
Lecture 3
Pythons.



PSAs

● Please use the etherpad if you have 
questions

● Lectures may be changed at the last minute

● Feedback (especially negative) is very much 
appreciated.



FAQ

● Terminal color change
○ Mac: Terminal -> Preferences->Text. The window 

that pops up allows you to create and save a custom 
scheme

○ Linux: Edit -> Profile -> New profile -> colors



Topics

● Python tools and self study
● Object orientation

○ What is an object?
○ How is this different from other 'things'?
○ What are some types of objects?

● Operators
● Looping

○ What is a loop?
○ Introducing: our friend, the for loop

● Input/ouput
○ How can you handle files with Python?



Tools for learning Python

● Code Academy (www.codeacademy.com)
○ Nice interactive tutorials

● Software Carpentry
○ (software-carpentry.org)
○ Recommended lectures



Tools for learning Python

● The python interpreter
○ type 'python' at the command line
○ A Unix-like python environment will start
○ Good for learning and testing little bits of code
○ Log out with Ctrl+D

● Interpreter prompt looks like >>>
○ We'll use this notation for examples



An Introduction to Objects

● Object
○ The "nouns" of python programming



An Introduction to Objects

● Object
○ The "nouns" of python programming
○ A way of abstracting and storing data



An Introduction to Objects

● Object
○ The "nouns" of python programming
○ A way of abstracting and storing data

● An object has three attributes
○ Identity - Constant. Like a computer address.
○ Type - Constant. Defines the operations that can be 

performed with this object.
○ Value - Usually mutable. Defined by user.



Types of Objects

● There are many built-in types
○ We'll discuss string, integer and list today



Types of Objects

● There are many built-in types
○ We'll discuss string, integer and list today

● Types are arranged in a hierarchical manner 
in Python.
○ We have provided a boiled-down version of the type 

hierarchy in this week's cheat sheet.



Operators

● Operators are fundamentally different than 
objects
○ Like verbs, operators do actions to objects



Operators

+ Addition 3+4=7

- Subtraction 3-4=1

* Multiplication 4*3=12

/ Division 12/4 = 3

% Modulus 4%3 = 1

** Exponent 4**3 = 64



Operators
== Equals >>>3==4

False

!= Not equals >>>3!=4
True

> Greater >>>3>4
False

< Less >>>3<4
True

>= Greater than or 
equal to

>>>3>=4
False

<= Less than or 
equal to

>>>3<=4
True



Variables

● Variables store data in shorthand for quick 
access
○ Variables reserve space in memory to store 

information

● A fundamental kind of object.

● The type of an object changes what you can 
do with an object stored in a variable

■ Today, we'll talk about integers, floats and strings



Integer

● Like an integer in math: a whole number. 

● The possible sizes depend on memory
○ Usually between -2147483648 and +2147483648

● For example, if you wanted to store the 
number of observations in your data set, 
1078, you would do it like this:

■ >>> num_obs = 1078
■ >>> num_obs
■ 1078



Float

● Floats are superficially similar to integers, in 
that they store numbers

● But floats can store decimals



Float

● Floats are superficially similar to integers, in 
that they store numbers

● But floats can store decimals
● If you assign a number that contains a 

decimal to a variable, Python will 
automatically float it
○ However, if you perform an operation on an integer 

that turns it into a float (such as dividing 5 by 2), 
Python will not automatically convert to a float.



Float

● Assignments work the same way for floats 
as ints

■ >>> b = 5.5
■ >>> b
■ 5.5
■ >>> type(b)
■ <type 'float'>



Type conversion

● Types determine behavior!
■ >>> a = 5
■ >>> b = 2
■ >>> c = a/b 
■ >>> c

2
○ Whaaaaa?



Type conversion

● Types determine behavior!
■ >>> a = 5
■ >>> b = 2
■ >>> c = a/b 
■ >>> c

2
○ Whaaaaa?

● Python will not automatically convert 
between types



Type Conversion

● Luckily, it's easy to convert between types
■ >>> a = float(a)
■ >>> a
■ 5.0
■ >>> a/b
■ 2.5

● To do type conversion, simply put the type of 
variable to which you'd like to convert in front 
of the number
○ float(a)
○ int(b)



String

● A string is a series of characters 
○ They are ordered. 
○ They are immutable.



String

● A string is a series of characters 
○ They are ordered. 
○ They are immutable.

● Strings are declared with quotes
○ Can be single or double, but be consistent
○ Example: You need to store a sequence of DNA 

bases in memory. 
■ >>> seq1 = 'agatcagtcatgact'
■ >>> seq1
■ 'agatcagtcatgact'
■ >>> seq1 = ' agatcagtcatgact '



String

● A string is a series of characters 
○ They are ordered. 
○ They are immutable.

● Strings are declared with quotes
○ Can be single or double, but be consistent
○ Example: You need to store a sequence of DNA 

bases in memory. 
■ >>> seq1 = 'agatcagtcatgact'
■ >>> seq1
■ 'agatcagtcatgact'
■ >>> seq1 = ' agatcagtcatgact '

● Concatenate strings with "+" operator
○ >>> new_seq = seq1 + 'acatg'



Strings

● When do we use strings?
○ Very common in DNA sequence analysis



Common String Methods

● Methods are special procedures associated 
with types of objects
○ The object's type will determine the methods 

available to handle the object
○ Python has a simple method notation

● One common string method: .upper()
○ >>> seq1 = 'agatca'
○ >>>seq1.upper()
○ >>>seq1
○ 'AGATCA'



A slight digression: White space

● White space refers to the space between 
words and characters
○ In python, white space is generally not important
○ But there are two main things to be aware of:



A slight digression: White space

● White space refers to the space between 
words and characters
○ In python, white space is generally not important
○ But there are two main things to be aware of:

1. Whitespace characters may be hidden in 
your text, but they're there
a. Common whitespace characters:

\t, \s, \n, \r
2. Whitespace matters for indented code

a. More on this later...



Common String Methods

● Strip Methods - almost as fun as they sound
○ Remove whitespace from the ends and/or beginning 

of a string
■ >>> seq1 = '  agatcagtcatgact  '
■ >>>seq1.strip()
■ 'agatcagtcatgact'

○ seq1.lstrip(), seq1.rstrip() - left and right strip.
■ Strips leading and trailing characters

○ seq1.strip('\n') - You'll use this every day.
■ Will only strip newline characters
■ Other characters can also be used



Common String Methods

● Split
○ Returns a list of words (or other items) in the string. 

These words (or items) are usually separated by 
white space

○ >>> names = "Ben April"
○ >>> nameslist = names.split()
○ >>> nameslist
○ ['Ben','April']

● 'nameslist' is a new kind of type, called a list.



Lists

● A list is an ordered, mutable grouping of 
objects
○ The list itself is mutable. You can add, remove and 

reorder the list

● Lists are declared by square brackets
○ Contained objects can be (almost?) anything
○ Objects are delimited by commas
○ >>> list1 = [1,2.0,"three"]



Lists

● Some terminology...

● Objects can be declared and then populated.
■ >>> list1 = []   #declaration
■ >>> list 1
■ [] 



Lists

● Lists are mutable
○ Need to add something?

■ >>> list2 = []  #declaration
■ >>> list2.append('eagle')  #population
■ >>> list2
■ ['eagle']



Lists

● Lists are mutable
○ Need to add something?

■ >>> list2 = []  #declaration
■ >>> list2.append('coyote')  #population
■ >>> list2
■ ['coyote']

○ Need to remove something?
■ >>>list2.remove('eagle')
■ >>>list2
■ ['eagle']



Lists

● Great for many things
○ But possibly the best thing about lists is using them 

as a tool for iteration, our next subject



Looping

● In its most basic form, the act of doing a task 
many times



Looping

● In its most basic form, the act of doing a task 
many times

● Loops, along with other statements we'll 
cover, give your program control flow



The "for" loop

● For loops interact really nicely with lists
○ So we'll start our discussion of looping here!



The "for" loop

● For loops interact really nicely with lists
○ So we'll start our discussion of looping here!

● For loops are used to perform a task n times. 
○ General format

for item in collection:
do something with item

○ Loop will execute each statement in the indented 
block from top to bottom



The "for" loop

● For loops interact really nicely with lists
○ So we'll start our discussion of looping here!

● For loops are used to perform a task n times.
■ >>> list1 = ['possum','raccoon','bobcat','eagle'] 
■ >>> for x in list1:
■ ... print x
■ possum
■ raccoon
■ bobcat
■ eagle



The "for" loop

>>> for x in list1:
... print x
● What are the features of this loop?

○ Two variables. 
■ X: declared automatically. 
■ list: container over which the loop operates.  

Python knows how big list1 is!
○ A colon. This ends the conditional.
○ An indented second line. Indentation must be the 

same within the whole body of the loop



Input/Output

● You don't always want to type input into the 
terminal.



Input/Output

● You don't always want to type input into the 
terminal.

● Instead, you might have a data file that you 
would like to open and use as input
○ Is the whole file the input?
○ Do you want to read some next-gen data line-by-

line?



Input

● open() is one of the most common ways of 
doing this

■ f = open('filename', 'mode')
■ the 'filename' will be the file you want to open
■ 'mode' will be what you would like to do with this 

file
● r for read will be assumed if no mode is provided
● Read-only means you cannot write to the file
● w will allow you to write to the file
● r+ will allow reading and writing
● Default is 'r'



Input example

● I have some data in a file. I'd like to open it, 
read it and write some lines to it, as well

■ >>> f = open('myfile.txt' , 'r+')
○ f is now a file object
○ This simply opens the file in a way that will allow 

reading and writing



Input

● Now what?
○ >>> f.read()

■ Returns your whole file as one big string. It will 
not be nicely formatted and will show whitespace 
characters.

○ >>> f.readlines()
■ This will create a list of all the lines in a file



Input

● Now what?
■ >>> f.read()

○ This will show your whole file. It will not be nicely 
formatted, but will show characters, such as end-of-
line characters
■ f.readlines()

○ This will create a list of all the lines in a file
○ Or, you can do a little looping

■ >>> for line in f:
■ ... print line

○ Capture these to variables
■ >>> myfile = file.read()
■ >>> myfilelist = file.readlines()



Output

● Pretty similar to input!
○ But you need different permissions...
○ >>> outfile = open('outfile.txt','w') #writing permission
○ >>> outfile.write(my_data_object)
○ >>> outfile.close()



Exercise

● We've provided a data file
● Open this file
● Make a list where each entry is a line

○ Using a for loop
○ Using .readlines()

● Print the list
● Add one to each item in the list

● Challenges to think about:
○ Are there any white space or other difficult 

characters?
○ Are the characters the right type to do addition?


