# Probability and Statistics Refresher 

## Biological Statistics Course Week 2

## basic statistics terminology



## What is statistics?

describing and measuring aspects of nature from samples
lets us quantify the uncertainty of these measurements
estimation: process of inferring an unknown quantity of a population using sample data
parameter: quantity describing a population
estimate: quantity calculated from a sample
population: entire collection of individuals or units that a researcher is interested in
sample: much smaller set of individuals selected from the population

sampling error: chance difference between estimate and population parameter being estimated
bias: systematic discrepancy between estimates and the true population characteristic

## properties of good samples



## random sampling

every unit in the population has an equal chance of being included in the sample
selection of units must be independent

## variable: characteristics that differ from

 individual to individualdata: raw measurements of one or more variables made on a sample of individuals


## types of variables

categorical: characteristics of individuals do not have magnitude on a numerical scale
nominal: different categories have no inherent order
ordinal: categories can be ordered

## types of variables

numerical: measurements are quantitative and have magnitude on a numerical scale
continuous: take on any real number value within some range
discrete: take on indivisible units

response (dependent) variable: variable we are trying to predict from the explanatory variable
explanatory (independent) variable: variable we measure to try to determine its relationship with the response variable


## types of studies

experimental: researcher assigns treatments randomly to individuals
observational: assignment of treatments not made by the researcher
experimental studies can determine cause-and-effect relationships between variables whereas observational studies can only point to associations

## distributions

frequency distribution: shows how often each value of the variable occurs in a sample
probability distribution: shows probability of each value of the variable

## normal distribution

"bell curve"
most important probability distribution in statistics


# R Exercise: <br> Normal Distribution 

# R Exercise: Frequency Distribution 

describing data

## descriptive statistics

location: tells us something about the average or typical individual
spread: tells us how variable the measurements are from individual to individual
proportion: measures fraction of observations in a given category
sample mean: sum of all the observations in a sample divided by the number of observations

standard deviation: common measure of the spread of a distribution, measures how different measurements typically are from the mean
the standard deviation is the square root of the variance
coefficient of variation: standard deviation expressed as a percentage of the mean
good for when you want to look at relative variation


## median: middle observation in a set of data

quantile: values that partition the data into quarters
interquantile range: difference between first and third quantiles of the data

# R Exercise: <br> Summary Statistics 



## probability

random trial: process or experiment that has two or more possible outcomes whose occurrence cannot be predicted
sample space: list of all possible outcomes of a random trial
event: any potential subset of the sample space
the probability of an event is the proportion of times the event would occur if we repeated a random trial over and over again under the same conditions
$\operatorname{Pr}[\mathrm{A}]$ means "the probability of event A"
Some people do P[A] or P(A)

## Venn diagrams

## useful way to think about probabilities

Entire Sample Space: $\mathrm{P}(\mathrm{S})=1$

two events are mutually exclusive if they cannot both occur simultaneously
$\operatorname{Pr}[\mathrm{A}$ and B$]=0$
probability distribution: list of the probabilities of all mutually exclusive outcomes of a random trial

## discrete probability distributions

height at that point is equal to probability of that outcome
by definition, the sum of all of the probabilities in the distribution should be 1


## continuous probability distribution

height at that point is not the probability of that occurring
makes more sense to talk about probabilities of ranges

we'll talk more next time about special types of distributions

## adding mutually exclusive probabilities

if two events A and B are mutually exclusive, then
$\operatorname{Pr}[\mathrm{A}$ or B$]=\operatorname{Pr}[\mathrm{A}]+\operatorname{Pr}[\mathrm{B}]$
extends to more than two events as long as they are all mutually exclusive
the probabilities of all possible mutually exclusive events add to one
$\operatorname{Pr}[\operatorname{not} \mathrm{A}]=1-\operatorname{Pr}[\mathrm{A}]$

## general addition property

for not mutually exclusive events
$\operatorname{Pr}[\mathrm{A}$ or B$]=\operatorname{Pr}[\mathrm{A}]+\operatorname{Pr}[\mathrm{B}]-\operatorname{Pr}[\mathrm{A}$ and B$]$

## independence

two events are independent if the occurrence of one does not change the probability that the second will occur
two events are dependent if the probability of one event depends on the result of another event

## multiplication rule

If two events A and B are independent
$\operatorname{Pr}[\mathrm{A}$ and B$]=\operatorname{Pr}[\mathrm{A}] \mathrm{x} \operatorname{Pr}[\mathrm{B}]$
applies to more than two events as well

## and versus or

if you would use or in the sentence, add
$\operatorname{Pr}[\mathrm{A}$ or B$]=\operatorname{Pr}[\mathrm{A}]+\operatorname{Pr}[\mathrm{B}]$
(if A and B are mutually exclusive)
if you would use and in the sentence, multiply
$\operatorname{Pr}[\mathrm{A}$ and B$]=\operatorname{Pr}[\mathrm{A}] \times \operatorname{Pr}[\mathrm{B}]$
(if A and B are independent)
conditional probability: probability of that event occurring given that a condition is met $\operatorname{Pr}[\mathrm{X} \mid \mathrm{Y}]$
law of total probability: if we want to know the overall probability of an event, we sum its probability across every possible condition, weighted by the probability of that condition
$\operatorname{Pr}[\mathrm{X}]=\Sigma \operatorname{Pr}[\mathrm{Y}] \operatorname{Pr}[\mathrm{X} \mid \mathrm{Y}]$

## general probability rule

probability that both of two events occur, even if the two are dependent
$\operatorname{Pr}[\mathrm{A}$ and B$]=\operatorname{Pr}[\mathrm{A}] \operatorname{Pr}[\mathrm{A} \mid \mathrm{B}]$

## probability trees

The jewel wasp, Nasonia vitripennis,, is a parasite that lays its eggs on the pupae of flies. Larvae emerge, feed on the fly pupae, and emerge as adults. Emerging males and females mate on the spot.
Nasonia females can manipulate the sex of the eggs they lay. On a fresh host, she lays mainly female eggs. If the host has already been parasitized, she lays mainly males.

If the host is not already parasitized, 95\% chance the egg is female, $5 \%$ chance the egg is male.

If the host is already parasitized, $10 \%$ chance the egg is female, $90 \%$ chance the egg is male.

Let's look at the Venn diagram and the probability tree.

## Bayes' theorem

powerful mathematical relationship about conditional probability
$\operatorname{Pr}[\mathrm{A} \mid \mathrm{B}]=\operatorname{Pr}[\mathrm{B} \mid \mathrm{A}] \operatorname{Pr}[\mathrm{A}] / \operatorname{Pr}[\mathrm{B}]$

hypothesis testing
hypothesis testing compares data to the expectations of a specific null hypothesis. If the data are too unusual, assuming the null hypothesis is true, then the null hypothesis is rejected

## null hypothesis

abbreviated $\mathrm{H}_{\mathrm{o}}$
specific statement about a population parameter made for the purposes of argument
a good null hypothesis is one that would be interesting to reject

## alternative hypothesis

## abbreviated $\mathrm{H}_{\mathrm{A}}$

includes all other possible values for the population parameter besides the value states in the null hypothesis

## an example

Bisazza et al. (1996) tested the possibility of handedness in European toads, Bufo bufo, by sampling and measuring 18 toads from the wild.


Of the 18 toads tested, 14 were right-handed and 4 were left-handed. Are these results evidence of a predominance of one type of handedness in toads?


## stating the hypothesis

number of interest in population is the proportion that are right-handed
our null hypothesis should be that the two handedness types are equally frequent in the population
$\mathrm{H}_{\mathrm{o}}: \mathrm{p}=0.5$

## stating the hypothesis

our alternative hypothesis should be that leftand right-handed toads are not equally frequent in the population
$\mathrm{H}_{\mathrm{A}}: \mathrm{p}$ is not equal to 0.5
this is a two-sided hypothesis because the alternative hypothesis includes values on both sides of the value specified by the null hypothesis

## test statistic

quantity calculated from the data that is used to evaluate how compatible the data are with the result expected under the null hypothesis

## test statistic

on average, if the null hypothesis were correct, we would expect to observe nine right-handed toads (out of the 18)
instead, we observed 14 right-handed toads out of the 18 sampled

## null distribution

sampling distribution of outcomes for a test statistic under the assumption that the null hypothesis is true
sampling 18 toads under the null hypothesis is like tossing a coin in the air 18 times and counting the number of "heads" that come up (heads=right-handed)

# R Exercise: <br> Generate Null Distribution 

Histogram of null


## quantifying uncertainty: the $P$-value

the $P$-value is the probability of obtaining the data (or data showing as great or greater difference from the null hypothesis) if the null hypothesis were true

## quantifying uncertainty: the $P$-value

Histogram of null


## quantifying uncertainty: the $P$-value

don't worry about the calculation of the $P$ value at the moment-we'll get to that next week
our $P$-value is around 0.031

## statistical significance

significance level (a): probability used as a criterion for rejecting the null hypothesis. If the $P$-value for a test is less than or equal to $a$, then the null hypothesis is not rejected
a widely used significance level is $\alpha=0.05$

## interpreting non-significant results

can never conclude that the null hypothesis is true
always possible

- true value differs from the null hypothesis by a small amount
- null was not rejected because of chance
- power of the test was limited by sample size

We interpret our results as the data are compatible or consistent with the null hypothesis.

## reporting the results

include the following information in the summery of the results of a statistical test

- value of the test statistic
- the sample size
- the $P$-value

It's also useful to provide confidence intervals, or at least the standard errors, for the parameters of interest

## errors in hypothesis testing

| Reality |  |  |
| :--- | :--- | :--- |
| Decision | $\mathbf{H}_{0}$ True | $\mathbf{H}_{0}$ False |
| Reject $\mathbf{H}_{0}$ | Type I error | Correct |
| Do Not Reject $\mathbf{H}_{0}$ | Correct | Type II Error |

Type I error is rejecting a true null hypothesis. The significance level a sets the probability of committing a Type I error.

Type II error is failing to reject a false null hypothesis.
The power of a test is the probability that a random sample will lead to rejection of a false null hypothesis

## one-sided tests

alternative hypothesis includes parameter values on only one side of the value specified by the null hypothesis
$\mathrm{H}_{\mathrm{o}}$ is rejected only if the data depart from it in the direction stated by the $\mathrm{H}_{\mathrm{A}}$

## next time:

how to input data in R
proportions and contingency analysis
one sample tests
two sample tests
ANOVA

