
First lecture

What we'll cover

● General course structure
● What is programming?
● Why use programming?
● The Unix environment.

General course structure

● First six weeks are the fundamentals of
programming

● Second six are special topics

● We will have homework and in-class work

● There will be cheat sheets posted online

General course structure

● You must:
○ Have a laptop with a running Unix/Linux terminal
○ Have a good text editor
○ Do the homework and read the cheat sheets
○ Give us feedback and participate

General course structure

● You must:
○ Have a laptop with a running Unix/Linux terminal
○ Have a good text editor
○ Do the homework and read the cheat sheets
○ Give us feedback and participate
○ Send us

■ A.) Description of what you envision using
programming for in your research and,

■ B.) Sample dataset from your research. This
should be a small version of some data you
wish to manipulate using programming.

■ Please send this over the weekend

Additional Tip

● Make friends or a study group

Additional Tip

● Make friends or a study group
● Make connections between concepts in

class and actions you’d like to do with your
data

● Seek out practice

Literature

● "Practical Computing for Biologists"
(Haddock and Dunn)
○ Great for beginners
○ Mostly geared towards text editing

● O'Reilly Books
○ "Bioinformatics Programming in Python"

■ In Python 3, but good methodology

● http://greenteapress.com/thinkpython/thinkpython.pdf
○ Free!

http://greenteapress.com/thinkpython/thinkpython.pdf
http://greenteapress.com/thinkpython/thinkpython.pdf

Course Philosophy

● Establish a community

● Help people who don’t know where to start

● Provide resources to get you from 0 to not 0

● Most learning will be done on your own
○ No one learns without trial and error (and error)
○ This means you must be proactive and program a lot

What is a program?

How to get inside your computer

What is a program?

● A series of commands for your computer

● Written in a human-readable language
○ These are translated to binary by an assembler

language that is in-between your script and the
computer itself.

What is programming?

● One or more scripts saved in text files
○ Must be accessible to the operating system

● Creating software and scripts is the goal.
○ Your operating system itself is just a collection of

scripts that interoperate

Why learn programming?

● Repeatability of tasks
○ Paper trail!

● Speed of execution

● Automation
○ No more click, type, click, type, click, type, snooze.

Languages!

● There are many, many computer
programming languages.

Languages!

● There are many, many computer
programming languages.

● Things to consider:
○ Speed versus readability
○ Documentation

Languages!

● There are many, many computer
programming languages.

● Things to consider:
○ Speed versus readability
○ Documentation

● What are people in your field are using?
○ Stats - R
○ Dense computation - C & C++
○ Next-Gen - Perl & Python & Unix
○ Unix is often used as "glue" in workflows

Why Python?

● Readable

● Popular

● Well-documented

Why Unix?

● Almost universally used in computers,
supercomputers and file systems
○ This is how most programmers manage and

organize files

A taste of Unix

● Commands are small programs
○ Type name of command and hit "enter"
○ Unix searches for the program's text file, and

executes it.

● They interact with files that are in a specified
directory
○ If no directory specified, UNIX looks in your working

directory (the directory you are in)

File systems

● Your computer contains a nested hierarchy
of directories.
○ In Unix, no bird’s eye view of directory structure

■ Wherever you go, there you are
○ No visible “folders.”
○ Harder to keep track of where you and your

programs are.
○ You need to learn a new way of doing things.

File path

● Every file has an address on your computer
○ This is the filepath

● If you are going to do an operation on a file,
you'll need it's address

Slash notation

/

/level_1b

/level_1a/level_2b

/level_1a

= Directory

/level_1a/level_2a

Symbols for a few important paths

Here .

One level up ..

Home ~ or $HOME

Root (highest level) /

.. and . -----> "relative paths"

~ or /usr/bin -----> "absolute paths"

Commands for Getting Around

1.) Common commands

2.) Working on files

3.) Stringing them together

A taste of Unix

● Interact with Unix via a "shell"
○ The shell channels information between the user

and the Unix programs through "standard streams"

● Information on screen is called standard
output or "stdout"

● Input to programs is "stdin"

● Also, "sterr" - will be useful later

Commands for Getting Around

cd Change Directory

mkdir make directory

ls List

rm Remove

pwd Print working directory

man Manual

Commands for Getting Around
cd cd : takes you home

cd .. : takes you up one
level (to the containing
directory)

mkdir mkdir filename

ls ls -a : shows hidden files
ls -l : shows files along with
sizes and timestamps

rm rmdir: remove directory
CAUTION
Not a trashcan!
Once it’s gone, it’s gone.

Getting Comfortable

tab Auto complete

* Wildcard

Up arrow Last command

Ctrl + C Escape process

Ctrl + L Clear screen

Getting Comfortable

tab Enter enough unique
characters and press tab.
This will complete the
filepath or command.

* Matches every character
in a filename.

Tasks

● Create a file and a directory. Create a
second directory. Copy the file into it.

● Now, go into the original directory and delete
the original file.

● Change back into the second directory and
move the file into the original directory.
○ How is this different than copying?

File operations

grep print line with matching
plain text string

cat Concatenate, stream to
"standard out"

head/tail Print the first or last lines
in file

| Send output of one
command or program to
another as input

wc Word count

cp and mv Copy and move

File operations
grep grep word filename

cat cat file1

head/tail head -n1 file1
tail -n4 file1

| ls -l | wc -l

wc wc -l counts number of lines
wc filename counts the
words in the file

cp and mv cp file folder makes a copy
of a file into a folder
mv file folder moves that file,
leaving no copy

File operations
touch create file

nano open file and write to it

File operations

**Looking at the manual for all the
commands we are showing you is worth
your while. Typing 'man command name'
will show the manual file

Or just Google it!

Redirection

● > versus >>
○ > overwrites file content with whatever is on the left

side of the redirect symbol
○ >> appends whatever is on the left side to the file on

the right side
● Between the pipe and the redirect, you can

write a one-line custom program for text
editing
○ "Get all sequence names from a fasta file"
○ grep ">" file1.fas | cut -d ">" -f 2 >> seqs.txt

nano

● nano is Unix's default text editor
● Type 'nano' to access it
● This will open a text editor within your

terminal
● Saving, exiting and other file functions are

controlled with ctrl + letter keys
● If you create a document and write to it,

saving it will add the document to the current
directory

Bonus task

● Copy all the tree files to home
● Remove all the tree file in home
● Concatenate all the tree files in a file called trees.txt in

home
● How many trees are in this file?
● The second tree is unrooted and has node labels.

Make a new file with just the second tree from each of
the tree files called trees2.txt

Literature - The internet

● Stack Overflow
○ The answer is there, but it might be snarky

● Software Carpentry
○ Lot's of great free lessons
○ Host lectures - keep an eye out

● LearnPython
● CodeAcademy

