
Python 1: Objects and Operators

This week we’ll start to program in Python. Python is very ‘high level,’ which means
it has a ton functionality built into it that helps you code less and more readably. The
downside of this is that you need to learn a larger list of items to explore python
efficiently.

Python is “object oriented.” I far as we can figure it, this means that it is heavily
involved with the way data is structured and represented. It supports many built-in
structures and allows you build your own easily.

Our first task is therefore to understand what an object is or can be, and how this is
different from other elements of the programming language.

References
Python Standard Library: http://docs.python.org/2/library/index.html
The Python Language Reference: http://docs.python.org/2/reference/

Objects (Ch. 3 of Python Language Reference): An abstraction of data.
 Every object has an identity, a type and a value
 Identity: Constant, like a computer memory address
 Type: Constant, determines supported operations of the object
 Value: May change. If an object’s values can change, it is ‘mutable’

Since the type determines what you can do with an object, it is important to know
what types are built into Python. We have included a hierarchical list of common
Python types in the type_hierarchy handout. We will only be dealing with a few of these
this week: Integers, Floats, Strings, and Lists.

Type Name Description Conversion Assignment
Integers Whole numbers, int() int = 2
Floats Floating point numbers, float() flt = 2.0
Strings Ordered, immutable

character set,
str() string = “hello”

Lists Ordered, mutable object
container,

list() list = [2,2.0, “hello”]

Common String Methods
 .upper()
 .lower()
 .split()
 .strip()

Common List Methods
 .append()
 .insert()
 .remove()

Operators
 Operators are like verbs. They are pretty easy to conceptualize since their
meaning in python is not really different from their meaning in math.

Common Operators

+ Addition 3+4=7

- Subtraction 3-4=1

* Multiplication 4*3=12

/ Division 12/4 = 3

% Modulus 4%3 = 1

** Exponent 4**3 = 64

== Equals >>>3==4
False

!= Not equals >>>3!=4
True

> Greater >>>3>4
False

< Less >>>3<4
True

>= Greater than or equal to >>>3>=4
False

<= Less than or equal to >>>3<=4
True

The Python interpreter

Type ‘python’ at the command line. As long as python is installed, this will open the
python interpreter, which is a command line-like python environment. The prompt looks
like this: >>>. Type Ctrl+D to quit.

“For” Loops
Control the flow of your programs by iterating a command over a collection of

objects. Syntax:
for item in collection: 
  do something with item 
  do something else 
“item” is automatically created as a variable. It has global scope, and is reassigned

after each iteration of the loop. After the loop, its value is its value on the last iteration.

Working with Files
Files are opened and closed with the (you guessed it!) open() and close() methods.

This opens a “file buffer,” which can write to if you can write to if you give yourself
permission. You can write with…write()

>>> file1 = open(“my_data.txt”, “r”)  # “r” gives you read permission 
>>> list = [] 
>>> for line in file1: 
  …  do super sweet transformations to each line 
  …  list.append(line) 
>>> file2 = open(“my_supersweet_data.txt”,”w”)  # write permissions! 
>>> for new_data in list: 
  …  file2.write(new_data) 
>>> file1.close()  # remember to close file buffers 
>>>file2.close() 

Fancy Tricks
 Multiple assignment:

>>> my_string, my_integer = "Rocky", 4 
>>> my_string 
'Rocky' 
>>> my_integer 
4 

   
  String Concatenation: 
    >>> str1 = “hello” 
    >>> str2 = “world” 
    >>> str3 = str1 + “,” + str2 
    >>> str3 
    ‘hello, world’ 

 How not to forget to close files – the “with” methods
 >>> with open(“file1.txt”) as f: 
    …  do something with f 
 Assignments in the “with” block have global scope, but the file will automatically
close after the block is fully executed. Cool!

