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Statistical Inference

Suppose we want to know θ, something about the world.

• We go out and collect data y.

• From the finite sample y, we come up with a sample
estimate θ̂ of the thing we care about.

• But since y was a random sample, then the estimate θ̂ is
also random. How do we know if it is accurate or useful?

Frequentist: Even though y was random, we could draw a
buch of different y and all the different θ̂ would have certain
properties.
Bayesian: We only have one y, so what exactly can we say
about θ given y? And how can we make use of prior knowledge
about θ?
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Parameter Space Sample 
Space

parameters random 
variables

Frequentists
sit here and contemplate 
what happens as we 
sample from our model 
repeatedly

Frequentist view
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(imagery stolen from Jonathan Pillow)
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Bayesian view

Parameter Space Sample 
Space

parameters
(random)

data 
(fixed)

Frequentists
sit here and contemplate 
what happens as we 
sample from our model 
repeatedly

Bayesians
sit here and contemplate 
what inferences we can 
make based on our data 
(and prior beliefs)
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Bayes’ Rule

For any two events A and B,

p(A|B) = p(B |A)p(A)
p(B)

We care about the relationship between data and parameters,

p(θ|y) = p(y|θ)p(θ)
p(y)
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Bayes’ Rule

For any two events A and B,

p(A|B) = p(B |A)p(A)
p(B)

We care about the relationship between data and parameters,

p(θ|y) = p(y|θ)p(θ)
p(y)
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Components of Bayes’ Rule

p(θ|y) = p(y|θ)p(θ)
p(y)

posterior distribution - This is the thing we want. This is a
probability distrubtion over the parameter space. It quantifies
the probability that the parameter has certain values, given the
data.
likelihood - The probability of the data given particular values
of the parameter.
prior distribution - Any prior knowledge we have about the
parameter.
marginal evidence - The total probability of seeing the data
that we saw.
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Components of Bayes’ Rule

p(θ|y) = p(y|θ)p(θ)
p(y)

marginal evidence - This is just a number, so it contributes a
linear constant to the posterior probability, but does not affect
the shape of the posterior distribution. In most cases it can be
ignored, so Baye’s Rule is often written as

p(θ|y) ∝ p(y|θ)p(θ)
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A concrete example

Suppose we observe the outcomes of a binary event, such as
tossing a coin.

• With some probability θ, we will see a ’heads’, which we
refer to as a success, otherwise we will see a ’tails’. After
we observe this process for a while, how can we estimate
the probability of heads?

• So we have observed N tosses, and let’s say there were sH
heads and sT tails (sH + sT better equal N). What is a
good estimate of θ? Or in Bayesian terms, what is the
probability distribution over all possible values of θ, given
that we saw sH and sT ?
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Binomial Distribution

Let’s come at this from the other side. If we knew θ exactly,
then the predicted sH should follow a Binomial Distribution,

p(sH |θ) =
�
N

sH

�
θsH (1− θ)N−sH

This is the likelihood, p(y|θ), the probability of seeing certain
data given a particular value of θ.
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Prior Distribution

What we’re after is θ, the probability of ’heads’, so we need to
come up with a form for a prior distribution which can quantify
any prior knowledge we might have.

Since θ must be between 0 and 1, and useful and flexible
distribution is the Beta distribution.

p(θ|α,β) = 1

B
θα−1(1− θ)β−1
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Prior Distribution
x<-seq(0,1,.001)
plot(x,dbeta(x,10,15),type='l',lwd=3,
ylim=c(0,12),ylab='Probability Density',xlab=expression(theta))
lines(x,dbeta(x,100,25),col='blue',lwd=3)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

θ

Pr
ob

ab
ilit

y 
D

en
si

ty



Bayesian

Modeling

Keegan Hines

Bayesian

Inference

Frequentist vs

Bayesian

Bayes’ Rule

Conjugate

Priors

Markov chain

Monte Carlo

Markov chains

Metropolis-

Hastings

Posterior Distribution

p(θ|y) ∝ p(y|θ)p(θ)

=

��
N

sH

�
θsH (1− θ)N−sH

��
1

B
θα−1(1− θ)β−1

�

∝ θsH+α−1(1− θ)N−sH+β−1

Notice that the posterior is just a Beta distribution with two
parameters:

p(θ|y) = Beta(A,B)

where A = sH + α− 1 and B = N − sH + β − 1.
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Posterior Distribution
set.seed(12)
y <- sample(c(0, 1), 15, replace = TRUE)
theta <- seq(0, 1, 0.001)
alpha = 10
beta = 10
post <- dbeta(theta, (sum(y) + alpha - 1), (length(y) - sum(y) + beta - 1))
plot(theta, post, lwd = 3, type = "l", ylab = "Posterior Probability", xlab = expression(theta))
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The problem we just did is an example of using a conjugate
prior - the form of the prior and the likelihood combined in
such a way that the poster has a simple, closed form (which
was of the same family of functions as the prior).

For most common problems, the pairs of likelihood-conjugate
prior have been figured out. For example:

• Normal-Normal

• Multivariate Normal- Normal/Inverse Wishart

• Binomial-Beta

• Multinomial-Dirichlet

• Poisson-Gamma
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In most applications, we have many parameters we want to
estimate, so the posterior distribution is high dimensional and
we won’t be able to come up with a simple, closed form.

The workhorse of Bayesian inference a is method to
approximate posterior distributions called Markov chain Monte
Carlo sampling.
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MCMC

Big Idea: For any probability distribution, we can approximate
its properties if we can draw independent and identically
distributed (iid) samples from the distribution, and then use
the properties of the samples as a proxy.
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MCMC

samples <- rnorm(100, 0, 1)
plot(seq(-5, 5, 0.01), dnorm(seq(-5, 5, 0.01)), type = "l", lwd = 3, ylab = "Prob Density",

xlab = "")
rug(samples)
abline(v = mean(samples), col = "blue", lwd = 3)
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MCMC

No matter how high-dimensional or how complicated the
posterior distribution is, if we can draw iid samples, then we
can approximate its structure.

This is done by constructing a Markov chain whose limiting
distribution is the posterior distribution we’re interested in.
Then, by simply simulating this chain for as long as we want,
we get an arbitrary number of iid samples, and use these to
approximate the uncertainty in the parameters.
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A Markov process is any random process where the probability
of future events depends only and the present and not on the
past.

p(Xt+1|Xt ,Xt−1,Xt−2, ...X1) = p(Xt+1|Xt)
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Random Walk

A simple example is the Random Walk:

X1 = N(0, 1)

X2 = X1 + N(0, 1)

X3 = X2 + N(0, 1)

.

.

.
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Random Walk

plot(cumsum(rnorm(100)), type = "l", lwd = 3, ylab = "X", xlab = "Time")
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Random Walk

Note that as t → ∞, the Random Walk doesn’t have a fixed
limiting distribution.
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We need to generate a Markov with a limiting distribution that
is equal to the posterior distribution of interest.

There are many popular algorithms for doing this

• Metropolis-Hastings algorithm

• Gibbs Sampler

• Hamiltonian Monte Carlo
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Metropolis random walk

• Begin at any point θ0 in the parameter space

• Create a proposal point θ̃ via random walk:
θ̃ = θ0 + N(0, 1)

• If p(θ̃|y) > p(θ0|y), then accept θ̃ as a valid sample from
the posterior distribution. {θ0, θ1}

• Otherwise, accept θ̃ with probability p(θ̃|y)
p(θ0|y)

• If θ̃ is rejected, then extend the chain with the previous
value θ0

This results in a Markov chain {θ0, θ1, ..., θN} that moves
through the parameter space in proportion to the posterior
probability. Thus, each transition of the chain is an iid sample
from the posterior.
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Metropolis random walk
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Since p(θ~ | y) > p(θ0 | y) , we accept the proposal θ~
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p(θ~ | y) < p(θ0 | y) , accept θ~ with probability 
p(θ~ | y)
p(θ0 | y)
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Interactive Web App

spark.rstudio.com/khines/mcmc
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