Lecture Five
Putting it together



Agenda

Reiteration of goals
Exercise from last time
Functions

Useful modules
Actually writing a script



"Le talent est une longue patience..."




Last week's example

e \Ve set a very challenging example last

week
o It'll make for a nice transition into today's topics
o So let's have a look



Last week's example

>>> with open('file1.txt') as f:
filelist = [line.strip(\n").split('\t') for line in f]

>>> Birdlist = [
>>> Bearlist = []
>>> Beelist = []




Last week's example

>>> for item in filelist:
If item[0] == "Bear":
Bearlist.append(int(item[2]))
elif item[0] == 'Bird":
Birdlist.append(int(item[2]))
elif item[0] == 'Bees"
Beelist.append(int(item[2]))



Last week's example

>>> Bearcount = Bearlist[0] + Bearlist[1]
>>> Beescount = Beeslist[0] + Beeslist[1]
>>> Birdcount = Birdlist[0] + Birdlist[1]
>>> OrgCount = {}



Last week's example

>>> for item in filelist:
iIf item[0] == 'Bear":
OrgCount[item[0]]= Bearcount
elif item[0] == 'Bird":
OrgCount[item[0]]= Birdcount
elif item[0] == 'Bees"
OrgCount[item[0]]= Beescount



Last week's example

e This is functional.

e But clunky and inflexible

e Today, we'll talk about some ways to take
that code, streamline it a bit and make it
more functional and versatile



Last week's example

e \We're going to start out talking about
functions.



Last week's example

e \We're going to start out talking about
functions.

e A function is what it sounds like: a chunk of
code that does some task



Last week's example

e \We're going to start out talking about
functions.

e A function is what it sounds like: a chunk of
code that does some task

e They are objects that can be called by name

or assigned to a variable
o variable = function()



Last week's example

e \When you think about it, there are three
main parts in the code from last week



Last week's example

e \When you think about it, there are three

main parts in the code from last week
o Opening the file and processing it



Last week's example

e \When you think about it, there are three

main parts in the code from last week
o Opening the file and processing it
o Make our animal.observations dictionary



Last week's example

e \When you think about it, there are three

main parts in the code from last week
o Opening the file and processing it

o Make our animal.observations dictionary

o Print it out so we can see



Functions

e Functions allow us to make this code more
streamlined, modular, and readable.



Functions

e Try to make your function execute one task.



Functions

e Try to make your function execute one task.
o It's hard to do this
o Each task should be self contained, yet flexible



Functions

e Try to make your function execute one task.
o It's hard to do this
o Each task should be self contained, yet flexible

e \Write out the steps you think your code

should follow

o "Open and parse file into a list"

o "Loop over list and extract x, y, but not z"
o efc etc...



Functions

e A function is defined by the user with a 'def’
statement.

def function(parameter list):
code to be executed



Functions

e A function is defined by the user with a 'def’
statement.

def function(parameter list):
code to be executed

e parameter listis a comma delimited series of
objects you wish to pass to the function.

def function(file):
do something with file



Functions

e A function definition needs to precede a call
to the function



Functions

>>> def function(): # function definition
print "hurray!”

>>> function() # function call

"hurray!"



The ‘return’' statement

e Some functions just print something

e But most of the time, you want a function to
give you value



The ‘return’' statement

e Some functions just print something

e But most of the time, you want a function to
give you value

e A 'return' statement allows this
o |t also exits the function



The ‘return’' statement

e (General form:

def function _name():
do something
return value



From last week

def opener(infile):
with open(infile) as f:
return [line.strip(\n').split("\t'") for line in f]



From last week

def opener(infile):
with open(infile) as f:
return [line.strip(\n').split("\t'") for line in f]

e \When the function is executed, the data in
the list comprehension is held in memory.



From last week

def opener(infile):
with open(infile) as f:
return [line.strip(\n').split("\t'") for line in f]

e \When the function is executed, the data in
the list comprehension is held in memory.

e You can assign it to a variable to access it.
>>> file_list = opener(infile)



Docstrings

e Functions have a special type of comment

called a docstring

o These are not invisible to Python, like comments
o They can be accessed with help()



Docstrings

e Functions have a special type of comment

called a docstring

o These are not invisible to Python, like comments
o They can be accessed with help()

>>> def hurray():
"Prints hurray!™" # Docstring
print ‘'hurray!’



Docstrings

e Functions have a special type of comment

called a docstring
o These are not invisible to Python, like comments
o They can be accessed with help()

>>> def hurray():
"Prints hurray!"" # Docstring
... print 'hurray!’
>>> help(hurray)
hurray()
Prints hurray # Now you know!



Organizing Functions

e The hardest part...



Organizing Functions

e Let's think about our code from last week

Open, and parse to list




Organizing Functions

e Let's think about our code from last week

Open, and parse to list

Make dictionary



Organizing Functions

e Let's think about our code from last week

Open, and parse to list

Make dictionary



Organizing Functions

e \We want to take output from one function
and use it in another.



Organizing Functions

e \We want to take output from one function
and use it in another.

e How does one function access the data from
another?



Organizing Functions

e \We want to take output from one function
and use it in another.

e How does one function access the data from
another?

e \What about variables? Can one function
access the variables in another?



Organizing Functions

e Simpler example

Open, and parse to list



Organizing Functions

def opener(infile):
with open(infile) as f:
my_list=[line.strip(\n').split("\t') for line in f]

def print_list():
print my_list # Kosher??



Organizing Functions

def opener(infile):
with open(infile) as f:
my_list=[line.strip(\n').split("\t') for line in f]

def print_list():
print my_list # Kosher??

Nope! Variables in function have local
scope, just like in Unix. 'my_list' has no
meaning within obs_dict()



Organizing Functions

def opener(infile):
with open(infile) as f:
my_list=[line.strip(\n').split("\t') for line in f]
return my_list

def print_list():
my _list = opener('my_file.txt")
print my_list



Organizing Functions

e How is this different?

e \We put a 'return' statement in opener(), and
a call to opener() in print_list()



Organizing Functions

e (Clear as mud??

Open, and parse to list

Call Return



Organizing Functions

e (Clear as mud??

Open, and parse to list

Call Return

e Calls: (backward, up),
e Returns: (feed forward, down)



Program Flow

e |deally, programs are cascading sets of
functions that are not hard-coded



Program Flow

e |deally, programs are cascading sets of

functions that are not hard-coded

o |It's pretty easy to make a variable global and not
worry about passing the variables around

o ldeally, your functions should map cleanly to
pseudocode. So, thinking from the ground-up in

terms of functions can help you start to tackle a
monumental task.



Program flow

e Open file and make a list of the contents of
each line — strip \n’s and split each line on
A\t

e This is opener() in the functionized script



Program flow

e Loop through lines and add up observations

for each animal

o Dictionary, add it as key with count as value, if the
key is in the dict, add count to current value in
dictionary.

e obs_dictionary()



Program flow

e Print observations - print organism and
count.
e print_obs()



sys.argv

e \What a weird name.
o What's going on here?



sys.argv

e \What a weird name.
o What's going on here?

e \Writing scripts that accept input from the
command line can be a good way to avoid
what is called 'hard coding’



Hard Coding

e Hard coding is a coding method that requires
the course code (the original script) to be
changed whenever desired output is
changed.



Hard Coding

e Example:
>>> with open(‘animals.txt') as file:
file_list = [line.strip("\n") for line in file
e \We call this hard coding because if you want

to perform the strip operation on a different
file, you have to alter your script.



Hard Coding

e As we saw last week when you were writing
functions, hard coding can work

e But, having applications be flexible to input
can make your code more user-friendly and
iIncrease your chances of being cited.



$ obs_dictionary3.py animals.tx




$ obs_dictionary3.py animals.txt




$ obs_dictionary3.py animals.txt




$ obs_dictionary3.py animals.txt

Script body




$ obs_dictionary3.py animals.txt

Script body
import sys




$ obs_dictionary3.py animals.txt

Script body
import sys

infile=sys.argv[1]




sys.argv

e sys.argv in Python allows the coder to pass
iInput from the command line into the code

e In the "functionized" script of last week's
exercise, you will see a line of code that
says

Import sys

infile = sys.argv|[1]

e This is importing the sys module (more on
this in a moment) and setting the variable
"Infile" as the first argument passed from the



what

e sys.argv takes input from the command line.

o You can feed the module multiple pieces of
information.

o In this case, as you might have guessed, we want to
input a file

>>> python obs_counter3.py animals.txt

e In this case, the information being passed
into the program is the filename animals.txt



what

e In this case, the information being passed
iInto the program is the filename animals.txt
e 'animals.txt' is then passed to this line:

>>> infile = sys.argv[1]
e in the script body



what

e 'animals.txt' is then passed to this line:
>>> infile = sys.argv[1]

e in the script body

e This line parses the command line input as

the variable infile
e The one means the first argument provided.



$ obs_dictionary3.py animals.txt
animals1.txt




$ obs_dictionary3.py animals.txt
animals1.txt




$ obs_dictionary3.py animals.txt
animals1.txt




$ obs_dictionary3.py animals.txt
animals1.txt

Script body




$ obs_dictionary3.py animals.txt
animals1.txt

Script body
import sys




$ obs_dictionary3.py animals.txt
animals1.txt

Script body
import sys

year_one=sys.argv[1]
year_two = sys.argv[2]




Program Flow

e |deally, programs are cascading sets of

functions that are not hard-coded
o When you're structuring a program, it's important to
think about who will use the program. Why will they

use it? How can you make the program more
flexible?



Program Flow

e |deally, programs are cascading sets of

functions that are not hard-coded

o When you're structuring a program, it's important to
think about who will use the program. Why will they
use it? How can you make the program more
flexible?

o Our opener() function can use sys.argv|]



raw_input()

e \We talked about sys argv|]

e \What if you want to have someone input
some value for a calculation

e Python has a function for this called
raw_input()

e This will take in a value that can be
interacted with by a script



raw_input()

e >>> g =raw_Iinput('Please enter a number
here: ")

>>> print a



raw_input()

e >>> g =raw_Iinput('Please enter a number
here: ")

>>> print a
Please enter a number here:



raw_input()

e >>> g =raw_Iinput('Please enter a number
here: ")

>>> print a
Please enter a number here: 12



raw_input()

e >>> g =raw_Iinput('Please enter a number
here: ")

>>> print a

Please enter a number here: 12
12



raw_input()

e So what happened here?
o Python read the raw_input call and prompted you to
enter some information
o Python read this information and did what you said
to do with it
m Print, in this case
o But you could do pretty much any other operation



raw_input()

e \What if | had entered a letter?

o raw_input would have accepted it
o This is why it's helpful to have text that tells the user
what to put in



Wrapping it up and putting a bow on
it

e Some further considerations in
programming.



Wrapping it up and putting a bow on

it

° The shebang

O

If you looked at any of the scripts we posted over the
past couple weeks, you might have noticed this line:
#! /usr/bin/env python

#! is denoting these as the shebang line

The rest of the line is invoking Python and telling the
interpreter to run commands in the Python subshell
This should be the first line in your Python script



Wrapping it up and putting a bow on
it

e \When do you want to write to a file versus to
the standard output?



Wrapping it up and putting a bow on
it

e \When do you want to write to a file versus to

the standard output?

o Standard out is great for including print statements
to do error checking

o Also for passing output to other programs or scripts



Wrapping it up and putting a bow on

it

e \When do you want to write to a file versus to
the standard output?

O

Standard out is great for including print statements
to do error checking

Also for passing output to other programs or scripts
Writing to a file is great if you need to run part of
your script in one location and part in another

m Generate data file on desktop, Run on TACC
Temporal separation of steps.

Import to R.



Wrapping it up and putting a bow on

it

e \When do you want to write to a file versus to
the standard output?

O

Standard out is great for including print statements
to do error checking

Also for passing output to other programs or scripts
Writing to a file is great if you need to run part of
your script in one location and part in another

m Generate data file on desktop, Run on TACC
Temporal separation of steps.

Import to R.

Some of this is personal; | output nearly everything
to file so | have a constant record of my activities



Modules!

e Python is a popular language

e A lot of people have developed widgets and
extensions for use with Python

e Next week Ben will talk about BioPython,
which is excellent for sequence manipulation
and some tree stuff

e This week we'll talk a little about some
common modules for which almost everyone
can find some use



0S

e 0s allows you to interact with various
operating system functions without leaving

the Python environment

o Do things like get your working directory
o Change directories

o Create a temporary file



0S

e 0s.getcwd()
o This functions prints the current working directory

e 0s.chdir()
o Use this function to change directories
o >>> path = "ffilepath/to/location”
o >>> os.chdir(path)



0S

e \Why would | do this?
e \Why not just switch to UNIX and do it?



0S

e \Why would | do this?
e \Why not just switch to UNIX and do it?

e |f you're processing a lot of files that are in a
directory structure



0S

e os.tmpfile()
o This sounds not useful, but actually can be
o Creates a temporary file that persists for the duration
of the script.
o This is nice if you're doing something with lots of
variables or a high-memory operation.



CSV

e Let's say you have some data from a
colleague. It's in a spreadsheet.

e Lots of people have data that's in
spreadsheets.

e Some of them have big, kind hearts and
wrote an interpreter for spreadsheet data



CSV

>>>csv.reader(filename, dialect)

e This reads in the file and takes care of any
meta characters (line endings, etc) that
might trip you up

e Assumes a csv format, but for dialect, Excel
can be subbed in, if the spreadsheet is Excel



CSV

Likewise, there is a writer function
csv.writer(filename) writes out data in csv
format

We'll talk about databasing later in this
course, but a csv file can be a very handy
way to send data to a colleague and doesn't
have a lot of the wonky formatting issues of .
xls



