
Lecture 2
Pythons.

Today

● Quick Homework review
● Basic Python

○ Lots of terminology - keep that pen out!
○ The interpreter
○ Operators, statements, and variables
○ Integers, Floats, String and Lists

● Control flow with loops
○ for and while

● Terminology and Philosophy
○ Objects and Types

● Python tools and self study

Today

● 3 concepts to know by 3:00pm
○ Control Flow

■ Three kinds: sequential, selection, repetition
○ Objects

■ “Object oriented language.”
■ What objects are
■ Why you should care

○ Types
■ Type hierarchy
■ What types are
■ Why you should care

Homework

● What we received looked good.

● These two are equivalent:

cat tree1/tree1.txt tree2...etc.

cat tree*/tree*.txt >> all_trees

Note on self-study

● Most learning will be done on your own
○ This class will not be enough
○ Some literature is listed at the end
○ No one learns without trial and error (and error)
○ This means you must be proactive and program a lot

● Force yourself to use Unix and Python
○ Do things you could do more quickly by hand
○ At “some point” it becomes fun, I promise.

Note on in-class time

● Don’t feel like you have to “type along”
○ We recommend note taking during lecture
○ There will be plenty of time to practice

Note on in-class time

● Don’t feel like you have to “type along”
○ We recommend note taking during lecture
○ There will be plenty of time to practice

● Why not type along?

Note on in-class time

● Don’t feel like you have to “type along”
○ We recommend note taking during lecture
○ There will be plenty of time to practice

● Why not type along?
○ Examples will speed by
○ You know how to type - that’s not why we’re here
○ Easy to forget what you have typed and why

Quick note on programming

● Most of you have articulated why you want
to learn

● ls example

Quick note on programming

● Most of you have articulated why you want
to learn

● ls example
○ Programming turns a large series of commands into

just one
○ The program is now as infallible as your code is
○ It is repeatable and documented
○ Python is an excellent multi-purpose language

■ Huge and growing documentation
■ Easy on the eyes

Basic Python

● The python interpreter
○ type python at the command line
○ A Unix-like python environment will start
○ Good for learning and testing little bits of code
○ Log out with Ctrl+D

● Interpreter prompt looks like >>>
○ We'll use this notation for examples

Basic Python

● The obligatory “hello world”

>>> print “hello world”
hello world

Basic Python

● The obligatory “hello world”

>>> print “hello world”
hello world

Basic Python

● The obligatory “hello world”

>>> print “hello world”
hello world

● Statement: “do something”, call a procedure
on your data

Operators

● Operators also do something to data

● Operators also do something to data

Operators

+ Addition 3+4

- Subtraction 3-4

* Multiplication 4*3

/ Division 5/2 # -> 2

% Modulus 4%3 # -> 1

** Exponent 4**3

Operators (Logical)
== Equals >>>3==4

False

!= Not equals >>>3!=4
True

> Greater >>>3>4
False

< Less >>>3<4
True

>= Greater than or
equal to

>>>3>=4
False

<= Less than or
equal to

>>>3<=4
True

Variables

● Variables store data
○ Binds a name to data
○ Assign a value to a variable with =

■ Note that only one ‘=’ is used

>>> a = 1
>>> a
1

Variables

● Variables store data
○ Binds a name to data
○ Assign a value to a variable with =

■ Note that only one ‘=’ is used

>>> a = 1
>>> a
1

Integer

● As in the last example, any whole number.

Integer

● As in the last example, any whole number.

● Note problem with division

>>> 5/2
2

Float

● Decimals

>>> 5.0/2.0
2.5

Float

● Decimals

>>> 5.0/2.0
2.5
>>> 5.0/2 #you only need one!
2.5

Float

● Decimals

>>> 5.0/2.0
2.5
>>> 5.0/2 #you only need one!
2.5

Syntax

● How does Python “know” what’s a float and
what’s an int?
○ Syntax!

● When you type a whole number, it’s an int
○ You “declared” it to be so
○ You must take control, or face catastrophe

String

● A string is a series of characters
○ They are ordered.
○ They are immutable.

String

● A string is a series of characters
○ They are ordered.
○ They are immutable.

● Strings are declared with quotes
○ Can be single or double, but be consistent

>>> seq1 = 'agatcagtcatgact'
>>> seq1
‘agatcagtcatgact'

String

● A string is a series of characters
○ They are ordered.
○ They are immutable.

● Strings are declared with quotes
○ Can be single or double, but be consistent

>>> seq1 = '1'
>>> seq1
‘1'
>>> print seq1
1

String

● A string is a series of characters
○ They are ordered.
○ They are immutable.

● Strings are declared with quotes
○ Can be single or double, but be consistent

>>> seq1, seq2 = 'atc','gta'
>>> seq1 + seq2
'atcgta'

String

● A string is a series of characters
○ They are ordered.
○ They are immutable.

● Strings are declared with quotes
○ Can be single or double, but be consistent

>>> seq1, seq2 = 'atc','gta'
>>> seq1 + seq2
'atcgta'

Lists

● Just what they sound like
○ Ordered
○ Mutable
○ You can add, remove and reorder the list

● Lists are declared by square brackets
○ Contained objects can be (almost?) anything
○ Objects are delimited by commas

>>> list1 = [1,2.0,"three"]

Lists

● Lists are mutable
○ Need to add something?

>>> list2 = [] #declaration
>>> list2.append('eagle')#population
>>> list2
['eagle']

Lists

● Lists are mutable
○ Need to remove something?

>>>list2.remove('eagle')
>>>list2
[]

List and string commonalities

● Both are ordered
○ Python knows where the elements are in each

collection.
○ How do we use this information?

List and string commonalities

● Both are ordered
○ Python knows where the elements are in each

collection.
○ How do we use this information?

● Indexing
>>> L = ['a','b','c']
>>> L[0] #First item is 0!
'a'

List and string commonalities

● Both are ordered
○ Python knows where the elements are in each

collection.
○ How do we use this information?

● Slicing (can be tricky)
>>> L[1:2]#colon give range
['b'] #[inclusive:exclusive]

List and string commonalities

● Both are ordered
○ Python knows where the elements are in each

collection.
○ How do we use this information?

● Slicing (can be tricky)
>>> L[1:2]#colon give range
['b'] #[inclusive:exclusive]
>>> L[0:3:2] #[from:to:step]
['a','c']

List and string commonalities

● Both are ordered
○ Python knows where the elements are in each

collection.
○ How do we use this information?

● Slicing (can be tricky) 2
>>> L[-1] #negative indexing!
'c'
>>> L[-3:-1]
['a', 'b'] #still exclusive

List and string commonalities

● Both are ordered
○ Python knows where the elements are in each

collection.
○ How do we use this information?

● Slicing (can be tricky) 3
>>> L[:] #everything
['a', 'b', 'c']
>>> L[:3]
['a', 'b', 'c'] #inclusive! aaaah!

Control Flow

● Three types
○ Sequential
○ Selective
○ Repetitive

Control Flow

● Three types
○ Sequential (Do something top to bottom)
○ Selective (Do something if...)
○ Repetitive (Do something many times)

Control Flow

● Three types
○ Sequential (Do something top to bottom)
○ Selective (Do something if...)
○ Repetitive (Do something many times)

● Sequential (Default)
● Selective (If/else clause)
● Repetitive (Loops - for and while)

Control Flow

● Three types
○ Sequential (Do something top to bottom)
○ Selective (Do something if...)
○ Repetitive (Do something many times)

● Sequential (Default)
● Selective (If/else clause)
● Repetitive (Loops - for and while)

The for loop

● General format

for item in collection:

do something with item

● Loop will execute each statement in the
indented block from top to bottom until the
end of the collection is reached.

The for loop

● What’s a collection?
○ Strings and Lists are collections

>>> list1 = ['bobcat','eagle']
>>> for x in list1:
... print x
bobcat
eagle

The for loop

>>> for x in list1:

... print x

● Additional features of this loop
○ Two variables.

■ Easy to understand: list1
■ Hard to understand: x

● Declared automatically, name doesn’t matter (except for
normal naming conventions)

○ An indented second line.
■ Must be indented manually (use tab)
■ Indentation must be the same within the whole

body of the loop

Practice (please work in pairs)

1. Declare a list of integers 1 - 5
a. Name it “+”

i. What happens? Why is this a good idea?
b. Now name it “1”

i. Read the answer section here (later) http://stackoverflow.
com/questions/18716564/python-cant-assign-to-literal

c. Now give the list an actual name
d. Remove the even numbers, then add them back

2. Declare an empty list
a. Write a for loop that creates a new list where each

element corresponds to 1 + the matching element in
your first list

b. Find the code that makes a new list the same as the
last, but in reverse order

http://stackoverflow.com/questions/18716564/python-cant-assign-to-literal
http://stackoverflow.com/questions/18716564/python-cant-assign-to-literal
http://stackoverflow.com/questions/18716564/python-cant-assign-to-literal

An Introduction to Objects

● Object
○ A way of abstracting and storing data
○ What’s an object in Python?

An Introduction to Objects

● Object
○ A way of abstracting and storing data
○ What’s an object in Python?
○ Pretty much everything

An Introduction to Objects

● Object
○ A way of abstracting and storing data
○ What’s an object in Python?
○ Pretty much everything

● An object has three attributes
○ Identity - Constant, once it’s stored in a variable.
○ Type - Constant. Defines the operations that can be

performed with this object.
○ Value - Usually mutable. Defined by user.

Types of Objects

● There are many built-in types
○ We've discussed String, Integer, Float, and List.

Types of Objects

● There are many built-in types
○ We've discussed String, Integer, Float, and List.

● Types are arranged in a hierarchical manner
in Python.
○ We have provided a boiled-down version of the type

hierarchy in this week's cheat sheet.

Types of Objects

● There are many built-in types
○ We've discussed String, Integer, Float, and List.

● Types are arranged in a hierarchical manner
in Python.
○ We have provided a boiled-down version of the type

hierarchy in this week's cheat sheet.

● Why care?
○ An object’s type determines what you can do with it
○ This will instantly clarify syntax x100

Types of Objects - object behavior

>>> a = 1

>>> a

1

>>> a = '1'

>>> a

'1'

INTs

STRs

Types of Objects - object behavior

INTs

STRs

>>> a,b = 1,2

>>> a+b

3

>>> a,b = '1','2'

>>> a+b

'12'

Types of Objects - object methods

>>> a = 'a'

>>> a.upper()

'A'

>>> a = 1

>>> a.upper()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'int' object has no
attribute 'upper'

Types of Objects - object methods

>>> a = 'a'

>>> a.upper() #Methods accessed by dot

'A' #notation called on the

#variable, which is an
#object instance

Types of Objects - object methods

>>> a = 'a'

>>> a.upper()

'A'

>>> a = 1

>>> a.upper() #Always read your tracebacks!

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'int' object has no
attribute 'upper'

Types of Objects

● How do I learn an object’s type
○ type type()

>>> a,b = 1,'b'

>>> type(a)

<type 'int'>

>>> type(b)

<type 'str'>

Types of Objects

● How do I learn an object’s type
○ type type()

>>> type(type(a))

<type 'type'>

● Turtles all the way down.

Types of Objects

● Turtles all the way down.
○ This is what it means for Python to be object

oriented
○ It has lots and lots of objects built in

● Pros and Cons
○ Pro: you don’t have to design your own object

■ you have to in C
○ Con: you have to learn a bunch of Python objects

■ These range in complexity from integers, to
custom packages for almost any kind of data.

Types of Objects

● Type conversion
○ str()
○ list()
○ int()
○ float()

>>> a = '1'
>>> int(a)
1

Homework

● Read the Type Hierarchy
● Read Wk2 cheat sheet
● Learn additional string methods

○ str.strip()
○ str.split()
○ str.join()
○ str.rjust()
○ str.ljust()

● And a quick excercise

Next Time

● Selective control flow (if/else)
● File input and output
● More types

○ Dictionaries
○ Files (streams)

● Nested Statements
● Comprehensions

Tools for learning Python

● Code Academy (www.codeacademy.com)
○ Nice interactive tutorials

● Software Carpentry
○ (software-carpentry.org)
○ Recommended lectures

Important string methods

str.strip([chars])

#remove characters,
default: whitespace

>>> a = ' a '
>>> a.strip()
'a'

str.split(sep)

#returns list, with
elements separated by
sep. Default: whitespace

>>> a = 'a b'
>>> a.split()
['a', 'b']

More Concatenation

+ (string) “atc” + “gta” “atcgta”

+ (list) >>> a = ['a']
>>> b = ['b']

>>> a+b
['a', 'b']

+= (string) >>> a = 'atc'
>>> a += 'gta'

>>> a
'atcgta'

+= (list) >>> a = ['a']
>>> a += ['b']

>>> a
['a', 'b']

