
Lecture Five
Putting it together

Agenda

● Reiteration of goals
● Exercise from last time
● Functions
● Useful modules
● Actually writing a script

"Le talent est une longue patience..."

Last week's example

● We set a very challenging example last
week
○ It'll make for a nice transition into today's topics
○ So let's have a look

Last week's example

>>> with open('file1.txt') as f:
... filelist = [line.strip('\n').split('\t') for line in f]
...
>>> Birdlist = []
>>> Bearlist = []
>>> Beelist = []

Last week's example

>>> for item in filelist:
... if item[0] == 'Bear':
... Bearlist.append(int(item[2]))
... elif item[0] == 'Bird':
... Birdlist.append(int(item[2]))
... elif item[0] == 'Bees':
... Beelist.append(int(item[2]))
...

Last week's example

>>> Bearcount = Bearlist[0] + Bearlist[1]
>>> Beescount = Beeslist[0] + Beeslist[1]
>>> Birdcount = Birdlist[0] + Birdlist[1]
>>> OrgCount = {}

Last week's example

>>> for item in filelist:
... if item[0] == 'Bear':
... OrgCount[item[0]]= Bearcount
... elif item[0] == 'Bird':
... OrgCount[item[0]]= Birdcount
... elif item[0] == 'Bees':
... OrgCount[item[0]]= Beescount
...

Last week's example

● This is functional.
● But clunky and inflexible
● Today, we'll talk about some ways to take

that code, streamline it a bit and make it
more functional and versatile

Last week's example

● We're going to start out talking about
functions.

Last week's example

● We're going to start out talking about
functions.

● A function is what it sounds like: a chunk of
code that does some task

Last week's example

● We're going to start out talking about
functions.

● A function is what it sounds like: a chunk of
code that does some task

● They are objects that can be called by name
or assigned to a variable
○ variable = function()

Last week's example

● When you think about it, there are three
main parts in the code from last week

Last week's example

● When you think about it, there are three
main parts in the code from last week
○ Opening the file and processing it

Last week's example

● When you think about it, there are three
main parts in the code from last week
○ Opening the file and processing it
○ Make our animal:observations dictionary

Last week's example

● When you think about it, there are three
main parts in the code from last week
○ Opening the file and processing it
○ Make our animal:observations dictionary
○ Print it out so we can see

Functions

● Functions allow us to make this code more
streamlined, modular, and readable.

Functions

● Try to make your function execute one task.

Functions

● Try to make your function execute one task.
○ It's hard to do this
○ Each task should be self contained, yet flexible

Functions

● Try to make your function execute one task.
○ It's hard to do this
○ Each task should be self contained, yet flexible

● Write out the steps you think your code
should follow
○ "Open and parse file into a list"
○ "Loop over list and extract x, y, but not z"
○ etc etc...

Functions

● A function is defined by the user with a 'def'
statement.
def function(parameter list):

code to be executed

Functions

● A function is defined by the user with a 'def'
statement.
def function(parameter list):

code to be executed
● parameter list is a comma delimited series of

objects you wish to pass to the function.
def function(file):

do something with file

Functions

● A function definition needs to precede a call
to the function

Functions

>>> def function(): # function definition
... print "hurray!"
>>> function() # function call
"hurray!"

The 'return' statement

● Some functions just print something

● But most of the time, you want a function to
give you value

The 'return' statement

● Some functions just print something

● But most of the time, you want a function to
give you value

● A 'return' statement allows this
○ It also exits the function

The 'return' statement

● General form:

def function_name():
do something
return value

From last week

def opener(infile):
with open(infile) as f:

return [line.strip('\n').split('\t') for line in f]

From last week

def opener(infile):
with open(infile) as f:

return [line.strip('\n').split('\t') for line in f]

● When the function is executed, the data in
the list comprehension is held in memory.

From last week

def opener(infile):
with open(infile) as f:

return [line.strip('\n').split('\t') for line in f]

● When the function is executed, the data in
the list comprehension is held in memory.

● You can assign it to a variable to access it.
>>> file_list = opener(infile)

Docstrings

● Functions have a special type of comment
called a docstring
○ These are not invisible to Python, like comments
○ They can be accessed with help()

Docstrings

● Functions have a special type of comment
called a docstring
○ These are not invisible to Python, like comments
○ They can be accessed with help()

>>> def hurray():
... '''Prints hurray!''' # Docstring
... print 'hurray!'

Docstrings

● Functions have a special type of comment
called a docstring
○ These are not invisible to Python, like comments
○ They can be accessed with help()

>>> def hurray():
... '''Prints hurray!''' # Docstring
... print 'hurray!'
>>> help(hurray)
hurray()

Prints hurray # Now you know!

Organizing Functions

● The hardest part...

Organizing Functions

● Let's think about our code from last week

Open, and parse to list

Organizing Functions

● Let's think about our code from last week

Open, and parse to list

Make dictionary

Organizing Functions

● Let's think about our code from last week

Open, and parse to list

Make dictionary

Organizing Functions

● We want to take output from one function
and use it in another.

Organizing Functions

● We want to take output from one function
and use it in another.

● How does one function access the data from
another?

Organizing Functions

● We want to take output from one function
and use it in another.

● How does one function access the data from
another?

● What about variables? Can one function
access the variables in another?

Organizing Functions

● Simpler example

Open, and parse to list

Print list

Organizing Functions

def opener(infile):
with open(infile) as f:

my_list=[line.strip('\n').split('\t') for line in f]

def print_list():
print my_list # Kosher??

Organizing Functions

def opener(infile):
with open(infile) as f:

my_list=[line.strip('\n').split('\t') for line in f]

def print_list():
print my_list # Kosher??

Nope! Variables in function have local
scope, just like in Unix. 'my_list' has no
meaning within obs_dict()

Organizing Functions

def opener(infile):
with open(infile) as f:

my_list=[line.strip('\n').split('\t') for line in f]
return my_list

def print_list():
my_list = opener('my_file.txt')
print my_list

Organizing Functions

● How is this different?

● We put a 'return' statement in opener(), and
a call to opener() in print_list()

Organizing Functions

● Clear as mud??

Open, and parse to list

Print list

Call Return

Organizing Functions

● Clear as mud??

● Calls: (backward, up),
● Returns: (feed forward, down)

Open, and parse to list

Print list

Call Return

Program Flow

● Ideally, programs are cascading sets of
functions that are not hard-coded

Program Flow

● Ideally, programs are cascading sets of
functions that are not hard-coded
○ It's pretty easy to make a variable global and not

worry about passing the variables around
○ Ideally, your functions should map cleanly to

pseudocode. So, thinking from the ground-up in
terms of functions can help you start to tackle a
monumental task.

Program flow

● Open file and make a list of the contents of
each line – strip ‘\n’s and split each line on
‘\t’.

● This is opener() in the functionized script

Program flow

● Loop through lines and add up observations
for each animal
○ Dictionary, add it as key with count as value, if the

key is in the dict, add count to current value in
dictionary.

● obs_dictionary()

Program flow

● Print observations - print organism and
count.

● print_obs()

sys.argv

● What a weird name.
○ What's going on here?

sys.argv

● What a weird name.
○ What's going on here?

● Writing scripts that accept input from the
command line can be a good way to avoid
what is called 'hard coding'

Hard Coding

● Hard coding is a coding method that requires
the course code (the original script) to be
changed whenever desired output is
changed.

Hard Coding

● Example:
● >>> with open('animals.txt') as file:

... file_list = [line.strip("\n") for line in file
● We call this hard coding because if you want

to perform the strip operation on a different
file, you have to alter your script.

Hard Coding

● As we saw last week when you were writing
functions, hard coding can work

● But, having applications be flexible to input
can make your code more user-friendly and
increase your chances of being cited.

$ obs_dictionary3.py animals.tx

$ obs_dictionary3.py animals.txt

$ obs_dictionary3.py animals.txt

$ obs_dictionary3.py animals.txt

Script body

$ obs_dictionary3.py animals.txt

Script body
import sys

$ obs_dictionary3.py animals.txt

Script body
import sys

infile=sys.argv[1]

sys.argv

● sys.argv in Python allows the coder to pass
input from the command line into the code

● In the "functionized" script of last week's
exercise, you will see a line of code that
says

import sys
infile = sys.argv[1]

● This is importing the sys module (more on
this in a moment) and setting the variable
"infile" as the first argument passed from the
command line

what

● sys.argv takes input from the command line.
○ You can feed the module multiple pieces of

information.
○ In this case, as you might have guessed, we want to

input a file
>>> python obs_counter3.py animals.txt
● In this case, the information being passed

into the program is the filename animals.txt

what

● In this case, the information being passed
into the program is the filename animals.txt

● 'animals.txt' is then passed to this line:
>>> infile = sys.argv[1]
● in the script body

what

● 'animals.txt' is then passed to this line:
>>> infile = sys.argv[1]
● in the script body
● This line parses the command line input as

the variable infile
● The one means the first argument provided.

$ obs_dictionary3.py animals.txt
animals1.txt

$ obs_dictionary3.py animals.txt
animals1.txt

$ obs_dictionary3.py animals.txt
animals1.txt

$ obs_dictionary3.py animals.txt
animals1.txt

Script body

$ obs_dictionary3.py animals.txt
animals1.txt

Script body
import sys

$ obs_dictionary3.py animals.txt
animals1.txt

Script body
import sys

year_one=sys.argv[1]
year_two = sys.argv[2]

Program Flow

● Ideally, programs are cascading sets of
functions that are not hard-coded
○ When you're structuring a program, it's important to

think about who will use the program. Why will they
use it? How can you make the program more
flexible?

Program Flow

● Ideally, programs are cascading sets of
functions that are not hard-coded
○ When you're structuring a program, it's important to

think about who will use the program. Why will they
use it? How can you make the program more
flexible?

○ Our opener() function can use sys.argv[]

raw_input()

● We talked about sys_argv[]
● What if you want to have someone input

some value for a calculation
● Python has a function for this called

raw_input()
● This will take in a value that can be

interacted with by a script

raw_input()

● >>> a = raw_input('Please enter a number
here: ')

 >>> print a

raw_input()

● >>> a = raw_input('Please enter a number
here: ')

 >>> print a
Please enter a number here:

raw_input()

● >>> a = raw_input('Please enter a number
here: ')

 >>> print a
Please enter a number here: 12

raw_input()

● >>> a = raw_input('Please enter a number
here: ')

 >>> print a
Please enter a number here: 12
12

raw_input()

● So what happened here?
○ Python read the raw_input call and prompted you to

enter some information
○ Python read this information and did what you said

to do with it
■ Print, in this case

○ But you could do pretty much any other operation

raw_input()

● What if I had entered a letter?
○ raw_input would have accepted it
○ This is why it's helpful to have text that tells the user

what to put in

Wrapping it up and putting a bow on
it

● Some further considerations in
programming.

Wrapping it up and putting a bow on
it

● The shebang
○ If you looked at any of the scripts we posted over the

past couple weeks, you might have noticed this line:
○ #! /usr/bin/env python
○ #! is denoting these as the shebang line
○ The rest of the line is invoking Python and telling the

interpreter to run commands in the Python subshell
○ This should be the first line in your Python script

Wrapping it up and putting a bow on
it

● When do you want to write to a file versus to
the standard output?

Wrapping it up and putting a bow on
it

● When do you want to write to a file versus to
the standard output?
○ Standard out is great for including print statements

to do error checking
○ Also for passing output to other programs or scripts

Wrapping it up and putting a bow on
it

● When do you want to write to a file versus to
the standard output?
○ Standard out is great for including print statements

to do error checking
○ Also for passing output to other programs or scripts
○ Writing to a file is great if you need to run part of

your script in one location and part in another
■ Generate data file on desktop, Run on TACC

○ Temporal separation of steps.
○ Import to R.

Wrapping it up and putting a bow on
it

● When do you want to write to a file versus to
the standard output?
○ Standard out is great for including print statements

to do error checking
○ Also for passing output to other programs or scripts
○ Writing to a file is great if you need to run part of

your script in one location and part in another
■ Generate data file on desktop, Run on TACC

○ Temporal separation of steps.
○ Import to R.
○ Some of this is personal; I output nearly everything

to file so I have a constant record of my activities

Modules!

● Python is a popular language
● A lot of people have developed widgets and

extensions for use with Python
● Next week Ben will talk about BioPython,

which is excellent for sequence manipulation
and some tree stuff

● This week we'll talk a little about some
common modules for which almost everyone
can find some use

os

● os allows you to interact with various
operating system functions without leaving
the Python environment
○ Do things like get your working directory
○ Change directories
○ Create a temporary file

os

● os.getcwd()
○ This functions prints the current working directory

● os.chdir()
○ Use this function to change directories
○ >>> path = "/filepath/to/location"
○ >>> os.chdir(path)

os

● Why would I do this?
● Why not just switch to UNIX and do it?

os

● Why would I do this?
● Why not just switch to UNIX and do it?
● If you're processing a lot of files that are in a

directory structure

os

● os.tmpfile()
○ This sounds not useful, but actually can be
○ Creates a temporary file that persists for the duration

of the script.
○ This is nice if you're doing something with lots of

variables or a high-memory operation.

csv

● Let's say you have some data from a
colleague. It's in a spreadsheet.

● Lots of people have data that's in
spreadsheets.

● Some of them have big, kind hearts and
wrote an interpreter for spreadsheet data

csv

>>>csv.reader(filename, dialect)
● This reads in the file and takes care of any

meta characters (line endings, etc) that
might trip you up

● Assumes a csv format, but for dialect, Excel
can be subbed in, if the spreadsheet is Excel

csv

● Likewise, there is a writer function
● csv.writer(filename) writes out data in csv

format
● We'll talk about databasing later in this

course, but a csv file can be a very handy
way to send data to a colleague and doesn't
have a lot of the wonky formatting issues of .
xls

