cover some of them later. You may never
use some of them (you’ll definitely need a few), but it’s important to be aware of all of
them in case you want to build larger, fancier code in the future.

Callable Types: These are types you can “call” with the expression: type().

User-defined functions: A function you make with a function definition
statement
Generator functions: A special type of function that returns an iterator

Modules: Typically just files of python code. These will have sets of functions which

work within the “namespace” of the module. Load a module (named
“my_module” in this case) with:

import my_module
Get the available functions (names) with:
 dir(my_module)
Execute a function from the module with:
 my_module.my_function
The name of the module is denoted:
 __name__

Files: This refers to files that have been opened with the open() function. The objects,

sys.stdin, sys.stdout, and sys.stderr are all initialized to the file object once it is
opened, which means you can control these flows from within the python script.

Classes: Custom data representations. They are what is often meant by “object” in
python terminology, because they allow the user to interact with very complex data
structures via a few, neat functions that the programmer specifies. This prevents the user
from messing with the underlying data. Classes are an advanced subject, and we
probably wont cover them in this course (not least because we don’t know much about
them)

